比摩阻快速计算
- 格式:xls
- 大小:22.50 KB
- 文档页数:2
区域供热2000.2期在供热工程设计中,管道比摩阻的计算是必不可少的重要的程序。
比摩阻的取值直接影响到热网的水力工况及工程造价,它的技术性、经济性都比较强,是一个重要的设计参数。
比摩阻的计算一般采用查表法或公式法。
查表法,就是在设计手册的/网络水力计算表0中,根据所设计的流量,选取对应的管径,直接查出比摩阻的数值。
公式法,就是利用比摩阻的公式进行计算:先计算出管道摩擦系数K值,再求出比摩阻R。
K值可用尼古拉兹公式计算:K=1/(1.14+21g@d/k)2管道比摩阻R用下列公式计算:R=6.25@10-2@K/Q@G2/d5式中:K-管道摩擦系数;d-管道内径m;G-管道介质流量t/h;Q-介质密度kg/m3;k-管壁绝对粗糙度m;R-管段比摩阻Pa/m;查表法和公式法在使用上都存在一定弊病。
查表法,由于/网络水力计算表0中管道规格较少,特别是大管径的比摩阻一般设计手册中都很少见,而且表中流量数值的/空档0较多,查出的比摩阻数值大都是近似值,这就使计算误差很大,造成实际的运行工况与设计工况不相符。
采用公式法计算,虽然不受管径和流量的限制,计算也很精确,但计算太繁琐,速度太慢,所以除了计算特殊的管径、流量采用公式法外,一般很少采用。
本文介绍一种比摩阻快速计算方法。
管道的比摩阻与管段的阻力特性系数和流量的平方均成正比关系。
即:R=SG2Pa/m式中:S-管段的阻力特性系数Pa/(m3h)2表一列出了常用各种规格管道的比摩阻快速计算公式。
用表一的快速计算公式,管径DN25-DN1200m m之间任何流量的比摩阻都可精确、快速计算出来。
例1已知:室外蒸汽网,管径DN300m m,流量G=20T/h,求R=?计算:R=0.37953@202=151.8Pa/ m例2已知:室外热水网设计流量120T/h,如果要求R不大于80Pa/m,应选多大管径的管道?根据快速计算公式:S=R/G2=80/ 1202=0.005555查快速计算公式S接近于0.005555的管径为DN200的管道,其S=0.00422此时R=0.00422@1202=60.768Pa/m <80Pa/m,符合选用要求。
通风管道阻力计算对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。
对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。
可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。
否则别的就更不用考虑了。
管道内风量主要是由风管内阻力影响的。
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。
一:摩擦阻力(沿程阻力)计算摩擦阻力(沿程阻力)计算一:(公式推导法)根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D以上各式中:ΔPm———摩擦阻力(沿程阻力),Pa。
λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式:其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】莫台曲线图表1-1 一般通风管道中K、Re、λ的经验取值ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s)ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】L ———风管长度,m 【横断面形状不变的管道长度】D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直径:;圆形风管D为风管直径】摩擦阻力(沿程阻力)计算二:(比摩阻法)由以上计算看出计算V和D较容易而计算λ难度很大,所以我们选择查表更合适快捷。
供热管网各参数常用计算公式1比摩阻R(P/m)——集中供热手册P 196R = 6、25×10-2×52d G ρλ 其中:λ—— 管道摩擦系数(查动力管道手册P345页)λ= 1/(1、14+2×log Kd )2 G —— 介质质量流量(t/h) 或:R=d 22λρν=6、88×10-3×25.525.02dK G ρ ρ—— 流体介质密度(kg/m 3) d —— 管道内径(m)K ——管内壁当量绝对粗糙度(m) 2、管道压力降△P(MPa)△P = 1、15R(L+∑Lg)×10-6其中:L —— 管道长度(m)∑Lg ——管道附件当量长度(m)3、管道单位长度热损q(W/m)q = 其中:T 0 —— 介质温度(℃) λ1 —— 内层保温材料导热系数(W/m 、℃)λ2 —— 外层保温材料导热系数(W/m 、℃)D 0 —— 管道外径(m)D 1 —— 内保温层外径(m)D 2 —— 外保温层外径(m)α—— 外表面散热系数[α=1、163×(10+6ϖ)]ϖ—— 环境平均风速。
预算时可取α=11、63Ln —— 自然对数底4、末端温度T ed(℃)T ed = T 0 - GC L L q g 310)(-⨯+ 其中:T 0 —— 始端温度(℃)L —— 管道长度(m)Lg —— 管道附件当量长度(m)G —— 介质质量流量(t/h)C —— 介质定容比热(kj / kg 、℃)5、保温结构外表面温度T s(℃)2122011012121)16(D D D Ln D D Ln T αλλπ++-T s = T a + απ2D q 其中:Ta ——环境温度(南方可取Ta =16℃) 6、管道冷凝水量(仅适用于饱与蒸汽)G C (t/h)G C = γ3106.3-⨯qL 其中:γ——介质汽化潜热(kj / kg)7、保温材料使用温度下的导热系数λt (W/m 、℃)λt =λo +2)(B A T T K + 其中:λo ——保温材料常态导热系数 T A —— 保温层内侧温度(℃)T B —— 保温层外侧温度(℃) K —— 保温材料热变系数超细玻璃棉K=0、00017 硅酸铝纤维K=0、00028、管道直径选择d(mm)按质量流量计算:d = 594、5ωρG按体积流量计算:d = 18、8ωνG按允许单位比摩阻计算:d = 0、0364×52R G ∆νλ其中:G —— 介质质量流量(t/h)G v —— 介质体积流量(m 3/h) ω —— 介质流速(m/s)ρ —— 介质密度(kg/m 3)ΔR —— 允许单位比摩阻(Pa/m)9、管道流速ω(m/s)ω= πρ29.0d G 其中:G —— 介质质量流量(t/h) ρ —— 介质密度(kg/m 3)d —— 管道内径(m)10、安全阀公称通径(喉部直径)选择DN(mm)A = φ133.49010P G 则 DN =πA ⨯20 其中:A —— 安全阀进气口计算面积(cm 2)G ——介质质量流量(t/h)P —— 安全阀排放压力(MPa)φ——过热蒸汽校正系数,取0、8—0、88DN ——安全阀通径计算值(mm)。
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。
集中供热管网比摩阻的简易计算方法探讨1. 绪论介绍热力学基础,说明集中供热管网的重要性以及本文的研究内容和目的,概述研究方法和论文结构。
2. 集中供热管网的基础理论介绍热力学基本概念和定律,阐述集中供热管网的基本原理和流动特性,深入分析管道中液体摩擦阻力的计算方法。
3. 集中供热管网的热力学计算方法基于热力学基本原理和流动特性,提出集中供热管网的热力学计算方法,探讨不同流量、管径和温度差等因素对管道流动的影响并给出计算公式。
4. 摩阻计算方法的比较分析分析不同摩阻计算方法的特点和适用范围,比较不同计算方法的计算结果,提出合理的计算建议并进行实际案例分析。
5. 结论和展望总结本文的主要研究成果,指出研究中存在的问题和不足,并提出相关的建议和展望。
同时,强调相关工程实践中的应用价值和意义。
第1章:绪论自从人类进入科技时代以来,能源问题就成为了一项极为重要的研究课题。
其中,供热问题一直是建筑和工业领域里面的重要议题。
在寒冷的冬季,安全可靠地为居民、企业提供热水和暖空气显得尤为重要。
然而,供热问题并不是那么简单的事情。
传统的供热方式往往存在着能源浪费、环境污染、成本增加等因素,限制了供热服务的推广和普及。
为了解决这样的问题,集中供热管网逐渐成为人们关注的焦点。
集中供热管网是一种集中供热方式,其特点是通过管道将能源平稳地输送到不同的用户终端,实现能源的集中管理。
相较于分散式供热方式,集中供热管网具有节能、环保、安全、稳定等优点。
因此,在各地建设集中供热管网成为政府部门和企业集体关注的问题。
但是,在建设和运营集中供热管网过程中,管道的摩阻问题十分重要。
如何正确地计算集中供热管网的摩阻、确定管道直径、有效降低供热成本是我们急需解决的问题,也是本文研究的重要内容。
第2章:集中供热管网的基础理论2.1 热力学基本概念和定律热力学是研究热能转化和能量守恒的学科。
在集中供热管网的研究中,热力学基本概念和定律是必不可少的。