简单比较(拉格朗日与牛顿插值法)
- 格式:doc
- 大小:250.50 KB
- 文档页数:5
数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。
插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。
插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。
插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。
常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。
假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。
拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。
b.构造插值多项式L(x)。
c.计算L(x)在需要估计的插值点上的函数值f(x)。
2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。
差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。
最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。
牛顿插值法的步骤为:a.计算差商表的第一列。
b.计算差商表的其他列,直至最后一列。
c.根据差商表构造插值多项式N(x)。
举例来看:可以认为某水文要素T随时间t的变化是连续的,某一个测点的水文要素T可以看作时间的函数T=f(t),这样在实际水文观测中,对测得的(n+1)个有序值进行插值计算来获取任意时间上的要素值。
①平均值法:若求Ti 和Ti+1之间任一点T,则直接取T为Ti和Ti+1的平均值。
插值公式为:T=Ti+Ti+1 2②拉格朗日(Lagrange)插值法:若求Ti 和Ti+1之间任一点T,则可用T i-1、T1、T i+1三个点来求得,也可用T i、T i+1、T i+2这三个点来求得。
前三点内插公式为:T=(t-t i)(t-t i+1)(t i-1-t i)(t i-1-t i+1)T i-1+(t-t i-1)(t-t i+1)(t-t i-1)(t-t i+1)T i+(t-t i)(t-t i-1)(t i+1-t i)(t i+1-t i-1)T i+1后三点内插公式为:T=(t-t i+1)(t-t i+2)(t i-t i+1)(t i-t i+2)T i+(t-t i)(t-t i+2)(ti-t i)(t i-t i+2)T i+1+(t-t i)(t-t i+1)(t i+2-t i)(t i+2-t i+1)T i+2为提高插值结果可靠性,可将前后3点内插值再进一步平均。
③阿基玛(Akima)插值法:对函数T=f(t)的n+1个有序型值中任意两点T i和T i+1满足:f(t i)=T i dfdt|t-ti=k i f’(t i+1)=T’idfdt|t-ti+1=k i+1式中k i,k i+1为曲线f(t)在这两点的斜率,而每点的斜率和周围4个点有关,插值公式为:T=P0+P1(t-t i)+P2(t-t i)2+P3(t-t i)3,来对T i和T i+1之间的一点T进行内差。
④牛顿(Newton)插值法:若求Ti 和Ti+1之间任一点T,插值公式为:T=f(x0)+(x-x0)f(x0,x1)+ (x-x0)(x-x1)f(x0,x1,x2)+…+(x-x0)(x-x1)…(x-x n-2)f(x0,x1,…,x n-1)式中,f(x0,x1),f(x0,x1,x2),…f(x0,x1,…,x n-1)是函数f(x)的1到第n-1阶差商。
数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。
在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。
插值方法就是为了解决这个问题而设计的。
插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。
常见的插值方法有拉格朗日插值、牛顿插值等。
下面我们将重点介绍这两种方法。
1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。
它是基于拉格朗日多项式的思想。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。
拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。
具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。
然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。
2. 牛顿插值法牛顿插值法是另一种常见的插值方法。
它是基于差商的思想。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。
牛顿插值法的基本思想是通过插值多项式来逼近原函数。
具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。
插值法公式简单记忆方法插值法是一种求取某些数据点之间数值的方法,其公式可以根据不同的情况而有所不同。
以下是一些简单记忆插值法公式的方法:1. 拉格朗日插值法:根据已知数据点的函数值构造一个多项式函数,并使用该函数进行插值计算。
公式为:$$f(x) = sum_{i=0}^n y_i L_i(x)$$其中,$L_i(x)$ 是拉格朗日基函数,表示为:$$L_i(x) = prod_{jeq i} frac{x-x_j}{x_i-x_j}$$2. 牛顿插值法:通过已知数据点的差商来构造一个插值多项式。
公式为:$$f(x) = f[x_0] + (x-x_0)f[x_0,x_1] +(x-x_0)(x-x_1)f[x_0,x_1,x_2] + cdots +(x-x_0)cdots(x-x_{n-1})f[x_0,cdots,x_n]$$其中,$f[x_i]$ 表示 $i$ 阶差商,$f[x_i,x_{i+1},cdots,x_{i+j}]$ 表示 $i$ 到 $i+j$ 阶差商。
3. 分段线性插值法:将插值区间分成若干个小区间,每个小区间内用一条直线来近似表示函数。
公式为:$$f(x) = begin{cases}frac{x-x_0}{x_1-x_0}y_1 + frac{x_1-x}{x_1-x_0}y_0, &x_0leq x leq x_1frac{x-x_1}{x_2-x_1}y_2 + frac{x_2-x}{x_2-x_1}y_1, &x_1leq x leq x_2cdots & cdotsfrac{x-x_{n-1}}{x_n-x_{n-1}}y_n +frac{x_n-x}{x_n-x_{n-1}}y_{n-1}, & x_{n-1}leq x leq x_nend{cases}$$其中,$x_i$ 和 $y_i$ 分别表示已知数据点的自变量和因变量。
数值分析中的插值算法及其应用数值分析是研究解决数学问题的数值方法的一门学科。
其中,插值算法是数值分析中重要的方法之一。
插值是指在给定一些数据点的情况下,用一些方法建立一个函数,该函数可以在给定区间内的任何一点上计算出函数值。
插值方法有很多种,其中比较常用的有拉格朗日插值法、牛顿插值法和埃尔米特插值法。
1. 拉格朗日插值法拉格朗日插值法是一种将一个多项式函数p(x)与一系列已知数据点相联系的方法。
假设给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),其中x1 < x2 < ... < xn,那么可以构造一个次数小于等于n-1的多项式函数p(x)满足p(xi) = yi,i=1,2,...,n。
设p(x)的表达式为:p(x) = Σyi li(x)其中,li(x)为拉格朗日基函数。
每个基函数都满足:li(xi) = 1, li(xj) = 0, j≠i基函数的表达式为:li(x) = Π[j≠i] (x - xj) / (xi - xj)利用拉格朗日插值法,可以在给定数据点的情况下,快速计算函数在其他点上的值。
2. 牛顿插值法牛顿插值法是一种利用差商的方法建立插值多项式的方法。
相比于拉格朗日插值法,牛顿插值法更注重于递推计算。
给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),牛顿插值法可以建立一个关于x的n次多项式。
首先,定义一个差商:f[xi] = yif[xi, xi+1, ..., xj] = (f[xi+1, ..., xj] - f[xi, ..., xj-1]) / (xj - xi)差商f[xi, xi+1, ..., xj]是由区间(xi, xj)内的函数值f(xi), f(xi+1), ..., f(xj)所计算得到的。
定义一个新的多项式qk(x),其中:qk(x) = f[x0, x1, ..., xk] + (x - xk) qk-1(x)其中q0(x) = f[x0]。
五种插值法的对⽐研究毕业论⽂题⽬:五种插值法的对⽐研究xxx⼤学本科⽣毕业论⽂开题报告表论⽂(设计)类型:A—理论研究;B—应⽤研究;C—软件设计等;五种插值法的对⽐研究 (3)⼀插值法的历史背景 (5)⼆五种插值法的基本思想 (5)(⼀)拉格朗⽇插值 (5)(⼆)⽜顿插值 (6)(三)埃尔⽶特插值 (7)(四)分段线性插值 (7)(五)样条插值 (8)三五种插值法的对⽐研究 (9)四插值法在matlab中的应⽤ (15)五参考⽂献 (17)五种插值法的对⽐研究摘要:插值法是数值分析中最基本的⽅法之⼀。
在实际问题中碰到的函数是各种各样的,有的甚⾄给不出表达式,只提供了⼀些离散数据,例如,在查对数表时,要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值,按⼀定关系把相邻的数加以修正,从⽽找出要找的数,这种修正关系实际上就是⼀种插值。
在实际应⽤中选⽤不同类型的插值函数,逼近的效果也不同。
本⽂详细介绍了拉格朗⽇插值、⽜顿插值、分段插值、埃尔⽶特插值、样条插值法,并从五种插值法的基本思想和具体实例⼊⼿,探讨了五种插值法的优缺点和适⽤范围。
.通过对五种插值法的对⽐研究及实际应⽤的总结,从⽽使我们在以后的应⽤中能够更好、更快的解决问题。
关键词:插值法对⽐实际应⽤Abstract: interpolation numerical analysis of one of the most basic method. Function is a wide variety of practical problems encountered, and some even not give expression provides only a number of discrete data, e.g., in the the checker number table, to check the data is not found in the table , first find out the number next to it, from the side to find the correction value, a certain relationship between the adjacent number to be amended, and to find to find the number, this correction relationship is actually an interpolation . Selection of different types of interpolation functions in practical applications, the approximation of the effect is different. This paper describes the Lagrange interpolation, Newton interpolation, piecewise interpolation, Hermite interpolation, spline interpolation, and start from the basic idea of the five interpolation and specific examples to explore the advantages of the five interpolation shortcomings and the scope of application. The comparative study and practical application of the summary by the the five interpolation method of application so that we can better and faster to solve the problem.引⾔在许多实际问题中,常常需要根据⼀张函数表推算该函数在某些点上的函数值,或要求解决与该函数有关的⼀些问题,例如分析函数的性态,求导数、积分、零点与极值点等。
拉格朗日插值法牛顿插值法
摘要:
1.插值法的概念和作用
2.拉格朗日插值法原理和应用
3.牛顿插值法原理和应用
4.两种插值法的优缺点比较
正文:
一、插值法的概念和作用
插值法是一种数学方法,通过已知的数据点来预测未知数据点的一种技术。
在科学计算和工程应用中,常常需要根据有限个已知数据点,来估计某个函数在其他点上的值。
插值法正是为了解决这个问题而诞生的。
二、拉格朗日插值法原理和应用
拉格朗日插值法是一种基于拉格朗日基函数的插值方法。
它的基本原理是:在给定的区间[a, b] 上,选取一个基函数,然后通过求解一组线性方程,得到基函数在各数据点上的值,最后用这些值来近似函数在待求点上的值。
拉格朗日插值法广泛应用于数值分析、工程计算等领域。
三、牛顿插值法原理和应用
牛顿插值法,又称为牛顿前向差分法,是一种基于差分的插值方法。
它的基本原理是:通过对已知数据点的函数值进行差分,然后使用牛顿迭代公式来求解差分后的函数在待求点上的值。
牛顿插值法具有较高的精度,适用于各种函数,特别是对于单调函数和多项式函数,效果尤为显著。
四、两种插值法的优缺点比较
拉格朗日插值法和牛顿插值法各有优缺点。
拉格朗日插值法的优点是适用范围广,可以插值任意类型的函数,但计算过程较为复杂;牛顿插值法的优点是计算简便,精度高,但对于非线性函数或多峰函数,效果可能不佳。
因此,在实际应用中,需要根据具体情况选择合适的插值方法。
matlab 拉格朗日插值法和牛顿插值法题目:MATLAB中的拉格朗日插值法和牛顿插值法引言在实际问题中,我们常常需要通过一系列已知数据点来估计未知数据点的值。
这种问题很常见,例如用温度测量数据来预测未来某一天的温度。
为了解决这种插值问题,拉格朗日插值法和牛顿插值法是常用的方法之一。
在本文中,我们将介绍这两种插值方法并详细解释如何在MATLAB中使用它们。
一、拉格朗日插值法拉格朗日插值法是基于拉格朗日多项式的一种插值方法。
该方法使用已知数据点的值和位置来构造一个多项式,进而估计未知数据点的值。
其基本思想是通过多项式与每个数据点相等,并利用拉格朗日插值公式来得到插值多项式。
1. 拉格朗日插值公式拉格朗日插值公式可以表示为:P(x) = Σ(yi * li(x))其中P(x)是插值多项式,yi是第i个数据点的值,li(x)是拉格朗日基函数。
拉格朗日基函数li(x)定义为:li(x) = Π((x-xj)/(xi-xj)) (j ≠i)2. MATLAB实现要在MATLAB中实现拉格朗日插值法,我们可以按照以下步骤进行:(1)首先定义数据点的横坐标x和纵坐标y;(2)使用for循环遍历每个数据点,并计算插值多项式的每一项;(3)将每个数据点的插值多项式项相加,得到最终的插值多项式;(4)通过给定的x值,计算插值多项式的值。
该过程可以通过以下MATLAB代码实现:matlab定义已知数据点的横坐标和纵坐标x = [1, 2, 3, 4];y = [2, 4, 1, 6];计算插值多项式的每一项n = length(x); 数据点数量P = 0; 初始化插值多项式for i = 1:n计算每一项的拉格朗日基函数li = ones(size(x));for j = 1:nif j ~= ili = li .* (xs - x(j)) / (x(i) - x(j));endend计算每一项的插值多项式项Pi = yi * li;将每一项相加得到最终的插值多项式P = P + Pi;end给定x值,计算插值多项式的值x_val = 2.5;y_val = polyval(P, x_val);二、牛顿插值法牛顿插值法是一种使用差商的插值方法。
插值法的简便计算插值法是一种常见的数值分析方法,用于在给定的数据点之间估计未知函数的值。
在实际应用中,插值法的计算可能会比较复杂,但是有一些简便的计算方法可以帮助我们更快地完成插值计算。
一、拉格朗日插值法拉格朗日插值法是一种常用的插值方法,它可以通过已知的数据点来估计未知函数的值。
其基本思想是:假设已知n个数据点(x1,y1),(x2,y2),...,(xn,yn),并且这些点两两不同,那么可以构造一个n次多项式P(x),使得P(xi)=yi(i=1,2,...,n)。
然后,通过这个多项式来估计未知函数在某个点x0处的值f(x0)。
拉格朗日插值法的计算比较繁琐,但是可以通过一些简便的计算来减少计算量。
具体来说,可以使用以下公式来计算多项式P(x):P(x)=Σ(yi*li(x))其中,li(x)是拉格朗日基函数,定义为:li(x)=Π((x-xj)/(xi-xj))(i≠j)这个公式中,Π表示连乘积,xi和xj是已知的数据点,i≠j。
通过这个公式,我们可以快速计算出多项式P(x)的值。
二、牛顿插值法牛顿插值法是另一种常用的插值方法,它也可以通过已知的数据点来估计未知函数的值。
其基本思想是:假设已知n个数据点(x1,y1),(x2,y2),...,(xn,yn),并且这些点两两不同,那么可以构造一个n次插值多项式N(x),使得N(xi)=yi(i=1,2,...,n)。
然后,通过这个多项式来估计未知函数在某个点x0处的值f(x0)。
牛顿插值法的计算也比较繁琐,但是可以通过一些简便的计算来减少计算量。
具体来说,可以使用以下公式来计算插值多项式N(x):N(x)=b0+b1(x-x1)+b2(x-x1)(x-x2)+...+bn(x-x1)(x-x2)...(x-xn)其中,bi是牛顿插值系数,可以通过以下公式来计算:bi=Δyi/Δxi(i=1,2,...,n)其中,Δyi和Δxi分别表示相邻数据点的函数值和自变量之差。
拉格朗日插值公式和牛顿插值公式拉格朗日插值公式和牛顿插值公式是数值分析中常用的插值方法,用于通过已知数据点推导出未知数据点的近似值。
本文将分别介绍这两个插值方法的原理和应用,并比较它们的特点和优劣。
一、拉格朗日插值公式拉格朗日插值公式是由法国数学家拉格朗日于18世纪提出的,它通过构造一个多项式来逼近给定的数据点集合。
具体而言,拉格朗日插值多项式的形式为:P(x) = Σ(yi * Li(x))其中,P(x)表示待求的多项式,yi表示已知数据点的函数值,Li(x)称为拉格朗日基函数,它代表了每个数据点的贡献度。
拉格朗日插值公式的优点在于其简单易懂,计算过程相对简单快速。
但是,该方法的缺点是对于较大规模的数据集合,计算量会变得很大,同时当数据点之间的间距不均匀时,插值结果可能出现较大误差。
二、牛顿插值公式牛顿插值公式是由英国数学家牛顿于17世纪提出的,它采用了多项式的差商形式进行插值。
具体而言,牛顿插值多项式的形式为:P(x) = f[x0] + (x - x0)f[x0, x1] + (x - x0)(x - x1)f[x0, x1,x2] + ...其中,f[x0]表示已知数据点的函数值,f[x0, x1]表示x0和x1两个点之间的差商,以此类推。
牛顿插值公式的优点在于可以通过递推的方式计算差商,避免了重复计算,因此对于较大规模的数据集合,计算效率较高。
此外,牛顿插值公式对于不均匀间距的数据点也能够较好地逼近。
然而,牛顿插值公式的缺点在于其计算过程较为繁琐,需要额外计算差商。
三、比较与应用拉格朗日插值公式和牛顿插值公式都是常见的插值方法,它们在实际应用中各有优劣。
下面将对它们进行比较和应用分析。
1. 计算复杂度从计算复杂度的角度来看,牛顿插值公式在计算差商时需要递推计算,每次计算需要O(n)的复杂度,因此总的计算复杂度为O(n^2)。
而拉格朗日插值公式直接计算每个基函数,每次计算都需要O(n)的复杂度,因此总的计算复杂度也为O(n^2)。
数值分析中常用的插值方法在数值计算中,许多问题都可以用插值方法来近似求解,比如曲线拟合、函数逼近和图像重建等。
插值方法是指在已知数据点的情况下,通过一些数值计算技巧,在每个数据点处构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。
在数据点之间计算函数值时,就可以使用这个多项式函数进行估算。
接下来,我们就来详细介绍一些常见的插值方法。
一、拉格朗日插值法拉格朗日插值法是一个经典的插值方法,它的思想是通过给定的数据点,构造一个经过这些点的多项式函数进行逼近。
具体来讲,拉格朗日插值法会首先构造一个基函数,该函数满足只在其对应的数据点处等于1,其余的数据点处等于0。
然后,根据基函数和数据点,构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。
最终得到的多项式函数就是插值函数。
优点:简单易懂,使用较为广泛。
缺点:多项式次数较高时造成的误差会较大,且在数据点密集的区域可以出现龙格现象,使得插值函数在某些区间内呈现大幅度振荡。
二、牛顿插值法牛顿插值法是一种递推式的插值方法,它通过利用已知的数据点和前面已经计算出来的差商,得到一个逐步逼近的插值函数。
具体来讲,牛顿插值法会先将已知的数据点连成一条曲线,然后逐个向这条曲线添加新的数据点,每次添加一个新的数据点后,将差商计算出来并加入到之前的差商序列中,最终得到一个多项式函数,它在每个数据点处都能通过数据点。
牛顿插值法的优缺点与拉格朗日插值法相似,但是由于牛顿插值法是递推式的,可以方便的添加新的数据点,因此在数据点多变的情况下,牛顿插值法具有很大的优势。
三、分段插值法分段插值法是一种将插值区间划分为多个子区间的插值方法,在每个子区间内使用插值方法进行插值,然后将所有子区间内的插值函数拼接起来,得到最终的插值函数。
分段插值法主要分为两种:线性分段插值和三次样条插值。
1.线性分段插值线性分段插值的思路很简单,即在每个数据点处构造两条直线,在数据点之间的区间内使用一条直线作为插值函数。
拉格朗日插值法与牛顿插值法的比较一、 背景在工程和科学研究中出现的函数是多种多样的。
常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数)(x f 在区间],[b a 上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值(即一张函数表)。
显然,要利用这张函数表来分析函数)(x f 的性态,甚至直接求出其他一些点上的函数值可能是非常困难的。
面对这些情况,总希望根据所得函数表(或结构复杂的解析表达式),构造某个简单函数)(x P 作为)(x f 的近似。
这样就有了插值法,插值法是解决此类问题目前常用的方法。
如设函数)(x f y =在区间],[b a 上连续,且在1+n 个不同的点b x x x a n ≤≤,,,10 上分别取值n y y y ,,,10 。
插值的目的就是要在一个性质优良、便于计算的函数类Φ中,求一简单函数)(x P ,使 ),,1,0()(n i y x P i i ==而在其他点i x x ≠上,作为)(x f 的近似。
通常,称区间],[b a 为插值区间,称点n x x x ,,,10 为插值节点,称式i i y x P =)(为插值条件,称函数类Φ为插值函数类,称)(x P 为函数)(x f 在节点n x x x ,,,10 处的插值函数。
求插值函数)(x P 的方法称为插值法。
插值函数类Φ的取法不同,所求得的插值函数)(x P 逼近)(x f 的效果就不同。
它的选择取决于使用上的需要,常用的有代数多项式、三角多项式和有理函数等。
当选用代数多项式作为插值函数时,相应的插值问题就称为多项式插值。
本文讨论的拉格朗日插值法与牛顿插值法就是这类插值问题。
在多项式插值中,最常见、最基本的问题是:求一次数不超过n 的代数多项式 n n x a x a a x P +++= 10)(使),,1,0()(n i y x P i i n ==,其中,n a a a ,,,10 为实数。
用拉格朗日插值法和牛顿插值法求的三次
多项式
拉格朗日插值法和牛顿插值法是两种用于求三次多项式的经典插值方法,在科学研究和工程应用中都有广泛的应用。
拉格朗日插值法是一种基于拉格朗日插值多项式的求解方法,它可以根据已知的函数值求出未知函数的拉格朗日多项式。
该方法的原理是将未知函数f(x)用n+1个不同的插值点x₀,
x₁, ..., xₙ所确定的拉格朗日插值多项式近似地表示,并以此
求解函数f(x)。
牛顿插值法是一种基于牛顿系数的求解方法,它可以根据已知的函数值求出未知函数的牛顿插值多项式。
这种方法的原理是将未知函数f(x)用n+1个不同的插值点x₀, x₁, ..., xₙ所
确定的牛顿插值多项式近似地表示,并以此求解函数f(x)。
拉格朗日插值法和牛顿插值法的算法都非常简单,但是它们的精度有待进一步改进。
拉格朗日插值法的精度受到插值点的选择和拉格朗日插值多项式的阶数的影响,而牛顿插值法的精度受到插值点的选择和牛顿插值多项式的阶数的影响。
总之,拉格朗日插值法和牛顿插值法都是求三次多项式的经典插值方法,其算法简单,但精度受插值点的选择和插值多项式的阶数的影响。
插值函数构造插值函数是一种数学函数,它可以通过已知的一些数据点来构造出一个函数,使得这个函数在这些数据点上的取值与已知数据点的取值相同。
插值函数在数学、物理、工程等领域中都有广泛的应用,例如在数值计算中,插值函数可以用来近似计算某些函数的值;在图像处理中,插值函数可以用来对图像进行放缩、旋转等操作。
插值函数的构造方法有很多种,其中比较常用的有拉格朗日插值法、牛顿插值法、分段线性插值法等。
下面我们将分别介绍这些方法的原理和应用。
1. 拉格朗日插值法拉格朗日插值法是一种基于拉格朗日多项式的插值方法。
它的基本思想是,通过已知的n个数据点(x1,y1),(x2,y2),...,(xn,yn),构造一个n次多项式P(x),使得P(xi)=yi(i=1,2,...,n)。
具体地,P(x)可以表示为:P(x)=Σ(yi*li(x))其中,li(x)是拉格朗日基函数,它的表达式为:li(x)=Π((x-xj)/(xi-xj))(i≠j)通过这个公式,我们可以得到一个n次多项式P(x),使得P(xi)=yi(i=1,2,...,n)。
这个多项式就是拉格朗日插值函数。
拉格朗日插值法的优点是简单易懂,计算量小,但是当数据点数量较多时,多项式的次数会很高,导致插值函数的精度下降。
2. 牛顿插值法牛顿插值法是一种基于差商的插值方法。
它的基本思想是,通过已知的n个数据点(x1,y1),(x2,y2),...,(xn,yn),构造一个n次多项式P(x),使得P(xi)=yi(i=1,2,...,n)。
具体地,P(x)可以表示为:P(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...+f[x0,x1,...,xn](x-x0)(x-x1)...(x-xn-1)其中,f[xi]表示xi对应的函数值,f[xi,xj]表示xi和xj对应的函数值的差商,f[xi,xj,xk]表示xi、xj和xk对应的函数值的三阶差商,以此类推。
拉格朗日插值法和牛顿插值法的区别
拉格朗日插值法和牛顿插值法都是多项式插值。
多项式插值是通
过在已知点求多项式表达来获得未知点的值的一种插值法。
其原理是
将插值点的函数插入已经确定的多项式中,以求得函数的值。
这两种
方法都能够利用已知的数据来预测未知数据,但它们的原理是不同的。
拉格朗日插值法是一种基于有限多项式的插值方法,旨在根据已
知的离散数据拟合出有限多项式函数。
它假设函数中的任何零点都可
以表示为有限多项式函数,从而得到点集中离散点的函数值。
拉格朗
日插值法可以给出比较精确的结果,但是其在插值程度上存在一定的
缺陷,比如畸变度大,计算量也相对较大。
牛顿插值法是基于牛顿插值多项式的插值方法,是一种基于差分
的插值方法,它旨在插入一组已知的点,并拟合出一个牛顿插值多项式。
此方法通过计算差商来逼近给定的数据点,这样每两个点之间的
函数值的变化率就可以给出,从而得出其中的未知函数值。
牛顿插值
法可以生成比较平滑的结果,但是计算量相对较大。
这种方法在处理
多点数据时很有效,而且对运算量要求比较小,同时插值精度也比较高。
总体而言,拉格朗日插值法与牛顿插值法都是多项式插值的一种。
从运算量、精度和拟合度三点来说,牛顿插值法更优于拉格朗日插值法;而拉格朗日插值法更能准确拟合离散点点集。
数值分析实验报告实验目的:通过数值分析实验,掌握常用的插值方法,包括拉格朗日插值法和牛顿插值法,并对比它们的优缺点。
实验原理:插值法是一种在已知数据点的基础上,通过构造一个函数来逼近给定数据集以及这个函数本身。
其中,拉格朗日插值法采用一个多项式来逼近数据集,而牛顿插值法则采用一个多项式和差商来逼近。
实验步骤:1.使用拉格朗日插值法:a)根据给定的n+1个数据点,构造一个n次的插值多项式。
b)计算插值多项式在给定点x处的值。
2.使用牛顿插值法:a)根据给定的n+1个数据点,计算差商的递归表达式。
b)利用递归表达式计算插值多项式在给定点x处的值。
3.通过实验数据进行验证,并对比两种插值方法的优缺点。
实验结果与分析:以一个具体的实验数据为例,假设已知数据点为{(0,1),(1,3),(2,5)},要求在给定点x=0.5处进行插值。
1.拉格朗日插值法:a)构造插值多项式:L(x)=1*(x-1)(x-2)/(1-0)(1-2)+3*(x-0)(x-2)/(1-0)(1-2)+5*(x-0)(x-1)/(2-0)(2-1)=(x^2-3x+2)/2+(3x^2-6x)/(-1)+5x^2/2=-3x^2/2+7x/2+1b)计算L(0.5)=-3(0.5)^2/2+7(0.5)/2+1=22.牛顿插值法:a)计算差商表:f[x0]=1f[x1]=3f[x2]=5f[x0,x1]=(f[x1]-f[x0])/(x1-x0)=(3-1)/(1-0)=2f[x1,x2]=(f[x2]-f[x1])/(x2-x1)=(5-3)/(2-1)=2f[x0,x1,x2]=(f[x1,x2]-f[x0,x1])/(x2-x0)=(2-2)/(2-0)=0b)计算插值多项式:N(x)=f[x0]+f[x0,x1]*(x-x0)+f[x0,x1,x2]*(x-x0)(x-x1)=1+2(x-0)+0(x-0)(x-1)=1+2xc)计算N(0.5)=1+2(0.5)=2对比结果可得到拉格朗日插值法和牛顿插值法得到的插值点的值都为2,验证了所使用方法的正确性。
matlab 拉格朗日插值法和牛顿插值法-回复Matlab 拉格朗日插值法和牛顿插值法引言:在数值分析中,插值法是一种通过已知数据点来估计介于这些数据点之间的未知数值的方法。
拉格朗日插值法和牛顿插值法是两种常用的插值方法,都有各自的优点和适用场景。
本文将详细介绍这两种方法的原理和实现方式,以及在Matlab 中如何使用它们来进行插值计算。
一、拉格朗日插值法1. 原理:拉格朗日插值法是使用一个N次的多项式来逼近未知函数。
给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过拉格朗日插值法可以得到一个多项式P(x),使得P(xi) = yi。
该多项式表示了数据点间的曲线关系,从而可以通过插值估算未知点的值。
2. 实现步骤:(1)创建一个N次多项式的拉格朗日插值函数;(2)计算每个插值点的权重系数,即拉格朗日插值函数的系数;(3)根据给定的数据点和权重系数,构建多项式;(4)通过多项式计算未知点的值。
3. Matlab 中的使用:在Matlab 中,可以使用"polyfit" 函数来实现拉格朗日插值法。
该函数可以拟合出一个多项式曲线,将给定的数据点映射到曲线上。
二、牛顿插值法1. 原理:牛顿插值法是通过构造一个差商表来逼近未知函数。
给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过牛顿插值法可以得到一个N次多项式P(x),满足P(xi) = yi。
该多项式的系数由差商构成,利用递归的方式逐层求解。
2. 实现步骤:(1)创建一个N次多项式的牛顿插值函数;(2)计算差商表,其中第一列为给定的数据点y值;(3)递归计算差商表中的其他列,直到得到最后的差商值;(4)根据差商表构建多项式;(5)通过多项式计算未知点的值。
3. Matlab 中的使用:在Matlab 中,可以使用"interp1" 函数结合牛顿插值法来进行插值计算。
拉格朗日插值法与牛顿插值法的比较一、 背景在某个实际问题中,虽然可以断定所考虑的函数)(x f 在区间],[b a 上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值(即一张函数表)。
显然,要利用这张函数表来分析函数)(x f 的性态,甚至直接求出其他一些点上的函数值可能是非常困难的。
面对这些情况,总希望根据所得函数表(或结构复杂的解析表达式),构造某个简单函数)(x P 作为)(x f 的近似。
这样就有了插值法,插值法是解决此类问题目前常用的方法。
如设函数)(x f y =在区间],[b a 上连续,且在1+n 个不同的点b x x x a n ≤≤,,,10 上分别取值n y y y ,,,10 。
插值的目的就是要在一个性质优良、便于计算的函数类Φ中,求一简单函数)(x P ,使),,1,0()(n i y x P i i ==而在其他点i x x ≠上,作为)(x f 的近似。
通常,称区间],[b a 为插值区间,称点n x x x ,,,10 为插值节点,称式i i y x P =)(为插值条件,称函数类Φ为插值函数类,称)(x P 为函数)(x f 在节点n x x x ,,,10 处的插值函数。
求插值函数)(x P 的方法称为插值法。
插值函数类Φ的取法不同,所求得的插值函数)(x P 逼近)(x f 的效果就不同。
它的选择取决于使用上的需要,常用的有代数多项式、三角多项式和有理函数等。
当选用代数多项式作为插值函数时,相应的插值问题就称为多项式插值。
本文讨论的拉格朗日插值法与牛顿插值法就是这类插值问题。
在多项式插值中,最常见、最基本的问题是:求一次数不超过n 的代数多项式n n x a x a a x P +++= 10)(使),,1,0()(n i y x P i i n ==,其中,n a a a ,,,10 为实数。
拉格朗日插值法即是寻求函数)(x L n (拉格朗日插值多项式)近似的代替函数)(x f 。
相似的,牛顿插值法则是通过)(x N n (牛顿插值多项式)近似的求得函数的值。
二、 理论基础(一)拉格朗日插值法在求满足插值条件n 次插值多项式)(x P n 之前,先考虑一个简单的插值问题:对节点),,1,0(n i x i =中任一点)0(n k x k ≤≤,作一n 次多项式)(x l k ,使它在该点上取值为1,而在其余点),,1,1,1,0(n k k i x i +-=上取值为零,即⎩⎨⎧≠==ki k i x l i k 01)( 上式表明n 个点n k k x x x x x ,,,,,,1110 +-都是n 次多项式)(x l k 的零点,故可设]1[1110)())(())(()(n k k k k x x x x x x x x x x A x l -----=+-其中,k A 为待定系数。
由条件1)(=k k x l 立即可得)())(()(1110n k k k k k k k x x x x x x x x A ----=+- 故 )())(()()())(()()(110110n k k k k k k n k k k x x x x x x x x x x x x x x x x x l --------=+-+- 由上式可以写出1+n 个n 次插值多项式)(,),(),(10x l x l x l n 。
我们称它们为在1+n 个节点n x x x ,,,10 上的n 次基本插值多项式或n 次插值基函数。
利用插值基函数立即可以写出满足插值条件的n 次插值多项式)()()(1100x l y x l y x l y n n +++根据条件⎩⎨⎧≠==k i k i x l i k 01)(,容易验证上面多项式在节点i x 处的值为),,1,0(n i y i =,因此,它就是待求的n 次插值多项式)(x P n 。
形如)()()(1100x l y x l y x l y n n +++ 的插值多项式就是拉格朗日插值多项式,记为)(x L n ,即)())(()()())(()()()()()(1101102211n k k k k k k n k k n n n x x x x x x x x x x x x x x x x x l y x l y x l y x L --------=+++=+-+- 作为常用的特例,令1=n ,由上式即得两点插值公式)()(0010101x x x x y y y x L ---+=,这是一个线性函数,故又名线性插值。
若令1=n ,则又可得到常用的三点插值公式))(())(())(())(())(())(()(1202102210120120102102x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----=这是一个二次函数,故又名二次插值或抛物插值。
(二)牛顿插值法由线性代数知,任何一个不高于n 次多项式,都可以表示成函数)())((,),)((,,1110100-------n x x x x x x x x x x x x 的线性组合。
既可以吧满足插值条件),,1,0()(n i y x P i i ==的n 次插值多项式写成如下形式)())(())(()(110102010----++--+-+n n x x x x x x a x x x x a x x a a其中,k a 为待定系数。
这种形式的插值多项式称为牛顿插值多项式,记为)(x N n ,即 ]1[110102010)())(())(()()(----++--+-+=n n n x x x x x x a x x x x a x x a a x N因此,牛顿插值多项式)(x N n 是插值多项式)(x P n 的另一种表示形式。
设函数)(x f 在等距节点),,1,0(0n k kh x x k =+=处的函数值k k y x f =)(为已知,其中h 是正常数,称步长。
我们称两个相邻点k x 和1+k x 处函数之差k k y y -+1为函数)(x f 在点k x 处以h 为步长的一阶向前差分,记作k y ∆,即k k k y y y -=∆+1于是,函数)(x f 在各节点处的一阶差分依次为11121010,,---=∆-=∆-=∆n n n y y y y y y y y y 又称一阶差分的差分k k k k y y y y ∆-∆=∆∆=∆+12)(为二阶差分。
一般的,定义函数)(x f 在点k x 处的m 阶差分为k m k m k m y y y 111-+-∆-∆=∆。
在等距节点),,1,0(0n k kh x x k =+=情况下,可以利用差分表示牛顿插值多项式的系数。
事实上,由插值条件00)(y x N n =可得00y a =;再由插值条件11)(y x N n =可得h y x x y y a 001011∆=--=;一般的,由插值条件k k n y x N =)(可得),,2,1(!0n k h k y a k k k =∆=。
于是,满足插值条件i i n y x N =)(的插值多项式为)())((!))((!2)()(110010202000----⋅∆++--⋅∆+-∆+=n nn n x x x x x x h n y x x x x h y x x h y y x N 三、 二者的比较拉格朗日插值法与牛顿插值法都是二种常用的简便的插值法。
但牛顿法插值法则更为简便,与拉格朗日插值多项式相比较,它不仅克服了“增加一个节点时整个计算工作必须重新开始”(见下面例题)的缺点,而且可以节省乘、除法运算次数。
同时,在牛顿插值多项式中用到的差分与差商等概念,又与数值计算的其他方面有着密切的关系。
现用一实例比较拉格朗日插值法与牛顿插值法例计算sin(0.12)的值。
利用拉格朗日插值法计算过程如下:(计算程序代码见附件)因为0.12位于0.1与0.2之间,故取节点2.0,1.010==x x利用线性插值所求的近似值为119598.01.02.01.012.019867.02.01.02.012.009983.0)12.0(12.0sin 1≈--⨯+--⨯=≈L 计算结果如下图利用抛物插值所求的近似值为119757.0)2.03.0)(1.03.0()2.012.0)(1.012.0(29552.0)3.02.0)(1.02.0()3.012.0)(1.012.0(19867.0)3.01.0)(2.01.0()3.012.0)(2.012.0(09983.0)12.0(12.0sin 1≈----⨯+----⨯+----⨯=≈L 计算结果如下图利用牛顿插值法计算过程如下:构造差分表如下:11960 .009884.02.09983 .0)12.0()12.0sin(1=⨯+=≈N利用抛物插值所求的近似值为11976 .000016 .0) 12 .0()00199.0(2)12.0(2.009884.02.09983 .0)12.0()12.0sin(12 =+=-⨯-⨯+⨯+=≈NN从上面的计算过程可以看出,拉格朗日插值法的线性插值与抛物插值的计算过程没有继承性,即增加一个节点时整个计算工作必须重新开始。
而牛顿插值则避免了这一问题,这样大量的节省了乘、除法运算次数,减少了计算的时间。
因此,对于一些结构相当复杂的函数)(xf,牛顿插值法比拉格朗日插值法要占优势。