立方氮化硼的合成
- 格式:ppt
- 大小:486.00 KB
- 文档页数:22
立方氮化硼生产工艺立方氮化硼(Cubic Boron Nitride, CBN)是一种新型的超硬材料,具有硬度高、热稳定性好等优点,在工业生产中有着广泛的应用。
其生产工艺主要包括热压法、全压法和离子束沉积法等。
热压法是制备CBN的传统方法之一。
该方法是将混合了石墨和氮化硼原料的粉末填充到模具中,然后在高温高压下进行热压。
首先,在将粉末填充到模具中之前,需要对原料进行细粉处理,主要是将杂质去除以提高材料的纯度。
然后,在模具中对粉末进行热压处理,通常温度在1700°C以上,压力在5-7GPa之间。
在高温高压下,粉末颗粒之间发生了扩散反应,形成了晶粒之间的结合。
最后,从模具中取出样品,并经过表面处理和切割加工等工艺,最终得到CBN坯体。
全压法是近年来发展起来的一种制备CBN的新方法。
该方法是将石墨和氮化硼原料一同放入模具中,并在高温高压下进行全压处理。
相比于热压法,该方法不需要对原料进行细粉处理,大大减少了生产成本。
然而,该方法的压力和温度相对较高,难以控制,从而影响了产品的质量和生产效率。
离子束沉积法是一种新型的制备CBN的方法。
该方法是利用离子束在负极下,将石墨棒和氮气等原料进行离子化反应,并在基底材料的表面上形成CBN膜。
该方法的特点是不需要高温高压,可以在室温下进行,而且可以通过控制离子束的能量和流量,来调节膜的性能。
然而,该方法的设备复杂,生产周期长,且成本较高。
综上所述,立方氮化硼的生产工艺主要包括热压法、全压法和离子束沉积法等。
每种工艺都有其特点和优缺点,可以根据具体情况选择适应的方法。
随着技术的发展,未来还有可能出现更加高效和经济的生产工艺。
立方氮化硼结构立方氮化硼(cubic boron nitride,简称CBN)是一种类似于金刚石的超硬材料,具有优异的物理和化学性质。
它由硼原子和氮原子通过共价键结合而成,形成了立方晶体结构。
本文将对立方氮化硼的结构和性质进行详细介绍。
一、立方氮化硼的晶体结构立方氮化硼的晶体结构属于立方晶系,空间群为Fd-3m,每个晶胞包含两个硼原子和两个氮原子。
其晶格常数为a=3.615 Å。
立方氮化硼晶体中的硼原子和氮原子交替排列,形成了类似于钻石的立方晶体结构。
这种结构使得立方氮化硼具有类似于金刚石的硬度和优异的热导性能。
二、立方氮化硼的物理性质1.硬度:立方氮化硼的硬度仅次于金刚石,居于世界之首。
它的硬度可达到48~52 GPa,是金刚石硬度的2倍以上。
这使得立方氮化硼成为制备高硬度刀具和磨料的理想材料。
2.热导性:立方氮化硼具有优异的热导性能,其热导率约为金刚石的4倍。
这使得立方氮化硼在高温环境下有良好的热稳定性,可以用于制备高温刀具和磨料。
3.化学稳定性:立方氮化硼在常温下具有良好的化学稳定性,不受大多数酸和碱的侵蚀。
这使得立方氮化硼可以用于制备耐酸碱刀具和化学反应器。
4.电绝缘性:立方氮化硼是一种优秀的电绝缘体,具有较高的电阻率。
这使得立方氮化硼可以用于制备电子元件和绝缘材料。
三、立方氮化硼的应用领域1.切削加工:立方氮化硼具有优异的硬度和热导性能,可以用于制备高硬度刀具,用于高速切削、磨削和车削加工。
它可以加工各种硬度的金属材料,如铸铁、钢、高温合金等。
2.磨料研磨:立方氮化硼作为一种超硬磨料,可以用于制备砂轮、研磨片等磨具,用于高精度磨削和抛光加工。
它在航空航天、汽车制造等领域有广泛的应用。
3.化学反应器:立方氮化硼具有良好的化学稳定性,可以用于制备耐酸碱的化学反应器。
它在化工、制药等领域有重要的应用。
4.电子元件:立方氮化硼作为优秀的电绝缘体,可以用于制备电子元件,如集成电路、高压绝缘材料等。
氮化硼的形成原理氮化硼(Boron Nitride,简称BN)是一种由硼和氮元素组成的化合物,具有高熔点、高硬度、高热导率等特点,广泛应用于陶瓷、复合材料、润滑剂、高温涂料等领域。
氮化硼的形成原理主要涉及硼和氮元素的反应机理和晶体结构的形成过程。
硼与氮反应形成氮化硼的反应机理主要有以下几种:1. 直接氮化法:硼与氮气直接反应生成氮化硼。
在高温高压条件下,硼可以与氮气发生反应生成四面体或六面体结构的氮化硼。
这种反应需要高温和高压条件下进行,因此反应速度较慢。
2. 间接氮化法:硼和氨反应生成氨气和氮化硼。
这种反应是分两步进行的,首先硼和氨发生反应生成氨气,然后氨气与硼发生反应生成氮化硼。
这种方法不需要高温和高压条件,因此反应速度较快。
3. 模板法:在由硼原子和氨气组成的体系中加入导向剂(模板),在模板的作用下,硼和氮可以结合形成具有特定结构的氮化硼。
这种方法能够控制氮化硼的晶体结构和形貌,提高氮化硼的性能。
氮化硼的形成过程涉及晶体结构的形成,通常有以下几种类型:1. 六方氮化硼(h-BN):六方氮化硼是氮化硼的一种晶体结构,具有类似石墨的层状结构。
六方氮化硼的晶格由六边形硼氮化物片层堆积而成,硼和氮原子以交替方式排列。
这种结构使得六方氮化硼具有良好的导热性能和化学稳定性。
2. 立方氮化硼(c-BN):立方氮化硼是氮化硼的另一种晶体结构,也称为金刚石氮化硼。
立方氮化硼的晶格与金刚石的晶格相似,由碳原子和氮原子组成的六角环形状层堆积而成。
立方氮化硼具有高硬度、高热导率和高化学稳定性等优良性能,被广泛应用于高温高压领域。
总之,氮化硼的形成原理主要涉及硼和氮元素的反应机理以及晶体结构的形成过程。
通过不同的反应条件和方法,可以控制氮化硼的形貌和性能,使其适用于不同领域的应用。
cbn磨料生产工艺CBN(立方氮化硼)磨料是一种新型超硬磨料,具有非常高的硬度和热稳定性,被广泛用于高硬度材料的切削和磨削加工。
下面,我将介绍CBN磨料的生产工艺。
CBN磨料的生产工艺主要包括原料的制备、磨料粒子的合成和成型加工三个过程。
首先是原料的制备。
制备CBN磨料的原料主要是氮化硼、碳化钛和金属钛。
这些原料经过精细的筛选和净化,移除杂质和不纯物质。
然后,按照一定的比例混合,形成均匀的混合料。
这些原料的制备影响着CBN磨料的质量和性能,所以制备过程需要严格的控制。
接下来是磨料粒子的合成。
在磨料粒子合成过程中,先将制备好的原料混合物置于高温高压的环境中。
利用高温高压的条件,让原料发生化学反应,形成CBN晶体。
这个过程被称为等离子体化学气相沉积(PVD)技术。
通过控制温度、压力和反应时间等参数,可以获得不同尺寸和形状的CBN磨料粒子。
这个过程需要精密的设备和高水平的工艺控制,以确保合成的磨料粒子质量优良。
最后是成型加工。
磨料粒子合成后,需要进行成型加工,使其成为具有一定形状和尺寸的磨料颗粒。
主要有两种成型方法:一种是粘结剂法,即将磨料粒子与粘结剂混合,并通过加热或压制等方式,使其形成块状或颗粒状;另一种是电解法,即将磨料粒子悬浮在溶液中,通过电解沉积的方式,在导电基体上形成粒子层。
这两种方法各有优劣,并根据具体需要选择合适的方法。
以上就是CBN磨料的生产工艺。
CBN磨料具有非常高的硬度和热稳定性,被广泛应用于高硬度材料的切削和磨削加工中。
随着制备技术的进一步发展和完善,CBN磨料的性能将进一步提高,为高精度加工提供更好的选择。
关于氮化硼合成方案的讨论摘要:氮化硼是一种耐腐蚀材料,也是一种优良的绝缘材料,强度高,耐腐蚀性好。
在现代工业中,氮化硼已广泛应用在在耐火材料和电子工业中得到广泛的应用。
以下三个反应均可以制备氮化硼:B(s)+ 1/2N2 (g) = BN(s);BCl3(g) + NH3(g) = BN(s)+3HCl(g);B2O3(s)+ 2NH3(g)= 2BN(s)+3H2O(g);本文将从反应方向、原料价格以及环保等方面综合考虑,对以上三种方式进行比较分析。
关键词:氮化硼;制备方案;反应方向;原料价格;环保一、氮化硼的分类、性质及应用1.BN的分类、性质氮化硼,化学式为BN,有别称“白石墨”,是一种性能优异并有很大发展潜力的新型陶瓷材料,包括5种异构体,分别是六方氮化硼(h—BN),纤锌矿氮化硼(w—BN),三方氮化硼(r-BN)、立方氮化硼(c.BN)和斜方氮化硼(o.BN) [1]。
常说的氮化硼一般指的是立方氮化硼或六方氮化硼。
1.1六方氮化硼具有类似石墨的的层状晶体结构,其物理化学性质也与石墨类似,常态时是白色粉末状,呈松散、润滑、易吸潮、质轻等性状。
另外,在导热性、耐高温性、化学稳定性方面也类似石墨。
当然,它的性质与石墨也不尽相同。
例如,氮化硼是一种优良的绝缘材料,而石墨有良好的导电性。
[2]1.2立方氮化硼立方氮化硼有优异的物理化学性能,硬度仅次于金刚石,另外还具有很高的强度,在许多领域中有应用前景。
[3]此外,立方氮化硼是目前使用温度最高的半导体材料,具有高导热性和良好的半导体特性。
但是现有的制备方法又都存在着难于克服的固有缺点,以至于不易使其得到广泛利用。
[3]2.BN的应用图表 1 BN的应用2.1 BN三种合成方案为了更好地发展材料事业,服务国家建设,需要找到合适的合成方法,才能让这种优良的材料发挥作用,书中介绍给我们了三种不同的方法,分别是:①用单质硼B和氮气N2反应:B(s)+1/2N2(g)=BN(s)②用氯化硼BCl3和氨气NH3反应:BCl3(g)+NH3(g)=BN(s)+3HCl(g)③用三氧化二硼B2O3和氨气NH3反应:B2O3(s)+2NH3(g)=2BN(s)+3H2O(g)现在,我从如下几个方面来讨论一下三种方法的利弊,以及工业中最合适的方法[6]。
立方氮化硼的性能和应用作者:李重阳来源:《科技视界》 2014年第15期李重阳(郑州锐利超硬材料有限公司,河南郑州 450000)【摘要】立方氮化硼(cBN)是由六方氮化硼(hBN)在高温高压下合成的,因其独特的结构和性能在磨削加工行业得到广泛应用,本文就其结构、性能和主要应用范围进行简单介绍。
【关键词】立方氮化硼;热稳定性;应用1 立方氮化硼的结构和性能1.1 立方氮化硼的结构cBN具有类似金刚石的晶体结构,晶格常数相近(金刚石为0.3567nm,cBN为0.3615nm),且晶体中的结合键基本相同,即都是沿四面体杂化轨道形成的共价键,在cBN的晶体结构,若以碳原子(C)置换氮(N)和硼(B)原子,便形成金刚石的晶体结构。
cBN最典型的几何形状是正四面体晶面与负四面体晶面的结合,常见的形态有:四面体、假八面体、假六面体(扁平的四面体) [1]。
根据cBN的B、N表面腐蚀的显微结构,四面体的cBN晶体可分为两种:一种是硼四面体,即四个表面是硼表面;另一种是氮四面体,即四个表面是氮表面。
二者的特征不同。
1.2 立方氮化硼的性能1.2.1 硬度立方氮化硼莫氏硬度为9.7(金刚石10),维氏硬度为7500(金刚石10000),仅次于金刚石。
超硬材料(立方氮化硼与立方金刚石)的共价键“键角”为109°28′。
正是这个109°28′共价键键角,使得立方氮化硼与立方金刚石具有最高的硬度而被称为超硬材料。
冯士光[2]认为超硬材料存在“三取向”10928定律,即:(1)当体系处于平衡稳定态时,109°28′是力学领域结构强度最高的取向;(2)当体系平衡稳定遭到破坏而处于不稳定状态时,109°28′是“应力能”自发高效地释放时阻力最小的“途径”取向,而裂纹走向即内在应力能释放取向的外在表征;(3)109°28′是空间结构高效、低耗的最优化取向。
1.2.2 强度强度是cBN产品分级和评定其质量的重要指标[3]。
氮化硼三种合成方法的讨论摘要:氮化硼是一种重要的化工原料,它是一种耐高温的材料,一页是一种优良的绝缘材料,在耐火材料和电子工业中已得到广泛的应用。
本文从反应方向,原料价格及环保等方面对三种氮化硼合成方法进行了比较和探究。
一、引言1、氮化硼简介氮化硼的分子式为BN,它是由氮原子和硼原子组成的化合物。
具有四种不同的结构:六方氮化硼(HBN)、菱方氮化硼(RBN)、立方氮化硼(CBN)和纤锌矿氮化硼(WBN)。
氮化硼于碳是等电子体,具有抗化学侵蚀性质,不被无机酸和水侵蚀。
1200℃以上开始在空气中氧化,稍低于3000℃时开始升华,真空时约2700℃开始分解。
微溶于热酸,不溶于冷水,相对密度2.25,熔点3000℃。
硼,原子序数5,原子量10.811。
硼为黑色或银灰色固体。
晶体硼为黑色,熔点约2300℃,沸点3658℃,密度2.34克/立方厘米;硬度仅次于金刚石,较脆。
氯化硼,无色发烟液体或气体,有强烈臭味,易潮解。
熔点-107.3℃沸点:12.5℃溶解性溶于苯、二硫化碳三氧化二硼(化学式:B2O3)又称氧化硼,是硼最主要的氧化物。
它是一种白色蜡状固体,一般以无定形的状态存在,很难形成晶体,但在高强度退火后也能结晶。
它是已知的最难结晶的物质之一。
二、 反应方法分析合成氮化硼有以下三种方法: 1、 用单质B 与N 2反应: B(s) + 1/2N 2(g) = BN(s) 2、 用BCl 3与NH 3反应:BCl 3(g) + NH 3(g) = BN(s) + 3HCl(g) 3、 用B 2O 3与NH 3反应:B 2O 3 (s) + 2NH 3(g) = 2BN(s) + 3H 2O(g)a 、反应方向查找书后附录可知: 1、B(s):1()f m kJ molH -Θ∆ = 0;1()f m G kJmolΘ-∆ = 0;11()f m S Jmol K Θ--•∆ = 5.86;N 2(g):1()f m kJ molH -Θ∆ = 0;1()f m G kJmolΘ-∆ = 0;11()f m S Jmol K Θ--•∆ =191.50;BN(s):1()f m kJ molH -Θ∆ = -254.39;1()f m G kJmolΘ-∆ = -228.45;11()f m S Jmol K Θ--•∆ =14.81;1()r m kJ molH -Θ∆ = -254.39;11()r m S JmolK Θ--•∆ =-86.8;该反应的标准吉布斯函数变为:1()r m G kJmolΘ-∆ = -228.45;所以该反应在标准状况下可进行。
立方氮化硼生产工艺
立方氮化硼(cubic boron nitride,CBN)是一种晶体形态与金
刚石相似的氮化硼。
它具有硬度高、热稳定性好、化学惰性等优良性能,被广泛应用于超硬材料制备、磨削与切削工具制造等领域。
立方氮化硼的生产工艺主要包括以下几个步骤:
1. 原料准备:使用均质粒度的氮化硼和铝作为主要原料。
氮化硼的纯度要求较高,一般达到99%以上。
2. 混合:按照一定比例将氮化硼和铝混合均匀,一般将氮化硼与粉末铝的重量比控制在1:1左右。
3. 热压烧结:将混合好的粉末放入石墨模具中,并进行加热压制。
通常采用高温高压烧结工艺,温度达到1800℃以上,压
力达到10GPa以上。
4. 晶化处理:进行热处理,使烧结体中的氮化硼和铝发生反应,生成立方相的氮化硼晶体。
温度和时间的控制非常重要,一般在1700~2100℃的温度范围内进行晶化处理。
5. 制备成品:通过切割、磨削等加工工艺将晶化后的立方氮化硼块体制备成所需形状的CBN刀具、磨料等产品。
需要注意的是,立方氮化硼的生产工艺可能因生产商不同而略有差异,以上为一般的生产工艺流程。
超硬材料的制备与性能研究硬度是一个物质的重要物理性质之一,它决定了材料的抗刮擦、耐磨和抗压等性能。
而超硬材料则是目前硬度最高的一类材料,常见的有金刚石和立方氮化硼。
本文将讨论超硬材料的制备方法以及其在各个领域的应用。
一、超硬材料的制备方法1. 化学气相沉积法化学气相沉积法是一种常用的制备超硬材料的方法。
该方法通过在高温下使气体分子发生化学反应,产生沉积物在基材表面上。
金刚石的化学气相沉积法是将氢气和甲烷气混合,在高温下反应生成金刚石晶粒。
立方氮化硼的化学气相沉积法则是通过混合硼烷和氨气,在高温下反应生成立方氮化硼薄膜。
2. 高压高温合成法高压高温合成法是另一种常用的制备超硬材料的方法。
该方法通过在高温高压环境中进行化学反应,使原料晶体转变为超硬材料。
金刚石的高压高温合成法是将碳源和金属催化剂放入高压高温装置中,在适当的温度和压力下进行反应。
立方氮化硼的高压高温合成法则是将氮和硼的混合物置于高压高温环境中反应。
二、超硬材料的性能研究1. 硬度性能超硬材料的最主要性能就是硬度。
金刚石是迄今为止已知最硬的材料,其硬度达到10,并且具有优异的抗磨、抗刮擦性能。
立方氮化硼的硬度也非常高,可以达到9.5。
这使得超硬材料在工业领域中得到广泛应用,用于制造切割工具、轴承以及高速切削机床等。
2. 热稳定性能超硬材料的热稳定性也是其重要的性能之一。
金刚石在高温下具有良好的热稳定性,可用于制造高温高压装置和热传导元件。
立方氮化硼的热稳定性也相当好,使其在高温环境下有着重要的应用,如陶瓷刀具的制造和研发。
3. 化学惰性超硬材料具有较强的化学惰性,不易与其他元素反应。
金刚石在室温下几乎不溶于任何溶剂,可用于制造耐腐蚀的刀具和光学窗口。
立方氮化硼的化学惰性也很高,被广泛应用于微电子领域和光学元件制造。
三、超硬材料的应用1. 工具切削超硬材料由于其出色的硬度和热稳定性,在切削工具领域得到广泛应用。
金刚石刀片被用于切削和加工高硬度材料,如陶瓷,玻璃和石英等。
立方氮化硼微粉立方氮化硼微粉是一种高性能陶瓷材料,具有广泛的应用前景。
本文将介绍立方氮化硼微粉的特性、制备方法以及其在领域中的应用等方面,希望能为相关领域的研究和应用提供一定的指导意义。
立方氮化硼是一种由硼和氮原子组成的陶瓷材料,结构呈立方晶系。
相比于传统氮化硼材料,立方氮化硼具有更高的硬度、高熔点,优异的热稳定性和化学稳定性等特点。
立方氮化硼微粉具有微米级的颗粒大小,具备大比表面积,有利于增强材料的力学性能、导热性能和导电性能等,因此具有广泛的应用前景。
制备立方氮化硼微粉的常见方法包括等离子体氮化法、硼烷热分解法和特殊球磨法等。
等离子体氮化法是将硼粉和氨气暴露在等离子体氛围中进行反应,生成立方氮化硼微粉。
硼烷热分解法是将硼烷气体通过加热分解生成纳米级的立方氮化硼微粉。
特殊球磨法则是将硼粉和氮化硼粉作为原料,在球磨机中进行长时间的高效混合研磨,得到立方氮化硼微粉。
立方氮化硼微粉在诸多领域具有广泛的应用前景。
首先,在材料领域,立方氮化硼微粉可用于制备高性能切削工具、陶瓷刀具等。
其高硬度和化学稳定性使得切削工具具备较长的使用寿命和良好的耐蚀性能。
其次,在电子领域,立方氮化硼微粉可用于制备高性能封装材料、导热材料等。
立方氮化硼微粉的导热性能优异,可应用于电子器件的散热,提高器件的工作效率。
此外,在能源领域,立方氮化硼微粉也可用于制备高性能催化剂、储能材料等。
立方氮化硼微粉的高化学稳定性和导电性能可优化催化剂的反应活性,提高能源储存材料的性能。
综上所述,立方氮化硼微粉作为一种高性能陶瓷材料,具有广泛的应用前景。
通过合适的制备方法,可以获得具有优异力学性能、导热性能和导电性能的立方氮化硼微粉。
在材料、电子和能源等领域中,立方氮化硼微粉展示出良好的应用潜力。
希望本文能为相关领域的研究和应用提供一定的指导意义,推动立方氮化硼微粉在实际应用中的发展。
静高压触媒法合成立方氮化硼(最新版)目录1.立方氮化硼的概述2.静高压触媒法合成立方氮化硼的原理3.静高压触媒法合成立方氮化硼的步骤4.静高压触媒法合成立方氮化硼的优点与不足5.结论正文1.立方氮化硼的概述立方氮化硼(c-BN)是一种具有优异物理和化学性能的新型无机非晶材料,具有高硬度、高热导率、高热稳定性、高抗氧化性和高电子绝缘性等特点。
因此,立方氮化硼在工业领域具有广泛的应用前景,如高温耐磨零件、高热导器件、化学屏障等。
2.静高压触媒法合成立方氮化硼的原理静高压触媒法是一种在高压条件下,通过触媒作用下进行的化学气相沉积(CVD)方法。
该方法用于合成立方氮化硼的原理主要是通过在高温高压条件下,将硼源和氮源引入反应室,并在触媒的作用下,实现硼和氮的化学反应,生成立方氮化硼。
3.静高压触媒法合成立方氮化硼的步骤(1)预处理硼源和氮源:将硼源(如硼烷)和氮源(如氨气)进行净化处理,去除杂质。
(2)装载反应室:将经过预处理的硼源和氮源装入高压反应釜中。
(3)引入触媒:在高压反应釜中加入触媒(如钨丝或钼丝),并密封反应釜。
(4)合成立方氮化硼:通过升高温度和压力,使得硼源和氮源在触媒的作用下发生化学反应,生成立方氮化硼。
(5)冷却与收集:合成完成后,逐渐降低温度和压力,收集生成的立方氮化硼。
4.静高压触媒法合成立方氮化硼的优点与不足优点:(1)反应条件温和,易于控制;(2)合成效率高,产品纯度高;(3)触媒寿命长,可重复使用。
不足:(1)设备及操作要求较高;(2)合成过程中可能产生副产物,需要进一步处理。
5.结论静高压触媒法是一种高效、可控的合成立方氮化硼的方法,具有广泛的应用前景。
立方氮化硼薄膜的制备与表征薄膜物理/技术在基础研究和应用研究两方面都有很重要的意义,因为:1)各种材料的薄膜(两维体系)往往都表现出与其体材料(三维体系)不同的性质;2)实际中的很多应用(如光学薄膜、各种保护膜等)往往只对材料表面的性质有要求(通过镀膜即可实现)。
薄膜物理/技术的研究对象是薄膜、衬底和它们之间的界面,主要内容包括能满足特定需要的镀膜设备的构建、镀膜过程的控制和薄膜性能的表征等。
立方氮化硼是硬度仅次于金刚石的超硬材料,因其特殊的物理化学性能,有非常广泛的应用前景。
近年来,人们对立方氮化硼薄膜进行了大量的深入研究,也取得了不少可喜的进展;但由于薄膜的稳定性等原因,人们期盼的大面积的应用仍未实现。
由于立方氮化硼薄膜生长对实验参数有很严格的要求,薄膜的表征又需要有若干相关的表面分析的基础知识,本实验旨在让学生通过实验准备及随后的实际操作过程中可以深入地了解和掌握下列相关知识和技术:高真空技术,等离子体物理,薄膜制备与监控,离子与固体表面的相互作用和表面分析等,从而拓展自己的知识面,培养对有关工作兴趣,并为将来的研究工作打下较好的基础。
一、背景知识立方氮化硼(c-BN)是一种人工合成的强度仅次于金刚石的川-V族化合物半导体材料,具有宽带隙、低介电常数、高化学稳定性(优于金刚石)、耐高温耐腐蚀等诸多优异性能,此外相比于金刚石,c-BN还具有可进行p型和n型掺杂等优点,因此c-BN在力学、热学及电子学等方面都有着广泛的应用前景。
1.1立方氮化硼简介1.1.1氮化硼的结构与碳相类似,氮化硼既有软的六角的sp2杂化结构又有硬的类金刚石的sp3 杂化结构。
其四种相结构分别是与金刚石的闪锌矿结构对应的立方氮化硼(c-BN),与六角石墨对应的六角氮化硼(h-BN),与三方菱面体结构的石墨对应的菱形氮化硼(r-BN)和与六方金刚石对应的纤锌矿氮化硼(w-BN ,如图1.1 所示。
其中sp2杂化的h-BN和sp3杂化的c-BN为稳定态结构,而sp2杂化的r-BN 和sp3杂化的w-BN为非稳定结构。