液化天然气第二章液化厂的气体预处理工艺
- 格式:pptx
- 大小:1.36 MB
- 文档页数:56
天然气液化项目工艺技术方案天然气首先做预处理(包括脱酸、脱水、脱苯和脱汞),然后采用MRC 工艺去液化。
下图为装置的总体系统框图点画线内为主工艺单元,LNG 生产主要在工艺单元内完成。
点画线之外为公用工程系统,为工艺单元提供电力、热源和冷却。
所有单元设备通过仪表控制系统(过程控制和安全控制)连接为有机整体,完成对装置各测控点的测量、控制。
1.1天然气制液态天然气(LNG)◆原料天然气过滤与调压单元原料天然气从界区来,首先进入过滤分离器,过滤掉可能存在的机械杂质、灰尘,并分离出其中的液体(主要为游离水和液态烃),为后续系统提供洁净的天然气。
洁净的原料天然气进入调压器,将压力调整并稳定至1.0MPa.G,然后经计量后进入后续单元。
原料气进装置设置有事故联锁切断阀,在事故发生后将切断进入装置的原料气源,同时通过旁路放空原料气,保证装置、人员及上游设施的安全。
◆原料天然气脱酸性气单元从原料天然气过滤与压缩单元来的天然气从吸收塔下部进入,自下而上通过吸收塔;再生后的MDEA溶液(贫液)从吸收塔上部进入,自上而下通过吸收塔,逆向流动的MDEA溶液和天然气在吸收塔内充分接触,气体中的H2S和CO2被吸收而进入液相,未被吸收的组份从吸收塔顶部引出,进入脱碳气冷却器和分离器。
出脱碳气分离器的气体进入原料气干燥单元,冷凝液去MDEA地下槽。
处理后的天然中CO2含量小于50ppmV,H2S含量小于4ppmV。
吸收了H2S和CO2的MDEA溶液称富液,至闪蒸塔,降压闪蒸出的天然体送往界外燃料系统。
闪蒸后的富液与再生塔底部流出的溶液(贫液)换热后,升温到~98℃去再生塔上部,在再生塔进行汽提再生,直至贫液的贫液度达到指标。
出再生塔的贫液经过溶液换热器、贫液泵进入贫液冷却器,贫液被冷却到~40℃,从吸收塔上部进入。
再生塔顶部出口气体经酸气冷却器,进入酸气分离器,出酸气分离器的气体送往安全泄压系统,冷凝液去MDEA 地下槽。
LNG液化工艺的三种流程LNG是通过将常压下气态的天然气冷却至-162℃,使之凝结成液体。
天然气液化后可以大大节约储运空间,而且具有热值大、性能高、有利于城市负荷的平衡调节、有利于环境保护,减少城市污染等优点。
由于进口LNG有助于能源消费国实现能源供应多元化、保障能源安全,而出口LNG有助于天然气生产国有效开发天然气资源、增加外汇收入、促进国民经济发展,因而LNG贸易正成为全球能源市场的新热点。
为保证能源供应多元化和改善能源消费结构,一些能源消费大国越来越重视LNG的引进,日本、韩国、美国、欧洲都在大规模兴建LNG接收站。
我国对LNG产业的发展也越来越重视,LNG项目在我国天然气供应和使用中的作用尤为突出,其地位日益提升。
1 天然气液化流程液化是LNG生产的核心,目前成熟的天然气液化流程主要有:级联式液化流程、混合制冷剂液化流程、带膨胀机的液化流程。
1.1 级联式液化流程级联式(又称复迭式、阶式或串级制冷)天然气液化流程,利用冷剂常压下沸点不同,逐级降低制冷温度达到天然气液化的目的。
常用的冷剂为水、丙烷、乙烯、甲烷。
该液化流程由三级独立的制冷循环组成,制冷剂分别为丙烷、乙烯、甲烷。
每个制冷循环中均含有三个换热器。
第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量;通过9个换热器的冷却,天然气的温度逐步降低,直至液化如下图所示。
1.2 混合制冷剂液化流程混合制冷剂液化流程(Mixed-Refrigerant Cycle,MRC)是以C1~C5的碳氢物及N2等五种以上的多组分混合制冷剂为工质,进行逐级的冷凝、蒸发、膨胀,得到不同温度水平的制冷量,逐步冷却和液化天然气。
混合制冷剂液化流程分为许多不同型式的制冷循环。
1.2.1 闭式混合制冷剂液化流程下图为闭式混合制冷剂液化流程(Closed Mixed Refrigerant Cycle)。
液化天然气的工艺流程毕业论文目录引言.........................................................................错误!未定义书签。
第一章工厂设计数据 .. (3)1.1工厂产能及储运要求 (3)1.2原料气条件及产品规格 (3)1.3现场环境条件 (3)第二章工厂技术分析 (4)第三章工艺系统 (6)3.1天然气预处理 (6)3.2天然气的液化及混合冷剂系统 (7)3.2.1 天然气的液化 (7)3.2.2 冷剂循环 (8)3.2.3 冷剂贮存和补充 (8)3.3液化天然气储存及灌装系统 (9)3.4燃料气系统 (10)3.5导热油系统 (10)3.6火炬系统 (11)第四章主要设备 (12)4.1冷箱 (12)4.2液化天然气储罐 (12)结束语 (13)前言2004年我国建成投运了目前国内规模最大的基本负荷型液化天然气(LNG)工厂,曰处理天然气150万m3,LNG年产量约为43万吨。
该工厂由德国Linde 公司提供天然气处理和液化技术,由德国 Tractebel Gas Enginering(TGE)公司提供LNG的储存和灌装配送技术。
工厂的原料气来自附近土哈丘东采油厂的油气田。
生产的LNG灌装在集装箱罐中,通过公路运输到各个接收站,然后,LNG被汽化并经过较短的管线输送给工业和民用客户。
本文对该工厂的工艺流程进行技术分析,以期对国内液化天然气工厂的设计提供一些有益的借鉴。
第一章工厂设计数据1.1 工厂产能及储运要求工厂为基本负荷型液化天然气生产工厂,每年连续运行时间8000h,液化能力54t/h,操作弹性50%~100%。
LNG储罐容积为30000m3,能满足10天产量的储存。
LNG配送灌装系统每天连续14h灌装100个集装箱罐,其中90%公路运输,。
1.2 原料气条件及产品规格通过管道输送来的原料气来自附近的油气田,原料气组成见表1。
天然气液化工艺工业上,常使用机械制冷使天然气获得液化所必须的低温。
典型的液化制冷工艺大致可以分为三种:阶式(Cascade)制冷、混合冷剂制冷、带预冷的混合冷剂制冷。
一、阶式制冷液化工艺阶式制冷液化工艺也称级联式液化工艺。
这是利用常压沸点不同的冷剂逐级降低制冷温度实现天然气液化的。
阶式制冷常用的冷剂是丙烷、乙烯和甲烷。
图3-5[1]表示了阶式制冷工艺原理。
第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量。
制冷剂丙烷经压缩机增压,在冷凝器内经水冷变成饱和液体,节流后部分冷剂在蒸发器内蒸发(温度约-40℃),把冷量传给经脱酸、脱水后的天然气,部分冷剂在乙烯冷凝器内蒸发,使增压后的乙烯过热蒸气冷凝为液体或过冷液体,两股丙烷释放冷量后汇合进丙烷压缩机,完成丙烷的一次制冷循环。
冷剂乙烯以与丙烷相同的方式工作,压缩机出口的乙烯过热蒸气由丙烷蒸发获取冷量而变为饱和或过冷液体,节流膨胀后在乙烯蒸发器内蒸发(温度约-100℃),使天然气进一步降温。
最后一级的冷剂甲烷也以相同方式工作,使天然气温度降至接近-160℃;经节流进一步降温后进入分离器,分离出凝液和残余气。
在如此低的温度下,凝液的主要成分为甲烷,成为液化天然气(LNG)。
阶式制冷是20世纪六七十年代用于生产液化天然气的主要工艺方法。
若仅用丙烷和乙烯(乙烷)为冷剂构成阶式制冷系统,天然气温度可低达近-100℃,也足以使大量乙烷及重于乙烷的组分凝析成为天然气凝液。
阶式制冷循环的特点是蒸发温度较高的冷剂除将冷量传给工艺气外,还使冷量传给蒸发温度较低的冷剂,使其液化并过冷。
分级制冷可减小压缩功耗和冷凝器负荷,在不同的温度等级下为天然气提供冷量,因而阶式制冷的能耗低、气体液化率高(可达90%),但所需设备多、投资多、制冷剂用量多、流程复杂。
图3-6[3]为阶式制冷液化流程。
为了提高冷剂与天然气的换热效率,将每种冷剂分成2~3个压力等级,即有2~3个冷剂蒸发温度,这样3种冷剂共有8~9个递降的蒸发温度,冷剂蒸发曲线的温度台阶数多,和天然气温降曲线较接近,即传热温差小,提高了冷剂与天然气的换热效率,也即提高了制冷系统的效率,见图3~7[6]。
液化天然气工艺流程液化天然气(LNG)是一种清洁、高效的能源,其工艺流程包括天然气采集、净化、压缩、冷却和储存等环节。
本文将详细介绍液化天然气的工艺流程,以及每个环节的关键步骤和技术。
天然气采集天然气是地球上常见的一种化石燃料,主要由甲烷组成,还包括少量的乙烷、丙烷和丁烷等烃类气体。
天然气通常存在于地下岩石层中,通过钻井等方式进行开采。
开采后的天然气需要经过初步处理,去除其中的杂质和含硫化合物,以保证后续工艺的正常运行。
天然气净化天然气中常含有硫化氢、二氧化碳等有害成分,需要经过净化处理。
净化工艺主要包括吸附、吸收、凝结等方法,将其中的有害成分去除,以保证后续的液化过程不受影响。
天然气压缩压缩是将天然气从常压状态压缩至一定压力的过程,以便后续冷却液化。
压缩机是压缩过程中的关键设备,其性能和效率直接影响到后续液化工艺的能耗和成本。
天然气冷却天然气在压缩后需要进行冷却,将其温度降至零下162摄氏度左右,使其转化为液态。
冷却过程通常采用液氮或液氨等低温工质,通过换热器将天然气冷却至液化温度。
液化天然气储存液化天然气在储存过程中需要严格控制温度和压力,以保证其在液化状态下不发生汽化和泄漏。
储存设施通常采用特制的双壁容器,内部充填绝热材料,外部加装防护设施,以确保安全性。
总结液化天然气工艺流程包括天然气采集、净化、压缩、冷却和储存等环节,每个环节都有其特定的工艺和设备要求。
通过合理的工艺设计和先进的设备技术,可以实现液化天然气的高效、安全生产,为清洁能源的应用提供可靠保障。
看见【75页】我已经十分。
浮躁了。
LNG液化装置目录:第一章LNG基本知识第章第二章原料气净化第章LNG基本知识第一章第一节原料气的种类第节1、天然气2、油田伴生气3、气田气气田气煤层气4、煤层气5、页岩气6、可燃冰可燃冰第一节第节原料气的种类天然气,是一种多组分的混合气态化石燃料,主要成烷烃,其中甲烷占绝大多数,另有少量的乙烷、分是其中占绝大多数另有少量的丙烷和丁烷。
它主要存在于油田、气田、煤层和页岩层。
天然气燃烧后无废渣、废水产生,相较煤炭、岩层天然气燃烧后无废渣废水产生相较石油等能源有使用安全、热值高、洁净等优势。
天然气又可分为油田伴生气和非伴生气两种。
第节原料气的种类第一节油田伴生气•伴随石油从油井中出来的气体,主要成分是甲烷、乙烷,也含有相当数量的丙烷、是甲烷乙烷也含有相当数量的丙烷丁烷、戊烷等。
用作燃料和化工原料。
也叫油田气、油气。
叫油田气油气第一节第节原料气的种类气田气气田天然气,从气田开采的天然气,这类天然气气纯杂质少品质优纯,杂质少,品质优。
气田天然气又可以分为纯气田天然气和凝析气田天然气,后者含有较多的重烃,第一节第节原料气的种类煤层气煤层气,是指赋存在煤层中以甲烷为主要成分、以吸煤层气是指赋存在煤层中以甲烷为主要成分以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,溶解于煤层水中的烃类气体是煤的伴生矿产资源属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。
第一节第节原料气的种类页岩气是从页岩层中开采出来的天然气,主体位于暗色泥页岩或高碳泥页岩中,页岩气是主体上以吸附或游离状态存在于泥岩、高碳泥岩、页岩及粉砂质或游离状态存在于泥岩高碳泥岩岩类夹层中的天然气,它可以生成于有机成因的各种阶段,天然气主体上以游离相态(大约50%)存种阶段天然气主体上以游离相态(大约在于裂缝、孔隙及其它储集空间,以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中。
第二章天然气管输系统第一节概述天然气密度小,体积大,、管道输送几乎成了唯一的方式。
从气田的井口装置开始,经矿场集气、净化、干线输气,直到通过配气管网送到用户,形成了一个统一的密闭的输气系统(图2-1)。
整个系统主要由矿场集气管网、干线输气管道(网)、城市配气管网和与这些管网相匹配的站、场装置组成。
图2-1输气系统示意图1--井场装置;2--集气管网;3一集气站:4一矿场压气站:5一天然气处理厂;6--输气首站;7一截断阀;8一干线管道;9一中间压气站:10一城市配气站及配气管网:11一地上储气库;12一地下储气库一、矿场集气。
气田集气从井口开始,经分离、计量、调压、净化和集中等一系列过程,到向干输气为止。
包括井场、集气管网、集气站、天然气处理厂、外输总站等。
(一)、天然气的开采天然气的开采是指将埋藏于地下数百甚至数千米深的储气层中的天然气引至地面的过程。
它包括气田开发和天然气采收两个方面。
1.气田的开发一个气田的开发工作可分为勘探和开发两个阶段。
勘探阶段的任务是发现和探明气田,搞清气田地下的基本情况;开发阶段的任务是充分合理地利用地层的能量,采用先进的工艺技术,实现气田的高产稳产,把已探明的储量充分开采出来,达到较高的最终采收率。
对小型气田,少数探井就能满足开发工作的需要,一般是边勘探边开发,不易划分出两个阶段。
气田的开发方式有两种,即消耗式开发和保持压力式开发。
消耗式开发是利用气田本身的能量(地层压力)的消耗来开发气田,直到地层压力枯竭;保持压力式开发是采用补充外来能量(人工注气、注水)来开发气田。
除了经济价值很高的凝析气田用保持压力式开发外,绝大多数气田都是按消耗式开发的。
2.气井的开采气田的开发方案做好后就要进行气井的开采,气井的开采包括无水气井的开采和气水同产井的开采两种。
无水气井是指在产气过程中只产气或有少量凝析水或少量凝析油,气井生产基本不受水或油干扰的气井。
无水气井是纯气藏(无边水和底水或边水底水不活跃)的气井。
天然气液化工艺流程方案选择优化液化厂的工艺系统主要包括净化工艺系统、液化工艺系统和存储系统。
工艺优化主要体现在:液化中制冷方式的优化和储存方式的优化。
一、液化制冷方式的选择:天然气液化为低温过程。
天然气液化所需冷量是靠外加制冷循环来提供,配备的制冷系统就是要使得换热器达到最小的冷、热流之温差,并因此获得极高的制冷效率。
天然气液化的制冷系统已非常成熟,常用的工艺有:阶式制冷循环、混合冷剂制冷循环、膨胀机制冷循环。
1、阶式制冷循环阶式制冷循环1939 年首先应用于液化天然气产品,装于美国的Cleveland,采用NH3、C2H4为第一、第二级制冷剂。
经典阶式制冷循环由三个独立的制冷系统组成。
级联式液化流程图第一级采用丙烷做制冷剂,经过净化的天然气在丙烷冷却器中冷却到-35~-40℃,分离出戊烷以上的重烃后进入第二级冷却。
由丙烷冷却器中蒸发出来的丙烷气体经压缩机增压,水冷却器冷却后重新液化,并循环到丙烷冷却器。
第二级采用乙烯做制冷剂,天然气在第二级中被冷却到-80~-100℃,并被液化后进入第三级冷却。
第三级采用甲烷做制冷剂,液化天然气在甲烷冷却器中被过冷到-150~-160℃,然后通过节流阀降压,温度降到-162℃后,用泵输送到LNG 贮槽。
甲烷冷却器中蒸发出来的气体经增压、水冷后,在丙烷冷却器中冷却、在乙烯冷却器中液化后,循环到甲烷冷却器。
经典阶式制冷循环,包含几个相对独立、相互串联的冷却阶段,由于制冷剂一般使用多级压缩机压缩,因而在每个冷却阶段中,制冷剂可在几个压力下蒸发,分成几个温度等级冷却天然气,各个压力下蒸发的制冷剂进入相应的压缩机级压缩。
各冷却阶段仅制冷剂不同,操作过程基本相似。
从发展来看,最初兴建LNG 装置时就用阶式制冷循环的着眼点是:能耗最低,技术成熟,无需改变即可移植用于LNG 生产。
随着发展要求而陆续兴建新的LNG 装置,这时经典的阶式制冷循环就暴露出它固有的缺点:1)经典的阶式制冷循环由三个独立的丙烷、乙烯、甲烷制冷循环复迭而成。