1 锗和硅的化学制备
- 格式:pdf
- 大小:230.84 KB
- 文档页数:12
专题14 硅锗及化合物1.(2020届中国人民大学附属中学高三下学期第三次模拟)硅、锗(32Ge,熔点937℃)和镓(31Ga)都是重要的半导体材料,在航空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等领域都有广泛而重要的应用。
锗与硅是同主族元素。
(1)硅在元素周期表中的位置是________。
(2)硅和锗与氯元素都能形成氯化物RCl4(R代表Si和Ge),从原子结构角度解释原因_______。
(2)自然界矿石中锗浓度非常低,因此从锗加工废料(含游离态锗)中回收锗是一种非常重要的方法。
如图是一种提取锗的流程:①NaClO 溶液浸取含锗废料中的锗时发生反应的离子方程式为_____;为了加NaClO 溶液浸取含锗废料的速率,可以采取的措施有_____。
②操作1 和操作2 是____。
③GeO2的熔点为1086℃,利用氢气还原GeO2,每生成146kg 的锗放出akJ 的热量,该反应的热化学方程式为_______。
2.(2019届蚌埠市高三第二次教学质量检查)1871年门捷列夫最早预言了类硅元素锗,1886年德国化学家温克勒发现和分离了锗元素,并以其祖国的名字命名为“Ge”。
锗是重要的半导体材料,其有机化合物在治疗癌症方面有着独特的功效。
下图为工业上利用锗锌矿(主要成分GeO2和ZnS)来制备高纯度锗的流程。
已知:1.丹宁是一种有机沉淀剂,可与四价锗络合形成沉淀;2.GeCl4易水解,在浓盐酸中溶解度低。
(1)简述步骤①中提高酸浸效率的措施___________(写两种)。
(2)步骤②操作A 方法是___________。
(3)步骤③中的物质在___________(填仪器名称)中加热。
(4)步骤④不能用稀盐酸,原因可能是___________。
(5)写出步骤⑤的化学方程式___________。
写出步骤⑦的化学方程式___________。
(6)请写出一种证明步骤⑦反应完全的操作方法___________。
锗的制备方法锗是一种重要的半导体材料,广泛应用于电子、光电子和太阳能电池等领域。
本文介绍了几种常见的锗的制备方法,包括锗的提纯、单晶生长和薄膜制备等。
下面是本店铺为大家精心编写的3篇《锗的制备方法》,供大家借鉴与参考,希望对大家有所帮助。
《锗的制备方法》篇1一、锗的提纯锗的提纯主要有以下几种方法:1. 离子交换法:利用锗离子选择性强的阳离子交换树脂,将锗从含有锗的矿物中提取出来。
然后再通过电解法将锗离子还原成锗金属。
2. 气相法:将含有锗的矿物与氢气一起加热,使锗转化为挥发性锗氢化物。
然后将锗氢化物通过冷凝器冷却回收,再通过氢气还原法将锗氢化物还原成锗金属。
3. 湿法冶金法:将含有锗的矿物与硫酸、硝酸等强酸一起加热,使锗转化为水溶性的锗化合物。
然后通过离子交换、电解等方法将锗提取出来。
二、锗单晶生长锗单晶生长主要有以下几种方法:1. 直拉法 (Czochralski 法):将多晶锗加热融化,然后通过一个叫做“晶圆炉”的设备,将熔融的锗液体上升到一个细长的晶圆坩埚中。
在晶圆坩埚中,锗液体会慢慢凝固成晶体,然后慢慢被拉出成长为锗单晶。
2. 悬浮区熔法:将多晶锗加热融化,然后在一个高温高压下,将融化的锗通过一个叫做“悬浮区熔炉”的设备,使其在熔体中形成一个稳定的熔体区域。
在这个熔体区域内,锗原子可以自由移动,形成单晶。
三、锗薄膜制备锗薄膜制备主要有以下几种方法:1. 化学气相沉积法 (CVD 法):将锗前驱体气体引入一个反应室中,通过加热反应室和控制反应条件,使锗前驱体气体在基底表面发生化学反应,形成锗薄膜。
2. 溅射法:将锗靶材放置在真空腔中,通过加热靶材和控制真空腔中的气体压力,使锗靶材上的锗原子被溅射到基底表面,形成锗薄膜。
《锗的制备方法》篇2锗的制备方法主要有以下几种:1. 锗的矿物提取法:锗主要存在于硫化物矿物中,如闪锌矿、方铅矿、辉锑矿等。
将含有锗的矿物原料经过破碎、磨粉、选矿等工艺,得到含锗的精矿。
第一章硅、锗的化学制备㈠比较三氯氢硅氢还原法和硅烷法制备高纯硅的优缺点?答:1.S i HCl3氢还原法:优点: 产量大、质量高、成本低,由于S i HCl3中有一个S i-H键,活泼易分解,沸点低,容易制备、提纯和还原。
缺点:B、P杂质较难去除(基硼、基磷量),这是影响硅电学性能的主要杂质。
2.硅烷法:优点: 杂质含量小;无设备腐蚀;不使用还原剂;便于生长外延层。
缺点: 制备过程的安全性要求高。
㈡制得的高纯多晶硅的纯度:残留的B、P含量表示(基硼、基磷量)。
㈢*精馏提纯:利用混合液中各组分的沸点不同来达到分离各组分的目的。
第二章、区熔提纯1.以二元相图为例说明什么是分凝现象?平衡分凝系数?有效分凝系数?答:如图是一个二元相图,在一个系统中,当系统的温度为T0时,系统中有固相和液相。
由图中可知,固相中杂志含量Cs<C L(液相中杂志成分)。
1、这种含有杂志的晶态物质熔化后再结晶时,杂志在结晶的固体和未结晶的液体中浓度不同的现象叫做*分凝现象。
2、在一定温度下,平衡状态时,杂质在固液两相中浓度的比值K0=C S/C L叫作平衡分凝系数。
3、为了描述界面处薄层中杂质浓度偏离对固相中的杂质浓度的影响,把固相杂质浓度C S与熔体内部的杂质浓度C L0的比值定义为*有效分凝系数。
K eff=C S/C L02.推导BPS公式,说明各个物理量的含义并讨论影响分凝系数的因素。
答:*BPS公式推导:书P21~P23式中:K0为平衡分凝系数;K eff为有效分凝系数;f为固液相面的的移动速度;δ为扩散层厚度;D为扩散系数。
影响分凝系数的因素:①当f 远大于D/δ时, fD/δ→+∞,exp(-fD/δ) →0,Keff→1,即固液中杂质浓度差不多.分凝效果不明显。
②当f 远小于D/δ时, fD/δ→0,exp(-fD/δ) →1,Keff→K0,分凝效果明显。
③扩散层厚度和扩散系数,D/δ越小,分凝结果越差。
第一章硅和锗的化学制备第章和锗的化学制备§1-1 硅和锗的物理化学性质1、Si和Ge的物理性质Si、Ge——元素周期表中第Ⅳ族元素Si——银白色Ge——灰色二者熔体密度比固体密度大,故熔化后会体积收缩(锗收缩5.5%,而硅大约收缩10%)55%而硅大约收缩符硅锗性质号单位原子序数Z1432原子量W28.0872.60原子密度 5.22×1022 4.42×1022个/cm3晶体结构金刚石型金刚石型晶格常数a0.54310.5657nm密度d 2.329 5.323g/cm3熔点T1417937℃m沸点T b26002700℃热导率χ 1.570.60W/cm℃W/cm·比热C P0.69500.3140J/g· ℃线热胀系数α 2.33×10 5.75×10cm℃233-6575-6cm·-1性质符号硅锗单位熔化潜热Q 3956534750J/mol 冷凝时膨胀d v+9.0+5.5%介电常数ε11.716.3禁带宽度1153075(0K )E g 1.1530.75eV (300 K) 1.1060.67eV 电子迁移率13503900/V μn cm 2/V·s 空穴迁移率μP 4801900cm 2/V·s 电子扩散系数D n 34.6100.0cm 2/s 空穴扩散系数D P 12.348.7cm 2/s 本征电阻率p i 2.3×10546.0Ω·cm 本征载流子密度n 1.5×1010 2.4×1013cm -34i 杨氏摸量E1.9×107N/cm 2从硅锗的主要物理性质可以看出:1、硅的禁带宽度比锗大,电阻率比锗大四个数量级,Si 可用做高压器件,且工作温度比锗器件高;器件高2、锗的迁移率比硅大,可做低压大电流和高频器件。
2、Si和Ge的化学性质室温下,硅、锗的化学性质比较稳定,但可与强酸、强碱作用。
直拉单晶硅的制备硅、锗等单晶制备,就是要实现由多晶到单晶的转变,即原子由液相的随机排列直接转变为有序阵列;由不对称结构转变为对称结构。
但这种转变不是整体效应,而是通过固液界面的移动而逐渐完成的。
为实现上述转化过程,多晶硅就要经过由固态到熔融态,然后又由熔融态硅到固态晶体硅的转变。
这就是从熔体硅中生长单晶硅所遵循的途径。
从熔体中生长硅单晶的方法,目前应用最广泛的主要有两种:有坩埚直拉法和无坩埚悬浮区熔法。
在讨论这两种制备方法之前,还应讨论在制备单晶过程中必不可少的一些准备工序。
包括掺杂剂的选择、坩埚的选择、籽晶的制备等,分别介绍如下:一、掺杂在制备硅、锗单晶时,通常要加入一定数量杂质元素(即掺杂)。
加入的杂质元素决定了被掺杂半导体的导电类型、电阻率、少子寿命等电学性能。
掺杂元素的选择必须以掺杂过程方便为准,又能获得良好的电学性能和良好晶体完整性为前提。
1掺杂元素的选择(1)根据导电类型和电阻率的要求选择掺杂元素制备N型硅、锗单晶,必须选择Ⅴ族元素(如P、As、Sb、Bi);制备P型硅、锗单晶必须选择Ⅲ族元素(如B、Al、Ga、In、Ti)。
杂质元素在硅、锗晶体中含量的多少决定了硅、锗单晶的电阻率。
电阻率不仅与杂质浓度有关,而且与载流子的迁移率有关。
当杂质浓度较大时,杂质对载流子的散射作用,可使载流子的迁移率大大降低,从而影响材料的导电能力。
考虑到以上因素,从理论上计算了电阻率与杂质浓度的关系曲线,如图9-5所示。
在生产工艺上按电阻率的高低分档。
掺杂有三档:轻掺杂(适用于大功率整流级单晶)、中掺杂(适用于晶体管级单晶)、重掺杂(适用于外延衬底级单晶)。
(2)根据杂质元素在硅、锗中溶解度选择掺杂元素各种杂质元素在硅、锗中溶解度相差颇大。
例如,采用大溶解度的杂质,可以达到重掺杂的目的,又不会使杂质元素在晶体中析出影响晶体性能。
下表列出了常用掺杂元素在硅、锗单晶生长时掺入量的极限,超过了极限量,单晶生长不能进行。
锗是一种晶体硅锗合金材料,由硅、锗、磷等元素组成,具有半导体特性,被广泛应用于电子、光电和半导体领域。
锗提取工艺一般包括以下步骤:
1. 原料准备。
根据化学计量比例混合硅、锗、磷原料,然后将混合物进行破碎、筛分、洗涤等处理,得到粒度均匀的粉末。
2. 碳化炉反应。
将准备好的粉末装入碳化炉,并加入适量的氮气或氩气,使其在高温下进行反应,生成锗单质和碳化硅等产物。
3. 硼掺杂。
将生成的锗单质和碳化硅等材料进行混合,然后在一定条件下加入掺杂剂(如硼),进行掺杂处理。
4. 石墨坩埚熔炼。
将掺杂后的材料装入石墨坩埚中,在高温条件下进行熔炼处理,得到具有晶体结构的锗体。
5. 检测和加工。
对生成的锗体进行检测和测试,检查其性能是否符合要求,并进行裁切和打磨等加工,得到符合规格的锗体材料。
需要注意的是,锗体取工艺要求设备精度高,工艺流程严谨,操作技术熟练,且除尘排放等环保问题也需要得到重视。
半导体材料(复习资料)半导体材料复习资料0:绪论1.半导体的主要特征:(1)电阻率在10-3 ~ 109 ??cm 范围(2)电阻率的温度系数是负的(3)通常具有很高的热电势(4)具有整流效应(5)对光具有敏感性,能产生光伏效应或光电导效应2.半导体的历史:第一代:20世纪初元素半导体如硅(Si)锗(Ge);第二代:20世纪50年代化合物半导体如砷化镓(GaAs)铟磷(InP);第三代:20世纪90年代宽禁带化合物半导体氮化镓(GaN)碳化硅(SiC)氧化锌(ZnO)。
第一章:硅和锗的化学制备第一节:硅和锗的物理化学性质1.硅和锗的物理化学性质1)物理性质硅和锗分别具有银白色和灰色金属光泽,其晶体硬而脆。
二者熔体密度比固体密度大,故熔化后会发生体积收缩(锗收缩5.5%,而硅收缩大约为10%)。
硅的禁带宽度比锗大,电阻率也比锗大4个数量级,并且工作温度也比锗高,因此它可以制作高压器件。
但锗的迁移率比硅大,它可做低压大电流和高频器件。
2)化学性质(1)硅和锗在室温下可以与卤素、卤化氢作用生成相应的卤化物。
这些卤化物具有强烈的水解性,在空气中吸水而冒烟,并随着分子中Si(Ge)?H键的增多其稳定性减弱。
(2)高温下,化学活性大,与氧,水,卤族(第七族),卤化氢,碳等很多物质起反应,生成相应的化合物。
注:与酸的反应(对多数酸来说硅比锗更稳定);与碱的反应(硅比锗更容易与碱起反应)。
2.二氧化硅(SiO2)的物理化学性质物理性质:坚硬、脆性、难熔的无色固体,1600℃以上熔化为黏稠液体,冷却后呈玻璃态存在形式:晶体(石英、水晶)、无定形(硅石、石英砂) 。
化学性质:常温下,十分稳定,只与HF、强碱反应3.二氧化锗(GeO2)的物理化学性质物理性质:不溶于水的白色粉末,是以酸性为主的两性氧化物。
两种晶型:正方晶系金红石型,熔点1086℃;六方晶系石英型,熔点为1116℃化学性质:不跟水反应,可溶于浓盐酸生成四氯化锗,也可溶于强碱溶液,生成锗酸盐。