高一数学用二分法求方程的近似解教学设计
- 格式:doc
- 大小:60.17 KB
- 文档页数:13
高一数学《用二分法求方程的近似解》教案一、教学目标1.知识与技能:理解二分法的概念,了解二分法是求方程近似解的常用方法,掌握运用二分法求简单方程近似解的方法。
2.过程与方法:通过价格竞猜与线路维修体会二分法的思想;通过学生的自主探究,借助计算器用二分法求方程的近似解,体现逼近思想,为学习算法做准备;体验并理解函数与方程的相互转化的数学思想方法。
3.情感、态度与价值观在具体的问题情境中感受无限逼近的过程,感受精确与近似的相对统一二、教学策略选择与设计先行组织者策略:通过商品价格竞猜体会二分法的思想与方法。
启发式方法:通过分步提问,启发得出用二分法求方程近似解的步骤,体会逼近思想和算法思想,分散难点。
讨论式:学生自主探究用二分法求方程的近似解;通过讨论交流总结用二分法求方程近似解的步骤。
三、教学资源与工具设计(1)教师自制的多媒体课件和手机一款(2)上课环境是多媒体教室环境(3)学生手中的高中数学必修1教材和计算器四、教学过程一.复习旧知,创设情景,引入新课师:大家上节课学习了方程的根与零点对吧,相信大家都掌握了,老师来考考大家啊。
(多媒体)函数f(x)=ln x+2x-6=0在区间(2,3)内有零点?怎么找到这个零点?有几种方法?(看30秒左右)师:(引导学生一起回答)有两种对吧,一,代数法,令f(x)=0,求x。
二,数形结合,f(x)=ln x+2x-6有零点,等价于f(x)=0有实根,等价于y=lnx与y=6-2x有交点,画图解答。
师:(手拿一款手机)中央电视台第二频道幸运52大家有看吧!我来当一回李永,价格在1500到2500,你们来猜。
想试一下的让我看到你们高高举起的手。
结果1799元。
生1:2000师:高了生:1300师:低了。
师:对了,此处是不是该有掌声啊。
(环顾教室,示意同学坐下)师:刚刚我们先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格之间的数;着其实就是采用逐步逼近的方法。
人教版高中必修13.1.2用二分法求方程的近似解教学设计教学目标1.理解二分法的基本思想和应用场景;2.学会运用二分法来求解方程的近似解;3.掌握二分法的具体实现步骤及其注意事项;4.能够将所学知识灵活应用于实际问题中。
教学内容本课主要介绍二分法在求解方程近似解中的应用。
具体内容如下: 1. 二分法的基本概念和思想; 2. 二分法在求解方程中的具体应用; 3. 二分法的实现步骤及注意事项; 4. 二分法的例题解析。
教学重点、难点1.理解二分法的基本思想和应用场景;2.掌握二分法的具体实现步骤及其注意事项;3.能够将所学知识灵活应用于实际问题中。
教学方法本课程采用讲授、演示和练习相结合的教学方法。
首先对二分法的基本概念和思想进行讲授,然后以具体的方程求解问题为例,演示二分法的具体实现步骤,最后进行练习并进行答疑。
教学过程1.导入(5分钟)介绍本次课程的主要内容和教学目标,激发学生学习兴趣。
2.讲授(25分钟)2.1 二分法基本概念和思想1.二分法的定义和原理;2.二分法适用的场景;3.二分法求解方程的基本思路。
2.2 二分法在求解方程中的具体应用1.二分法求解单调递增函数零点;2.二分法求解单调递减函数零点;3.二分法求解非单调函数零点。
2.3 二分法的实现步骤及注意事项1.二分法的具体实现步骤;2.二分法求解方程时需要注意的事项。
3.演示(20分钟)以一道例题为例,演示二分法在求解方程中的具体应用和实现步骤。
通过实例的演示,让学生更好地理解二分法的应用过程和注意事项。
4.练习(25分钟)为学生出示几道练习题,让学生自主完成并进行讲解。
师生互动,纠正错误并进行实时答疑。
5.总结(5分钟)对本次课程进行总结,强调重点难点,巩固学生的学习成果。
教学工具1.PPT;2.标注笔;3.练习题。
教学评价1.通过练习题的考试,检测学生对二分法的掌握情况;2.对学生在练习中的表现和教学效果进行评价。
教学后记本课程主要针对高中数学必修13.1.2的二分法求方程的近似解教学设计,通过本次课程,学生将更好地理解二分法的思想和应用,并能够灵活地应用于实际问题中。
课题:用二分法求方程的近似解教材:人民教育出版社《普通高中课程标准实验教科书A》必修1一、教学目标:1、知识与技能目标:会用二分法求函数零点或方程根的近似解;知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的数学思想2、过程与方法目标:从猜眼镜价格的实例引入新课,激发学生的学习兴趣;通过运用多媒体的教学手段,引领学生主动探索具体函数零点近似值的求法,体会二分法的具体过程和步骤。
3、情感、态度与价值观目标:通过本节课的学习,使学生经历逐渐逼近的思维过程,体验数学发现和创造的历程,体会数学知识与现实世界的联系,感受精确与相似的相对统一。
二、教学重点与难点1、重点:体会“二分法”的基本思想2、难点:对用二分法求函数零点近似解的一般步骤的概括和理解;对精确度要求的理解。
三、教学方法与手段本节课采用“问题教学”模式及“引导——探究”法,充分发挥多媒体的作用,通过创设问题情境,引导学生主动参与学习过程。
(1)、函数的零点:(2)、函数零点的求法:(3)、零点存在性定理:复习不仅是知识的回顾,更重要的是帮助学生构建清晰的知识脉络,以及为后面的学习作好铺垫。
由之前的例1,我们已经知道函数6x=xf在区间(2,3)内有零+x2(-ln)点。
如何找出这个零点?3、设置情境(请一位戴眼镜的同学上讲台,在一张纸上写出他的眼镜的价格,告知学生价格的范围,让学生猜价格。
)游戏:请你模仿李咏主持一下幸运52,请同学们猜一下下面这副眼镜的价格。
思考:如何做才能以最快的速度猜出它的价格?从实际生活提出问题体现数学源于生活,激发学生学习兴趣1、提问:利用我们猜价格的方法,你能否求解方程062ln =-+x x ?如果能求解的话,怎么去解?你能用函数的零点的性质吗? 问题链的设置,可以更好地引导学生利用猜价格时一分为二的思想解决问题,培养学生勇于探索、合作交流的精神。
2、借助EXCEL ,计算函数62ln )(-+=x x x f 的函数值,引导学生填写事先设置好的表格。
《用二分法求方程的近似解》教学设计【教学目标】1. 理解二分法求方程近似解的基本原理和步骤。
2. 能够运用二分法求解简单的方程。
3. 培养学生的问题分析和解决问题的能力。
【教学准备】1. 课件、教学录像等教学辅助工具。
2. 题目:使用二分法求解方程x^3 - 2x - 5 = 0的根。
【教学过程】一、导入(5分钟)1. 教师提问:“在前面的学习中,我们学过了如何使用代入法求解方程,请问还有其他方法可以求解方程吗?”2. 引导学生思考,然后教师简要介绍二分法的基本原理。
二、概念讲解(10分钟)1. 教师通过示意图等方式,讲解二分法求方程近似解的基本思想和步骤。
2. 强调二分法的基本原理是通过不断将待求解区间进行二分,直到找到近似解为止。
3. 提醒学生在运用二分法时需要确定初始的待求解区间。
三、示例演练(20分钟)1. 教师出示题目:“使用二分法求解方程x^3 - 2x - 5 = 0的根。
”2. 以班级为单位进行讨论,确定初步的待求解区间。
3. 教师引导学生运用二分法求解方程的近似解,并进行实时解答。
4. 教师解释二分法求解方程的具体步骤,并引导学生完成。
5. 教师进行总结,强调二分法在求解方程近似解中的重要性。
四、巩固练习(15分钟)1. 教师提供一组方程,要求学生运用二分法求解方程的近似解。
2. 学生独立完成练习,并在一定时间内互相讨论、交流。
3. 教师根据学生的表现和问题进行答疑和指导。
五、拓展应用(15分钟)1. 拓展应用让学生运用二分法解决实际问题,如求解方程在某个区间内的根的个数。
2. 强调根和解在二分法中的关系,并引导学生思考和讨论。
3. 学生独立完成实际问题的求解,并主动分享解题过程和思路。
六、小结(5分钟)1. 教师对本节课的学习内容进行小结,强调二分法的应用领域和实际意义。
2. 教师对学生的表现进行评价和肯定,鼓励学生在日常生活中积极运用所学知识。
【教学反思】本节课通过概念讲解、示例演练、巩固练习和拓展应用等环节,帮助学生初步了解和掌握二分法求解方程近似解的基本原理和步骤。
《用二分法求方程的近似解》教学设计一、教学目标1. 知识目标:学生能够掌握二分法求解方程的基本方法和步骤,理解近似解的概念和计算方法。
2. 能力目标:学生能够独立运用二分法解决实际问题,提高数学问题的解决能力。
3. 情感目标:培养学生的数学兴趣,激发学生对数学的热爱和好奇心。
二、教学重点和难点1. 教学重点:二分法求解方程的基本方法和步骤。
2. 教学难点:学生对于二分法的理解和运用能力。
三、教学过程1. 导入与引入为了让学生更好地理解二分法求解方程,可以通过一个简单的例子引入,比如求解方程sin(x) = 0的近似解。
引导学生思考如何用二分法来解决这个问题。
2. 理论学习1)介绍二分法的基本原理和步骤,通过图表和实际问题进行说明。
2)讲解二分法在数学问题中的应用,如求函数的零点、求解方程等。
3)举例说明二分法的具体运用,帮助学生理解二分法的实际操作过程。
3. 案例分析以一些典型的实际问题为例,让学生运用二分法进行求解。
比如通过一个实际应用问题,让学生理解并运用二分法。
如通过实例,“小明在深山中迷路,他在午夜时分按照手表上的时间发出信号弹,他需要知道现在是深夜0时还是清晨0时。
如果他发了三次信号弹,分别被回声弹在0.5分钟、2分钟、3分钟之后听到,那么他能知道现在的时间是多少吗?”4. 练习与训练1)学生按照老师指导的方式进行相应的答疑与讨论,对理论知识进行巩固。
2)组织课外实践活动,让学生通过实际操作来练习和巩固二分法的运用。
5. 总结与拓展1)总结二分法求解方程的基本方法和步骤,复习本节课的知识点。
2)让学生思考二分法在其他数学问题中的应用,指导学生拓展和深入理解。
3)布置相关作业,让学生巩固所学知识。
四、教学手段1. PowerPoint演示:用于讲解二分法的基本原理和步骤,用图表等形式进行说明。
2. 实例分析:通过一些实际问题的案例,让学生理解并运用二分法。
3. 板书:用于记录学生提出的问题和解题的关键步骤,便于学生理解。
高一数学《用二分法求方程的近似解》教案教学目标:1.了解二分法的基本思想和应用范围。
2.学会运用二分法来求解方程的近似解。
3.提高学生的数学思维和解题能力。
教学重难点:教学重点:掌握基本的二分法思想和方法,能够灵活运用。
教学难点:运用二分法解决实际问题。
教学准备:用黑板、白板、投影仪等。
教学过程:Step 1:导入1.引出课题:本节课我们研究用二分法求方程的近似解。
2.激发学生兴趣:生活中我们经常遇到需要解方程的问题:比如,确定某种体重增加速度的最优剂量,需要用到方程进行求解;汽车的刹车距离与刹车时间是什么关系,也可以运用方程进行求解。
为了更好地了解和掌握这个方法,我们来看一道小题:如果x3-2x2+3x-1=0,求方程的根的近似值。
Step 2:讲解1.二分法的基本思想:二分法,又称折半法,是一种递归的算法。
运用的总体思想是将待求值的区间逐步缩小,至最终确定的范围足够满足精度要求。
2.二分法的定义:二分法是指在具有单调性的函数或数列中不断地将特定区域分成两个部分,通过比较某一特定数值与这两个部分中一定量的数值的大小关系,来确定特定数值所处的位置的方法。
3.求方程近似解的步骤:(1)将问题转化为方程问题;(2)确定函数f(x)的单调性;(3)确定f(x)的零点x0的初始区间[a,b],并设迭代精度ε;(4)使用二分法,根据f(a)和f(b)的符号关系将区间[a,b]分成两个子区间,然后沿着f(x)的符号变化取其中一个子区间;(5)重复步骤(4),直到x1满足精度要求为止。
4.用例(1)f(x) = x3-2x2+3x-1,在[0,2]中求方程的近似解。
$f(x)=x^3-2x^2+3x-1$由函数图像可见,函数在[0,1]上单调递减,在[1,2]上单调递增。
因此,该函数在[0,1]上有一个实根(记为xo),在[1,2]上有另一个实根(记为x1)。
取区间[a,b]=[0,2],设精度ε=0.0001,下面进行迭代计算:$f(0)=-1<0, f(2)=1>0,因而函数在区间[0,2]内有实根$$x0=\frac {a+b} 2=1.0, f(x0)=-0.0>0$故f(x0)与0的符号相反,因而根在[a,x0]区间内,故将新区间设为[a,x0],即[0,1.0]。
《用二分法求方程的近似解》教学设计一、教学目标知识与技能:学生能够掌握二分法求解方程的基本原理和步骤,能够灵活运用二分法解决简单的方程问题。
过程与方法:通过教师的讲解和示范,学生能够掌握二分法求解方程的基本步骤,并能够运用二分法解决简单的方程问题。
情感态度与价值观:培养学生的数学思维能力,激发学生的学习兴趣,培养学生独立思考和解决问题的能力。
二、教学重点掌握二分法求解方程的基本原理和步骤能够运用二分法解决简单的方程问题四、教学资源多媒体课件、黑板、彩色粉笔、教学实例、教学图片五、教学内容1. 问题提出通过一个简单的例子引出二分法求解方程的思想和原理,引导学生思考问题。
2. 二分法求解方程的原理通过示意图和简单的数学推导,解释二分法求解方程的原理和思路,让学生理解二分法的基本思想。
3. 二分法求解方程的步骤(1)确定解的区间(2)取区间的中点(3)判断中点的取值(4)更新区间的端点(5)重复以上步骤,直到满足精度要求或达到预定次数4. 二分法求解方程的实例分析通过实例分析,让学生掌握二分法求解方程的具体步骤和技巧。
5. 习题训练组织学生做一些相关的练习题,巩固所学知识,提高解题能力。
2.示范与讲解通过多媒体课件、教学图片等形式,示范和讲解二分法求解方程的基本原理和步骤,帮助学生理解和掌握知识点。
3.实例演练教师给出一些实例让学生进行演练,引导学生灵活运用二分法解决方程问题,并及时纠正学生的错误。
4.课堂讨论鼓励学生在课堂上提出问题,并展开讨论,促进学生思维的碰撞和碰撞。
七、教学方法讲授法、示范法、讨论法、练习法九、教学评价1. 问答环节:教师随机提问学生,检查学生对二分法求解方程的理解和掌握情况。
2. 练习情况:检查学生在课后练习的情况,及时纠正学生的错误,帮助学生提高解题能力。
3. 课堂表现:评价学生在课堂上的表现,包括学生的思维活跃程度、学习态度和解题能力等。
十、教学反思通过本次教学,我会反思教学方法和手段的合理性和有效性,提出改进的建议,进一步提高教学质量和水平。
3.1.2用二分法求方程的近似解本节课选自《普通高中课程标准实验教科书·必修1》(人教A版)第三章《函数的应用》第一节《函数与方程》第二小节《用二分法求方程的近似解》.一、教学背景分析1.教学内容分析函数与方程是中学阶段研究的重要数学模型,本节课是学生在系统学习了集合、函数的概念及性质以及基本初等函数(I)之后,研究函数与方程关系的内容,是《函数与方程》一节的重点.二分法是数值计算中最简单常用的一种方法.本节课学生通过对具体实例的探究,借助图形计算器用二分法求相应函数零点的近似解,经历用函数的观点看方程的思维过程,在问题的解决中突出函数的应用,深化对函数与方程联系的理解,初步形成用函数观点处理问题的意识,这是本节课的一条明线;总结“用二分法求函数零点的步骤”中渗透算法的思想,发展学生的数学抽象能力,是本节课的一条暗线.这也是研究程序性知识的一条主线.图形计算器可以实现求方程的近似解,但是内置的程序是由人设计的,并且“二分法”的产生要远远早于计算器,因此对于此内容的学习是十分必要的:我们要“教”计算器如何求解.2.学生学情分析初中阶段,学生学习了简单的一元一次方程和一元二次方程,并会用求根公式求一元二次方程的根;高中阶段,学生学习了基本初等函数(I),对指数函数、对数函数、幂函数的图象和性质都有了比较深入的研究,同时对“数形结合”思想有了较为深入的理解和应用;另外,前一节内容的学习,不仅把函数与方程联系起来,还可以利用零点的存在性定理判断零点是否存在。
这些都为本节课的学习奠定了基础.同时对已经学过此内容的高二、高三学生的调研发现,学生对于“精确度”的概念非常模糊,这也对我们的教学提供了参考.二、教学目标设计基于以上分析,根据本节课的教学内容、课程标准的要求和学生的实际情况,确定本节课的教学目标为:1.知识与技能(1)通过具体实例,能够借助图形计算器用二分法求相应方程的近似解(给定精度),体会二分法的思想,了解这种方法是求方程近似解的常用方法;(2)通过具体实例,归纳概括二分法的实施步骤,并用准确的数学语言表述出来;2.过程与方法经历借助图形计算器画出具体函数的图像、用二分法求函数零点的近似值、总结二分法实施步骤的过程,体会其中所蕴含的函数与方程思想、数形结合思想、逼近思想以及从具体到一般的研究方法等;3.情感态度与价值观引导学生用联系的观点理解有关内容,沟通函数、方程、不等式以及算法等内容,使学生体会知识之间的联系;发展学生的理性思维.【教学重点】理解二分法的基本思想、会用二分法求方程的近似解.【教学难点】精确度的概念、归纳概括二分法的实施步骤并用准确的数学语言表述.三、教学策略分析为了更好地突出重点,我在引入环节通过具体实例以及介绍历史上方程求解的发展脉络引入课题——求方程的近似解,首先解决了“研究什么”、“为什么研究”的问题.至于“如何研究”则通过具体实例ln 260x x +-=阐释.在这个过程中借助图形计算器充分体现数形结合思想,并将数形结合思想具体化落实:1.从数到形:方程的解——函数的零点——函数图象与x 轴的交点;2.从形到数:交点的坐标——数轴上的区间——表格数据——二分法的形成.为了突破难点,在具体实例的解决中采用问题串的形式引导、激发学生的探究热情:“如何将零点所在区间缩小”、“如何停止”等,由此引出 “精确度”的概念.为了突破此难点,首先在引入中用“误差”做铺垫,同时利用数轴进行直观解释.而从具体实例中的二分法上升到归纳概括一般步骤对于学生是困难的,在教学中首先在解决具体问题中引导学生思考“第一步做什么,第二步做什么……”,然后引导学生用文字语言表述并尝试用数学符号语言表述,同时利用数轴的直观来突破符号语言中“赋值”这一难点.本节课的核心内容是“用二分法求方程的近似解,体会二分法思想”,为了不冲淡本节课的主题,在教学中设计应用TI 图形计算器:作图功能、表格功能(计算函数值)、求解功能.图形计算器的使用,可以帮助我们实现“数形结合”的具体化落实,对知识的发展起到了助力作用.三、教学过程的设计与实施(一)具体实例,引出课题【问题1】2018年5月15日北大珠峰登山队成功登顶世界第一高峰珠穆朗玛峰,以此庆贺北大建校120周年.我们知道,随着海拔的升高,大气压强会降低,空气中的含氧量会降低,影响人的身体.(1)登山队员为了实时监测身处地的大气压强,从某公司购买了先进的气压表,在其产品参数中有这样一句话:经订正后测量误差不大于200Pa ,你如何理解这句话?(2)已知大气压强y (单位Pa )与海拔x (单位m )间的关系式为:()5.25885ln 288.150.006518.2573x y e ⨯--=.2018年5月13日登山队计划前往海拔7790米的营地,但是某队员身体不适,当压强降低为海拔的5.5倍时他就必须停止攀登,此时他能否到达该营地呢?【设计意图】从一个实际问题引入,首先让学生体会现实生活中存在大量取近似值问题,如生产零食袋上标注的净含量、22m 的正方形地面砖等,另一方面(1)中的“误差”也为要学习的“精确度”概念做铺垫.对于(2)可以从两个角度将实际问题转化为数学问题:一是求方程()5.25885ln 288.150.006518.2573 5.5x e x ⨯--=的解,与7790比较;二是将7790代入关系式求出压强,利用压强与海拔的比值进行判断.本节课我们抓住角度一,让学生产认知冲突,激发学生的求知欲望并体会求近似解的必要性,同时引入方程求解的历史,让学生感受数学文化方面的熏陶.这样我们就解决了“研究什么”、“为什么研究”的问题.(二)问题引领,探究方法【问题2】如何求方程ln 260x x +-=的近似解?【设计意图】由于问题1中方程较为复杂,为了计算方便研究此方程.引导学生从函数与方程联系角度将求方程的解进行转化:一种是转化为求函数()ln 26f x x x =+-零点的近似值;另一种是将方程变形为ln 62x x =-,转化为求函数ln ,62y x y x ==-交点横坐标的近似值.通过学生小组合作探究、教师追问解决如下问题:函数的零点是否存在?如果存在有几个?并找到零点的一个大致范围.二分法源于逐步搜索法,该方法基于连续函数零点存在性定理:按某规则将区间[],a b 分成若干个子区间,在每个子区间上计算端点值,一旦发现两端点的函数值异号,则可断定该子区间上至少有一个零点.本节课作为二分法的起始课,确定初始区间[],a b 是十分重要的,因为我们只需要求出一个零点即可,不需要考虑所有零点,所以课本上给出了一个单调函数的例子(至多有一个零点).可以通过两种途径寻找零点大致范围:借助图形计算器画出函数图象;利用函数零点存在性定理判断.如果学生选择前者,那就需要用零点存在定理进行验证;如果学生选择后者,要引导学生通过图象观察函数的单调性,以此来确定零点个数。
《用二分法求方程的近似解》教学设计1. 引言1.1 背景介绍二分法是一种常用的数值计算方法,广泛应用于计算机科学、数学和工程领域。
它通常用于寻找数值解的逼近值,特别是在无法准确求解的情况下。
二分法的基本原理是将求解区间逐步缩小,直到满足精度要求为止。
在实际应用中,我们常常需要解决一些复杂的方程,例如非线性方程、传统解法求解困难的方程等。
这时候,二分法就成为了一种简单而有效的求解方法。
通过不断缩小求解区间,逐步逼近方程的解,我们可以快速得到一个近似解。
在本次教学设计中,我们将重点介绍二分法的原理、算法步骤和示例演示,帮助学生更好地理解和掌握这一数值计算方法。
通过本次教学,我们旨在引导学生掌握二分法的基本思想和应用技巧,提高他们的数值计算能力,为进一步学习和研究相关领域打下坚实的基础。
1.2 问题提出问题提出:在数学中,求解方程是一个常见的问题。
特别是对于非线性方程,往往无法用代数方法得到精确解析解。
我们需要借助数值计算方法来求得近似解。
二分法是一种简单且常用的数值计算方法,可以用来求解单调函数的根。
在实际应用中,我们经常遇到需要求解方程的情况,比如物理问题中的牛顿定律、化学问题中的化学反应速率等等。
掌握二分法求方程的近似解有着重要的意义。
本教学设计将重点介绍二分法的原理及应用,帮助学生掌握这一实用的数值计算方法。
1.3 目的本教学设计的目的是帮助学生了解和掌握二分法求解方程的基本原理和方法,通过实际的示例演示和练习,培养学生解决实际问题的能力和思维。
通过本教学设计,学生将能够掌握二分法的具体步骤,理解其优缺点,掌握其应用范围,并能将所学知识运用到实际生活和工作中。
通过本教学设计的学习,学生将不仅能够提高数学解题的能力,还能培养逻辑思维和分析问题的能力,为将来深入学习数学和相关领域打下扎实的基础。
本教学设计也旨在培养学生的团队合作和沟通能力,鼓励学生通过合作学习和讨论来促进自身的学习效果。
通过本教学设计,学生将不仅能够学会求解方程的方法,还能够培养自主学习和解决问题的能力,为未来的学习和工作打下坚实的基础。
《用二分法求方程的近似解》教学设计教学目标(1)通过对二分法原理的学习和探究,帮助学生形成用函数的观点处理方程问题的意识; (2)通过对二分法基本原理的介绍,探索用二分法求近似解的思路和步骤,体会从特殊到一般的数学思维过程,感悟数学的极限思想.教学重点与难点(1)教学重点:理解二分法的基本原理,用二分法求方程近似解的思路与步骤; (2)教学难点:用二分法求方程近似解的算法,以及对精确度的理解.教学过程环节 教 师 教 学 与 学 生 活 动 设 计 意 图创 设 情 境 渗 透 数 学 思 想游戏环节:猜猜华为音响的价格(学生活动)游戏反思环节(师生活动)问题1:商品价格“600-800”提示有什么作用?问题2:“多了”“少了”的提示在竞猜过程中起了什么作用?问题3:条件“误差不超过10元”,如何理解? 问题4:怎样快速猜出商品价格?结合现实生活中实例创设情境,以能激发学生兴趣的华为音箱价格竞猜入手导入,激发了学生学习的兴趣,轻松的引入本节课的学习,在热烈的气氛中,让学生不知不觉地进入数学教学的情境中.在游戏反思环节,通过问题串引导学生用二分法的思想将商品价格的范围不断缩小,从而猜测出华为音箱的价格,有效地渗透了数学逼近思想.探究新 知 从实际问题转 入 数 学问题探究新知1(老师活动)生活中有大量近似值的存在,比如食品外包装的净重量;电影《攀登者》中海拔与大气压之间的关系等等,所以我们有必要研究方程的近似解.不管是在现实生活中,还是在科学决策中,都存在着大量取近似值的问题,所以我们有必要研究方程的近似解.同时也使学生感受到数学就在身边,体会到数学的价值,激发他们学习数学的积极性,增强数学情感.探究新知2(师生活动):问题引导,类比猜商品价格的方式求方程的近似解引入问题:对比两个方程的求解追问1:估算方程lnx +2x −6=0的解的大致范围?追问2:能不能缩小函数f (x )=lnx +2x −6零点的范围学生活动:借助计算器求方程的近似解 (画表格进行计算) 次数 2a b+()2a bf +取a 取b |a -b | 1 2.5 -0.084 2.5 3 0.5 2 2.75 0.512 2.5 2.75 0.25 3 2.625 0.215 2.5 2.625 0.125 42.56250.0662.52.5625 0.063得出:当|a -b |<0.1时,终止计算.从特殊方程出发,对比两个方程,一个方程可以快速求出解, 而另一个方程无法求出准确值,所以我们有必要研究第二个方程的近似解.类比游戏环节,要求方程的近似解,先求方程解的范围,借助函数零点与方程的解的关系,将方程的解转化为函数的零点,再利用零点存在定理,估算函数零点的初始范围.再次类比游戏环节,借助数形结合和逼近的思想,利用二分法不断地去缩小零点的范围.此时主要是学生的活动,借助手中的计算器,利用零点存在定理和二分法原理缩小零点范围.再次类比游戏环节,引入了本节课的难点精确度的概追问3:怎么结束运算?念,为了很好的理解这个概念,借助数轴让学生感受准确值与近似值差的绝对值小于零点所在范围很难实现,进而转化为准确值所在区间的长度小于精确度,从而结束运算.认识新知归纳步骤老师活动:给出二分法的定义二分法:对于在区间[a,b]上连续不断,且满足f(a)∙f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.学生活动:分析定义中的关键词并归纳二分法的步骤二分法及步骤:给定精度ε,用二分法求函数f(x)的零点近似值的步骤如下:1.确定零点所在区间[a,b],验证f(a)∙f(b)<0,给定精度ε;2.求区间(a,b)的中点x1;3.计算f(x1):若f(x1)=0,则x1就是函数的零点;若f(a)∙f(x1)<0,则令b=x1(此时零点x0∈(a,x1));若f(b)∙f(x1)<0,则令a=x1(此时零点x0∈(x1,b));4.判断是否达到精度ε;即若|a−b|<ε,则得到零点零点值a(或b);否则重复上述步骤.1.通过游戏和求特殊方程近似解的探究,由老师讲解介绍二分法,学生归纳二分法解决问题的一般步骤,让学生从特殊到一般得出求函数零点近似解的的常用方法.2.培养学生提炼方法,归纳概括的能力,并会学以至用,渗透从特殊到一般的数学思想.合作共赢学生活动:合作共赢,巩固新知1.设计求近似解的合作共赢环节,再次强调使用二分法的程序性,体现了从一般到特殊的演绎推理的过程.2.通过学生的讲解,老师了解学生掌握的情况,用学生的思维给学生讲解更通俗易懂,同时也激发了学生学习的兴趣,调动了学生学习的积极性和主动性.应用新知学生活动:应用新知1.利用课堂练习巩固所学的知识内容、数学思想、数学方法以求达到教学目标;2.本环节老师提问,让学生起来回答问题,多给学生自主活动的空间.思想方法总结1.化归与转化的思想;2.函数与方程的思想;3.数形结合的思想:从数到形:方程的解,函数的零点,函数图象与x轴的交点;从形到数:交点的坐标,数轴上的区间,表格数据,二分法的形成;4.逼近的思想;通过问题的呈现式,引导学生归纳总结这堂课所学内容.。
高一数学《用二分法求方程的近似解》教学设计设计: 章瑞禄福建省福安市第八中学点评: 苏文新安溪一中一、概述本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章3.1.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.点评:点明教学内容来自的版本、模块与章节,较全面地阐述本节内容与前后知识的联系及地位。
二、教学目标分析1.知识与技能:理解二分法的概念,了解二分法是求方程近似解的常用方法,掌握运用二分法求简单方程近似解的方法。
2.过程与方法:通过价格竞猜与线路维修体会二分法的思想;通过学生的自主探究,借助计算器用二分法求方程的近似解,体现逼近思想,为学习算法做准备;体验并理解函数与方程的相互转化的数学思想方法。
3.情感、态度与价值观在具体的问题情境中感受无限逼近的过程,感受精确与近似的相对统一点评:教学目标确定准确、明确、可操作性强。
如通过价格竞猜与线路维修体会二分法的思想等。
三、学习者特征分析本节课的学习者特征分析主要是根据教师平时对学生的了解而做出的:学生是福建省福安市第八中学高一年级学生.福安八中是一所农村普通完中,学生学习基础较弱.学生在学习本节课内容之前已学习了函数的零点,理解方程的根与函数零点之间的关系,有一定的数形结合思想能力,但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次方程和超越方程对应函数零点的寻求会有困难。
在教学过程中,为学生创设熟悉的问题情境,体会二分法的思想,。
多处启发学生,让学生概括二分法思想和归纳二分法的步骤。
点评:章老师对学习者特征分析切合实际,学生是普通完中的学生,基础较弱,指出了以具备的知识与能力及存在的困难。
四、教学策略选择与设计先行组织者策略:通过商品价格竞猜和线路检查体会二分法的思想与方法。
启发式方法:通过分步提问,启发得出用二分法求方程近似解的步骤,体会逼近思想和算法思想,分散难点。
讨论式:学生自主探究用二分法求方程的近似解;通过讨论交流总结用二分法求方程近似解的步骤。
点评:章老师运用先行者策略,通过情境设置激发学生学习兴趣,调动学生的学习积极性,学生从中体会了二分法思想。
再通过启发式教学,分步提问细化了难点,考虑了学生的实际水平。
五、教学资源与工具设计(1)教师自制的多媒体课件和手机一款(2)上课环境是多媒体教室环境(3)学生手中的高中数学必修1教材和计算器六、教学过程一.创设情景,引入新课师:(手拿一款手机)中央电视台第二频道幸运52大家有看吧!我来当一回李永,如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔十元降低报价。
生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价。
如果低了,每50元上涨;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:2008年10月4日下午5时,台风“海高斯”在广东吴川市的大山江镇登陆,次日该市某山区发现从水库闸房到防台指挥部的用电线路某一处发生了故障,这是一条10km长的线路,每隔50m有一根电线杆,维修工人需爬上电线杆测试,问如何快速找到被毁坏的电线杆?生:(齐答)按照生3那样来检测。
二、讲解新课师:那我们能否采用这种逐步逼近的方法来解一些数学问题呢?(多媒体)能否求函数f(x)=lnx+2x-6的零点?①师生共同探讨交流,引出借助函数f(x)= lnx+2x-6的图象,能够缩小零点所在区间,并根据f(2)<0,f(3)>0,可得出零点所在区间(2,3);②引发学生思考,如何进一步有效缩小零点所在的区间;③共同探讨各种方法,引导学生探寻出通过不断对分区间,有助于问题的解决;④引发学生思考在有效缩小零点所在区间时,到什么时候才能达到所要求的精确度。
学生简述上述求函数零点近似值的过程。
(通过自己的语言表达,有助于学生对概念的理解)(思考,解决。
问题激励,语言激励)(生推导,师欣赏,鼓励学生,生口答,得出)第一步:取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084.因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.第二步:取区间(2.5,3)的中点2.75,用计算器算得f (2.75)≈0.512. 因为f(2.5)·f (2.75)<0,所以零点在区间(2.5,2.75)内.结论:由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见下表和图)因为|2.5390625-2.53125|< 0.01在区间(2.53125,2.5390625)内任何点的值与精确值的误差都不超过0.01,所以区间内任何值以及区间端点的值都可表示此函数零点的近似解,所以此函数零点的近似解为x=2.53125 揭示二分法的定义。
上述求函数零点近似值的方法叫做二分法,那么二分法的基本思想是什么?对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法二分法求方程近似解的步骤探索(1)求函数f(x)的零点近似值第一步应做什么?(确定区间[a,b],使f(a)f(b)<0)(2)为了缩小零点所在区间的范围,接下来应做什么?(求区间的中点c,并计算f(c)的值)(3)若f(c)=0说明什么?若f(a)·f(c)<0或f(c)·f(b)<0 ,则分别说明什么?(若f(c)=0 ,则c就是函数的零点;若f(a)·f(c)<0 ,则零点x0∈(a,c);若f(c)·f(b)<0 ,则零点x0∈(c,b).)用二分法求函数零点近似值的基本步骤:确定区间[a,b],使f(a)·f(b)<0 ,给定精度ε;2. 求区间(a,b)的中点c3. 计算f(c):(1)若f(c)=0,则c就是函数的零点;(2)若f(a)·f(c)<0 ,则令b=c,此时零点x0∈(a,c);(3)若f(c)·f(b)<0 ,则令a=c,此时零点x0∈(c,b).4. 判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤2~4.例题剖析例1:利用计算器,用二分法求方程2x+3x=7的近似解(精确度0.1)分析思考:原方程的近似解和哪个函数的零点是等价的?解:原方程即2x+3x=7 ,令f(x)=2x+3x -7,用计算器作出函数的对应值表与图象(如下):观察上图和表格,可知f(1)·f(2)<0,说明在区间(1,2)内有零点x0.取区间(1,2)的中点x1=1.5,用计算器可得f(1.5)≈0.33.因为f(1)·f(1.5)<0,所以x0∈(1,1.5),再取(1,1.5)的中点x2=1.25,用计算器求得f(1.25)≈-0.87,因此f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5),同理可得x0∈(1.375,1.5),x0∈(1.375,1.4375),由|1.375-1.4375|=0.0625<0.1, 所以原方程精确度为0.1的近似解为1.4375.(多媒体)练习:1.下列函数图像与x轴均有交点,但不宜用二分法求交点横坐标的是( )2.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定在( )内,其中f(1.75)<0(A) [-2,1] (B) [2.5,4](C) [1,1.75] (D) [1.75,2.5]3.P91,练习2点评:本环节是对本课进行评价,很好考查学生的学习情况,并将学生学习的评价融入到各个教学活动过程中。
A B C三、课堂小结师:通过本节课的学习,你学习了哪些知识与方法?你有哪些收获?(生总结,并可以互相交流讨论,师投影显示本课重点知识)四、布置作业第92页习题3.1A组3、4、5教学流程图如下:点评:通过创设情境,激发学生学习兴趣,调动学生的学习积极性,学生从中体会了二分法思想,使学生在兴趣盎然中突破了难点。
考虑了学生的实际水平,再通过启发式教学,分步提问细化了难点。
通过示例与练习,巩固深化了重点知识,很好完成教学任务。
七、教学评价设计本节课从以下几个方面进行评价:1.评价内容:课堂表现评价、学习效果评价(课堂学习效果评价+作业)、小组合作评价2.评价方式:自评、小组评、教师评相结合;定量评价与定性评价和反思相结合学生自我评价:是指学生学习过程中对自己的表现给予肯定,也是一种自信心的表露。
小组评价:是指小组间的互相评价,具有促进小组合作的作用。
教师评价:这里是指教师根据学生的综合表现,以及小组完成的作品进行一个全面的评价,提高学生的自信心和积极性。
1.课堂表现评价表2.本评价分为定性评价部分和定量评价部分3.定量评价部分总分为100分,最后取值为教师评、同学评和自评分数按比例取均值4.定性评价部分分为“我这样评价自己”、“伙伴眼里的我”和“老师的话”,都是针对被评者作概括性描述和建议,以帮助被评学生的改进与提高。
2.自我评价表:上完本次课,你有什么感受?收获了哪些?你觉得自己还可以做那些改进?比如在小组合作方面,比如在课堂参与方面,比如在练习方面……?[教师根据学生反思深度给分]点评:本环节是对本课进行评价,很好考查学生的学习情况,并将学生学习的评价融入到各个教学活动过程中6.课后作业第92页习题3.1A组3、4、5八、帮助和总结二分法的思想和用二分法求方程的近似解是本节课的重点也是难点,我用模仿CCTV2幸运52的物价竞猜和线路检查,让学生体会二分法的思想和解决问题的方法,帮助学生突破难点。
为了进一步分化用二分法求方程近似解这个难点,我采用分步提问的方法。
为了深化和巩固新知,我布置了练习和课后作业。