函数和集合
- 格式:ppt
- 大小:137.00 KB
- 文档页数:38
高中数学必修1知识点第一章集合与函数概念〖〗集合【】集合的含义与表示(1) 集合的概念集合中的元素具有确定性、互异性和无序性(2) 常用数集及其记法N表示自然数集,N 或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集•(3) 集合与元素间的关系对象a与集合M的关系是a M,或者a M,两者必居其一.(4) 集合的表示法①自然语言法:用文字叙述的形式来描述集合②列举法:把集合中的元素一一列举出来,写在大括号内表示集合③描述法:{X| x具有的性质},其中x为集合的代表元素•④图示法:用数轴或韦恩图来表示集合•(5) 集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集()•【】集合间的基本关系)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有2n2非空真子集.【】集合的基本运算(1)(2)—元二次不等式的解法〖〗函数及其表示【】函数的概念(1) 函数的概念① 设A、B 是两个非空的数集,如果按照某种对应法则 f ,对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合 A ,B 以及 A 到B 的对应法则f )叫做集合 A 到B 的一个函数,记作 f : A B .② 函数的三要素:定义域、值域和对应法则.③ 只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做[a,b) , (a,b];满足x a, x a,x b,x b 的实数x 的集合分别记做[a, ),(a, ),( , b],( , b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须a b.(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k (k Z).2⑥零(负)指数幕的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x) b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的•事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同•求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f (x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y) 0 ,则在a(y) 0时,由于x,y为实数,故必须有2b (y) 4a(y) c( y) 0 ,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5 )函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6) 映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合 A , B以及A到B的对应法则f )叫做集合A到B的映射,记作f : A B .②给定一个集合A到集合B的映射,且a A,b B .如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,u g(x)为增,则y f[g(x)]为增;若y f (u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u) 为增,u g(x)为减,则y f [g (x)]为减;若y f (u)为减,u g (x)为增,则y f[g(x)]为减.函数f (x)的最大值,记作f max (x)② 一般地,设函数y f (x)的定义域为I ,如果存在实数 m 满足:(1)对于任意的x I ,都有f (x) m ; (2)存在x o I ,使得f(X o ) m .那么,我们称 m 是函数f (x)的最小值,记作f max (X ) m .【】奇偶性(4 )函数的奇偶性函数的性质定义图象 判定方法如果对于函数f(x)定义(1)利用定义(要域内任意一个x ,都有(a f (a))先判断定义域是否函数的ZTf( — x)= — f(x),那么函C-关于原点对称)奇偶性1 a"数f(x)叫做奇函数.(-a, f f-fi))(2)利用图象(图象关于原点对称)(3) 打"2”函数f (x) x - (a 0)的图象与性质x f (x)分别在(,a ]、[.a,)上为增函数,分别在 [.a ,0)、(0,、a ]上为减函数. 最大(小)值定义 ①一般地,设函数y f(x)的定义域为I ,如果存在实数 满足:(1)对于任意的x I ,都有 f(x) M ; (2)存在 x o I ,使得 f (X o ) M .那么,我们称 M②若函数f(x)为奇函数,且在x 0处有定义,则f(0) 0 .③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数)两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商) 是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性) ;④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幕函数、三角函数等各种基本初等函数的图象.①平移变换h 0,左移h个单位y f(x)h o,右移ihi个单位y f(x h)v f(x)k 0上移k个单位y f(x)ky f(x)k 0,下移|k|个单位y f (x) k②伸缩变换y f(x) 01缩伸y f( x)y f(x)缩y Af(x)③对称变换y f(x)y f(x)y f(x)y f( x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法.。
高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B{x A A =∅=∅ B A ⊆ B B ⊆Bx B ∈A A = A ∅= B A ⊇ B B ⊇1()U A =∅ð2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法)含绝对值的不等式的解法 解集0)【1.2.1】函数的概念 (1)函数的概念)()()U U B A B =?)()()U U B A B =?①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值③判别式法:若函数()y f x=可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y xc y++=,则在()0a y≠时,由于,x y为实数,故必须有2()4()()0b y a yc y∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,a Ab B∈∈.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法o②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[,0)、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 作max ()f x M =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
一、集合1、 集合:某些具有共同属性的对象集在一起就形成一个集合,简称集。
元素:集合中的每个对象叫做这个集合的元素。
2、集合的表示方法⎧⎪⎪⎨⎪⎪⎩列举法描述法图示法区间法集合的分类⎪⎩⎪⎨⎧空集:无限集:有限集:3、子集:对于两个集合A 与B ,如果集合A 的任意元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。
也说集合A 是集合B 的子集。
即:若“B x A x ∈⇒∈”则B A ⊆。
子集性质:(1)任何一个集合是本身的子集;(2)空集是任何集合的子集;(3) 若B A ⊆,C B ⊆,则A C ⊆。
4、集合相等:对于两个集合A 与B ,如果集合A 的任意元素都是集合B 的元素,同时集合B 的任意元素都是集合A 的元素,我们就说A =B 。
即:若A ⊆B ,同时B ⊆A ,那么B A =。
5、真子集:对于两个集合A 与B ,如果A ⊆B ,并且A ≠B ,我们就说集合A 是集合B6、易混符号: ①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系 ②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合7、子集的个数:(1)空集的所有子集的个数是 1 个 (2)集合{a}的所有子集的个数是 2个 (3)集合{a,b}的所有子集的个数是4个 (4)集合{a,b,c}的所有子集的个数是8 个猜想: (1){a,b,c,d}的所有子集的个数是多少? (2){}n a a a ,,21 的所有子集的个数是多少?结论:含n 个元素的集合{}n a a a ,,21 的所有子集的个数是 2n,所有真子集的个数是2n-1,非空子集数为 2n-1 ,非空真子集数为 2n-2 。
8、交集定义:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做A 与B 的交集。
即:=B A {}x B x x A ∈∈且 。
9、并集定义:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集。
集合与函数的概念总结集合与函数是数学中的基本概念,它们在数学和其他科学领域中有着广泛的应用。
下面是对集合与函数的概念进行全面总结的1000字。
首先,我们先来介绍集合的概念。
集合是指具有某种共同性质的事物的总体,可以是物体、数或者其他数学对象的集合。
集合的表示方法可以是列举法、描述法或图示法。
例如,{1, 2, 3, 4}就是一个集合,它包含了数值为1、2、3和4的元素。
集合中的元素是无序的,且不重复。
我们通常用大写字母A, B, C等来表示集合。
在集合的运算方面,常见的有并、交和差。
集合的并(union)指的是两个或多个集合中的所有元素的总体,用符号“∪”表示。
例如,A = {1, 2},B = {2, 3},则A∪B = {1, 2, 3}。
集合的交(intersection)指的是两个或多个集合中的共有元素的总体,用符号“∩”表示。
例如,A∩B = {2}。
集合的差(difference)指的是一个集合中去掉与另一个集合共有元素后剩下的元素,用符号“-”表示。
例如,A-B = {1}。
此外,还有集合的补集、子集和幂集。
集合的补集是指某个集合中不属于另一个集合的元素的总体,用符号“’”或“-”表示。
例如,A’表示A的补集,即不属于A的元素构成的集合。
集合的子集指的是某个集合的所有元素都含在另一个集合之中,用符号“⊆”表示。
例如,A⊆B表示A是B的子集。
集合的幂集指的是一个集合的所有子集所构成的集合。
接下来,我们来介绍函数的概念。
函数是一种特殊的关系,它把一个集合中的每个元素与另一个集合中的唯一元素相对应。
函数由三个部分组成,即定义域、值域和对应关系。
定义域是指函数的输入值所属的集合,也就是函数可以接受的值的集合。
值域是指函数的输出值所属的集合,也就是函数可以返回的值的集合。
对应关系是指定义域中的每个元素与值域中的唯一元素之间的关系。
函数的表示方法有多种,其中最常见的是显式表示法和隐式表示法。
显式表示法是指用一个公式或表达式来表示函数。
第一章 集合与函数(一)基本知识回顾1、集合(1)集合中元素的三个特性:确定性、无序性、互异性. (2)集合的表示法:列举法(Venn 图法)、描述法(数轴思想):注意分清数集和点集. 如)}({x f y =,)}({x f y R x =∈,)}({x f y R y =∈,)}(),{(x f y y x =的区别.(3)若有限集合A 中有n 个元素,则集合A 的子集个数为n 2个,真子集个数为12-n. (4)集合常见的运算性质:B A A B A ⊆⇔=⋂, A B A B A ⊆⇔=⋃.)()()(B A C B C A C U U U ⋃=⋂), )()()(B A C B C A C U U U ⋂=⋃。
)()()()(B A Card B Card A Card B A Card ⋂-+=⋃.(5)集合中的含参问题:数形结合的思想,分类讨论的思想,一定要注意讨论空集的情形: 常见含参的可能为空集有}01{2=++mx mx x ,}02{=+mx x ,}31{+<<-m x m x .2、函数及其表示(1)函数的概念:是一对一,多对一的对应关系. (2)函数的三要素:定义域,对应关系,值域.(A )求定义域:求使得函数解析式有意义的x 的取值范围.如含分式,偶次根式,对数,0x 等,要保证其有意义.1)若已知)(x f 的定义域为),[b a ,则)]([x g f 的定义域由不等式b x g a <≤)(解出即可; 2)若已知)]([x g f 的定义域为),[b a ,则)(x f 的定义域相当于当),[b a x ∈时)(x g 的值域. (B )求值域:1)常见函数的值域:b kx y +=,c bx ax y ++=2,xy 1=,x y =,x y =. 2)单调性法求值域:如xx y 1+=,]3,2[∈x . 3)换元法求值域:形如d cx b ax y +++=,)]([x g f y =(转化为基本初等函数).4)分离常数法求值域:形如dcx bax y ++=(转化为反比列函数). (C )求解析式:1)待定系数法;告知函数)(x f 的类型(如是二次函数,设c bx ax x f ++=2)().2)换元法:如已知复合函数))((x g f 的解析式(令)(x g t =,求)(t f y =). 3)拼凑法:如函数221)1(xx x x f +=+,求)(x f . 4)函数方程法:如已知1)(2)(+=-+x x f x f ,求)(x f . (3)区间的概念:区间],[b a 中,b a <.注意与}{b x a x <<的区别.(4)分段函数:分段函数的定义域是各段定义域的并集,值域(最值)是各段值域的并集.注意:分段函数的求值,分段函数的方程、不等式,分段函数的单调性、值域.3、函数的性质(1)函数的单调性(局部性质):对任意的D x x ∈21,,且21x x <,则若)()(21x f x f <,则)(x f 是D 上的增函数; 若)()(21x f x f >,则)(x f 是D 上的减函数.若0)()(2121>--x x x f x f ,则)(x f 是D 上的增函数; 若0)()(2121<--x x x f x f ,则)(x f 是D 上的减函数.(2)单调性的判定方法:(A )定义法:(1)任取D x x ∈21,,且21x x <;(2)比较)(1x f 与)(2x f 的大小;(3)下结论. (B )图象法(从图象上看升降)(C )复合函数)]([x g f y =的单调性(同增异减):令)(x g t =(内函数),则)(t f y =(外函数). (D )运算性质法:增增增=+,减减减=+,增减增=-,减增减=-,减增=1,减增=-. 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间合在一起写成并集. (3)单调性的应用:1)求最值(结合图象):要求最值必须研究函数的单调性. 2)解关于函数的不等式:若)(x f 是),[b a 上的增函数且)()(21x f x f <,则b x x a <<≤21. 若)(x f 是),[b a 上的减函数且)()(21x f x f <,则b x x a <<≤12.(4)函数的奇偶性(整体性质)偶函数:对于函数f(x)的定义域内的任意一个x ,都有)()(x f x f =-,那么f(x)就叫做偶函数. 奇函数:对于函数f(x)的定义域内的任意一个x ,都有)()(x f x f -=-,那么f(x)就叫做奇函数. 函数的图象的特征:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称. (5)奇偶性的判断方法: (A )定义法:(1)判断定义域是否关于原点对称;(2)判断)()(x f x f =-或)()(x f x f -=-是否成立.(0)()(=--x f x f 或0)()(=+-x f x f ) 特殊情况特殊分析,可先举特殊值验证,为证明提供方向. (B )图象法:看图像是关于y 轴对称还是关于原点对称(如分段函数). (6)奇偶性的性质:1)若奇函数)(x f 在0=x 处有意义,则0)0(=f . 2)偶函数)(x f 满足:)()(x f x f =.3)偶函数在关于原点对称的区间上单调性相反,值域相同,最大小值相同;奇函数在关于原点对称的区间上单调性相同,值域相反,最大小值互为相反数; 4)奇奇奇=±,偶偶偶=±,偶奇奇=⨯,偶偶偶=⨯,奇偶奇=⨯.奇奇偶=. (7)对称性:1)若)2()(x a f x f -=或)()(x a f a x f -=+,则)(x f 关于直线a x =对称;2)若)()(x b f a x f -=+,则)(x f 关于直线2ba x +=对称;4、函数的图像变换:1))(x f 关于y 轴对称 )(x f -; 2))(x f 关于x 轴对称 )(x f -;3))(x f 关于直线x y =对称 )(1x f -; 4))(x f 向左(右)平移a (0>a )个单位 )(a x f ±; 5))(x f 向上(下)平移a (0>a )个单位 a x f ±)(;6))(x f 保持y 轴右边的图像不变,y 轴左边的图像是将右边的图像翻折过来 )(x ; 7))(x f 保持x 轴上边的图像不变,将x 轴下边的图像翻折到上方 )(x f ;5、恒成立问题:先分离常数,转化为a x f >)(或a x f <)(的形式.1)若a x f >)(恒成立,则a x f >min )(; 2)若a x f ≤)(恒成立,则a x f ≤max )(;(二)应用举例题型1:集合的概念例1、定义A ⊗B ={z |z =xy +xy,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________. 题型2:集合的运算例2、已知R 是实数集,}12{<=xxM ,}1{-==x y y N ,则)(M C N R ⋂__________. 例3、已知}0,2),({>+-==x x y y x M ,}1),{(2++==ax x y y x N ,若N M ⋂含有两个元素,求a 的 取值范围.题型3:集合的含参问题(分类讨论的时候不要忽略空集的情况)例4、已知集合A ={x |x 2-x-6<0},B ={x |0<x-m <9}(1) 若A ∪B =B ,求实数m 的范围;(2) 若A ∩B ≠φ,求实数m 的范围.例5、集合}082|{2=--=x x x A , }012|{22=-++=m mx x x B ,且A B A = ,求实数m 的取值范围.例6、已知集合}510{≤+<=ax x A ,集合}221{≤<-=x x B . (1)若A ⊆B ,求实数a 的取值范围;(2)若B ⊆A ,求实数a 的取值范围; (3)A 、B 能否相等?若能,求出a 的值;若不能,试说明理由.题型4:求函数的定义域例7、(1)函数)12lg(231)(-+-=x x x f 的定义域是 .(2)已知函数)(x f 的定义域为]3,1[,则函数)()2(2x f x f +的定义域为 .(3)若函数)(x f 的定义域是]2,0[[0,2],则函数1)2()(-=x x f x g 的定义域是 .(4)已知函数)2(xf 的定义域为]2,1[,则函数)(log 2x f 的定义域为 . 题型5:求函数的解析式例8、(1)已知函数1()1xf x x-=+,则(2)f = ;()f x = .(2)已知函数221)1(xx x x f +=+,则)2(f = ;()f x = . (3)定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=________.(4)定义在R 上的奇函数f (x )满足当0<x 时,f (x )=-x lg(2-x ),则f (x )=________.(5)已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,则()f x = ;()g x = .题型6:求函数的值域和单调性 例9、求下列函数的值域和单调性(1)1+=x y (2)x x y 12-=, ]1,3[--∈x (3)132++=x x y (4)112+++=x x y(5)xx y 222-= (6))32(log 21+=x y题型7:分段函数例10、设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是________.例11、已知=)(x f 1,221,12{≥-+-<+x a ax x x ax 是R上的减函数,则a 的取值范围是 .题型8:奇偶性 例12、11()()212xf x x =+-的奇偶性是 例13、若22()21x xa a f x +-=+·为奇函数,则实数a = .(三个方法)题型9:数形结合(单调性,奇偶性综合运用)例14、已知函数)(x f 是R 上的奇函数,且满足在),0(+∞上是增函数,0)3(=f ,则0)(≤x f 的解为 ,0)(<⋅x f x 的解为 .例15、已知)(x f 是定义在R 上的奇函数,当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集为 .题型10:函数比较大小 例16、用min{a ,b ,c }表示a ,b ,c 中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为________.题型11:抽象函数(特殊值法)例17、函数f (x )的定义域D ={x |x ≠0},且满足对于任意x 1,x 2∈D .有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.例18、已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.例题补充1、设f (x +2)=2x +3,则f (x )=2、下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |3、已知f (x )=⎩⎪⎨⎪⎧x 2(x >0),f (x +1)(x ≤0),则f (2)+f (-2)的值为4、设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=5、已知)1(+x f 是定义在R 上的奇函数,且是增函数,则0)1(≤-x f 的解为 .6、函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=______.7、已知 ⎪⎪⎩⎪⎪⎨⎧-<+>+≤≤-+=)1(32)1(11)11(1)(2x x x xx x x f ,(1)求f {f [f (-2)]}的值;(2)若f (a )=32, 求a .8、已知函数f (x )=x 2+2x +a x ,x ∈[1,+∞). (1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.。
集合与函数的关系嘿,朋友们!今天咱来聊聊集合与函数,这俩可真是一对奇妙的组合呀!你看啊,集合就像是一个大口袋,里面装着各种各样的元素。
这些元素就像是一群小伙伴,它们有着各自的特点。
而函数呢,就像是一个指挥家,它把这些元素有序地组织起来,让它们按照一定的规则行动。
比如说,我们可以把一个班级的同学看作一个集合,每个同学就是集合里的一个元素。
然后呢,我们可以定义一个函数,比如根据同学的身高来给他们排个序。
这样,这个函数就把集合里的元素按照身高这个规则给整理得明明白白的。
集合和函数的关系,就好像是建筑和设计师的关系。
集合是那些砖头、瓦片、木材等等建筑材料,它们本身就存在着。
而函数呢,就是那个设计师,它根据自己的想法和创意,把这些材料组合成各种各样的建筑,有高楼大厦,有小木屋,还有奇奇怪怪的造型。
再想想看,集合就像是一堆食材,大米、蔬菜、肉啊等等。
函数呢,就是那个大厨,它决定了怎么把这些食材加工成美味的菜肴。
可以是香喷喷的炒饭,可以是营养丰富的蔬菜汤,也可以是让人垂涎欲滴的红烧肉。
那集合和函数在我们的生活中又有啥用呢?哎呀,用处可多啦!比如说在统计数据的时候,我们把各种数据看作一个集合,然后通过函数来分析这些数据,找出规律,做出决策。
就像我们知道一个地区的人口年龄集合,通过函数就能知道这个地区的老龄化程度呀。
而且,集合和函数还能帮我们更好地理解世界呢!万物都可以看作是集合,而它们之间的关系就可以用函数来描述。
这多有意思呀!你说,要是没有集合和函数,我们的世界得变得多么混乱呀!没有规则地把东西堆在一起,那可不行。
就像没有指挥家的乐队,那不成了乱弹琴啦?总之,集合与函数,它们就像是一对默契的伙伴,相互配合,让我们的世界变得更加有序、更加精彩。
我们可得好好琢磨琢磨它们的关系,说不定能发现更多有趣的东西呢!怎么样,是不是觉得集合和函数很神奇呀?。
高一数学知识点集合与函数概念高一数学知识点:集合与函数概念在高一数学的学习中,集合与函数概念是非常重要的基础知识。
它们不仅是后续数学学习的基石,也在实际生活和其他学科中有着广泛的应用。
接下来,让我们一起深入了解一下这两个重要的知识点。
一、集合集合是现代数学中的一个基本概念。
我们可以把具有某种特定性质的事物看作一个整体,这个整体就是一个集合。
比如,一个班级里所有的同学可以组成一个集合,一堆水果也可以组成一个集合。
集合通常用大写字母表示,比如 A、B、C 等。
集合中的元素则用小写字母表示,比如 a、b、c 等。
如果一个元素 x 属于集合 A,我们记作 x∈A;如果不属于,就记作 x∉A。
集合的表示方法有很多种,常见的有列举法、描述法和图示法。
列举法就是将集合中的元素一一列举出来,用花括号括起来。
比如,集合 A ={1, 2, 3, 4, 5}。
描述法是用集合中元素所具有的共同特征来描述集合。
比如,集合B ={x | x 是大于 5 的整数}。
图示法包括维恩图(Venn Diagram),它可以直观地展示集合之间的关系。
集合之间有一些重要的关系,比如子集、真子集和相等。
如果集合 A 中的所有元素都在集合 B 中,那么集合 A 就是集合 B 的子集,记作 A⊆B。
如果 A 是 B 的子集,且 B 中至少有一个元素不在 A 中,那么 A 就是 B 的真子集,记作 A⊂B。
如果集合 A 和集合 B 中的元素完全相同,那么 A 和 B 相等,记作 A = B。
集合的运算也是集合这部分的重要内容,包括交集、并集和补集。
两个集合 A 和 B 的交集,记作A∩B,是由既属于 A 又属于 B 的所有元素组成的集合。
两个集合 A 和 B 的并集,记作 A∪B,是由属于 A 或者属于 B 的所有元素组成的集合。
而补集呢,设 U 是一个全集,A 是 U 的子集,那么由 U 中不属于A 的所有元素组成的集合,叫做集合 A 在 U 中的补集,记作∁UA。
高一数学知识点集合与函数概念高一数学知识点:集合与函数概念在高一数学的学习中,集合与函数概念是非常重要的基础知识,它们为后续的数学学习打下了坚实的基础。
接下来,让我们一起深入了解一下这两个重要的知识点。
一、集合集合是数学中一个基本的概念,它是把一些确定的、不同的对象看作一个整体。
就好像把一堆苹果放在一个篮子里,这个篮子里的所有苹果就构成了一个集合。
集合通常用大写字母来表示,比如 A、B、C 等等。
集合中的元素则用小写字母表示,比如 a、b、c 等。
如果一个元素 x 属于集合 A,我们就记作 x∈A;如果不属于,就记作 x∉A。
集合的表示方法有很多种,常见的有列举法、描述法和图示法。
列举法就是把集合中的元素一一列举出来,比如集合 A ={1, 2, 3, 4, 5}。
这种方法简单直观,但当集合中的元素较多或者是无限个时,就不太方便了。
描述法是用元素所具有的共同特征来描述集合,比如集合 B ={x | x 是大于 5 的整数}。
这种方法更具有概括性,能清晰地表达出集合元素的性质。
图示法包括维恩图(Venn Diagram),它能很直观地展示集合之间的关系。
集合之间有一些重要的关系,比如子集、真子集和相等。
如果集合A 中的所有元素都属于集合 B,那么 A 就是B 的子集,记作 A⊆B。
如果 A 是 B 的子集,但 A 不等于 B,那么 A 就是 B 的真子集,记作A⊂B。
如果集合 A 和集合 B 的元素完全相同,那么 A 和 B 相等,记作 A = B。
集合的运算也是集合这部分的重要内容,包括交集、并集和补集。
交集指的是两个集合中共同的元素所组成的集合,记作A∩B。
比如集合 A ={1, 2, 3},集合 B ={2, 3, 4},那么A∩B ={2, 3}。
并集则是把两个集合中的所有元素合并在一起组成的集合,记作A∪B。
对于上面的例子,A∪B ={1, 2, 3, 4}。
补集是在一个给定的全集 U 中,属于 U 但不属于集合 A 的元素组成的集合,记作∁UA。
⾼⼀数学必修⼀集合与函数的概念 集合与函数都是⾼⼀的数学学习的知识点,需要学⽣学习和掌握,下⾯店铺的⼩编将为⼤家带来关于集合与函数的概念的分析介绍,希望能够帮助到⼤家。
⾼⼀数学必修⼀集合与函数概念介绍 第⼀章集合与函数概念 ⼀:集合的含义与表⽰ 1、集合的含义:集合为⼀些确定的、不同的东西的全体,⼈们能意识到这些东西,并且能判断⼀个给定的东西是否属于这个整体。
把研究对象统称为元素,把⼀些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则⼀元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:⼀个给定集合中的元素是唯⼀的,不可重复的。
(3)元素的⽆序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3、集合的表⽰:{…} (1)⽤⼤写字母表⽰集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表⽰⽅法:列举法与描述法。
a、列举法:将集合中的元素⼀⼀列举出来{a,b,c……} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在⼤括号内表⽰集合。
{xR|x-3>2},{x|x-3>2} ②语⾔描述法:例:{不是直⾓三⾓形的三⾓形} ③Venn图:画出⼀条封闭的曲线,曲线⾥⾯表⽰集合。
4、集合的分类: (1)有限集:含有有限个元素的集合 (2)⽆限集:含有⽆限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合⾥,则元素属于集合,即:aA (2)元素不在集合⾥,则元素不属于集合,即:a¢A 注意:常⽤数集及其记法: ⾮负整数集(即⾃然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).“包含”关系(1)—⼦集 定义:如果集合A的任何⼀个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的⼦集。
高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B{x A A =∅=∅ B A ⊆ B B ⊆Bx B ∈A A = A ∅= B A ⊇ B B ⊇1()U A =∅ð2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法)含绝对值的不等式的解法 解集0)【1.2.1】函数的概念 (1)函数的概念)()()U U B A B =?)()()U U B A B =?①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值③判别式法:若函数()y f x=可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y xc y++=,则在()0a y≠时,由于,x y为实数,故必须有2()4()()0b y a yc y∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,a Ab B∈∈.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法o②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[,0)、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 作max ()f x M =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作a A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}4、集合的分类:(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合(3).空集不含任何元素的集合例:}5|xx{2-=二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B 或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A=}0x-x B={-1,1} “元素相同”|1{2=结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B任何一个集合是它本身的子集。
第一章集合与函数概念知识网络第一讲集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:三:集合的基本运算①两个集合的交集:A B = {}x x A x B ∈∈且; ②两个集合的并集: A B ={}x x A x B ∈∈或; ③设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。
难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。
1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{})(x f y x =、{})(x f y y =、{})(),(x f y y x =等的差别,如果对集合中代表元素认识不清,将导致求解错误:问题:已知集合221,1,9432x y x y M x N y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭则M N=( )A. Φ;B. {})2,0(),0,3(;C. []3,3-;D. {}3,2[正解] C ; 显然{}33≤≤-=x x M ,R N =,故]3,3[-=N M(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用V enn 图。
3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即A ⊆φ (2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若B A ⊆,C B ⊆,则C A ⊆ 4.集合的运算性质 (1)交集:①A B B A =;②A A A = ;③φφ= A ; ④A B A ⊆ ,B B A ⊆ ⑤B A A B A ⊆⇔= ; (2)并集:①A B B A =;②A A A = ;③A A =φ ; ④A B A ⊇ ,B B A ⊇ ⑤A B A B A ⊆⇔= ; (3)交、并、补集的关系 ①φ=A C A U ;U A C A U =②)()()(B C A C B A C U U U =;)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系 题型1:集合元素的基本特征[例1]定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )A .0;B .2;C .3;D .6[解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知A B *={}4,2,0,故应选择D题型2:集合间的基本关系[例2].数集{}Z n n X ∈+=,)12(π与{}Z k k Y ∈±=,)14(π之的关系是( )A .X Y ;B .Y X ;C .Y X =;D .Y X ≠[解析] 从题意看,数集X 与Y 之间必然有关系,如果A 成立,则D 就成立,这不可能; 同样,B 也不能成立;而如果D 成立,则A 、B 中必有一个成立,这也不可能,所以只能是C [新题导练]1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )A .B A ⊆ B.C B ⊆ C.C B A = D. A C B = [解析]D ;因为全集为A ,而C B =全集=A2.(2006•山东改编)定义集合运算:{}B y x xy y x B ∈∈+==⊗A,,z A 22,设集合{}1,0A =,{}3,2=B ,则集合B ⊗A 的所有元素之和为 [解析]18,根据B ⊗A 的定义,得到{}12,6,0A =⊗B ,故B ⊗A 的所有元素之和为18 3.(2007·湖北改编)设P 和Q 是两个集合,定义集合=-Q P {}Q x P x x ∉∈且,|,如果{}1log 3<=x x P ,{}1<=x x Q ,那么Q P -等于[解析] {}31<<x x ;因为{})3,0(1log3=<=x x P ,{})1,1(1-=<=x x Q ,所以)3,1(=-Q P4.研究集合{}42-==x y x A ,{}42-==x y y B ,{}4),(2-==x y y x C 之间的关系[解析] A 与C ,B 与C 都无包含关系,而BA ;因为{}42-==x y x A 表示42-=x y 的定义域,故R A =;{}42-==x y y B 表示函数42-=x y 的值域,),4[+∞-=B ;{}4),(2-==x y y x C 表示曲线42-=x y 上的点集,可见,BA ,而A与C ,B 与C 都无包含关系考点二:集合的基本运算[例3] 设集合{}0232=+-=x x x A ,{}0)5()1(222=-+++=a x a x x B(1) 若{}2=B A ,求实数a 的值;(2)若A B A = ,求实数a 的取值范围若{}2=B A ,[解题思路]对于含参数的集合的运算,首先解出不含参数的集合,然后根据已知条件求参数。
集合与函数关系集合与函数是数学中常见且重要的概念,它们在数学各个领域中发挥着重要的作用。
本文将深入探讨集合与函数之间的关系,并通过具体的例子加以说明。
一、集合的定义与性质在数学中,集合是指具有某种共同特征的事物的总体。
我们可以用大括号来表示一个集合,例如集合A={1, 2, 3, 4}。
集合可以包含有限个元素,也可以包含无限个元素。
1.1 集合的元素与子集集合中的每个事物都被称为元素,例如在集合A中,1, 2, 3, 4都是其元素。
另外,集合中的一些元素组成的集合也可以是一个集合的元素,这种集合称为子集。
1.2 交集、并集与补集当两个集合存在公共元素时,我们可以将这些公共元素组成一个新的集合,这个集合被称为两个集合的交集。
而将两个集合中的所有元素组成一个新的集合,这个集合被称为两个集合的并集。
另外,若集合A中的元素在集合B中不存在,我们可以将这些元素组成一个新的集合,这个集合被称为A相对于B的补集。
二、函数的定义与性质函数是数学中一个非常重要的概念,它描述了输入与输出之间的关系。
函数可以理解为一种映射关系,通常用f(x)或y来表示。
在函数中,x被称为自变量,y被称为因变量。
2.1 定义域和值域函数中的自变量可以取某些特定的值,这些值被称为函数的定义域。
而函数的因变量所能取到的值的集合被称为函数的值域。
2.2 单射、满射和双射函数的单射性描述了函数中的每个自变量对应着唯一的因变量,即不同的自变量对应不同的因变量。
而函数的满射性描述了函数值域中的每个值都能由定义域中的某个自变量得到。
若函数既是单射又是满射,则称其为双射。
三、集合与函数的关系集合与函数之间有着密切的关系,下面通过几个例子来具体说明。
例1:集合与函数的定义和关系设有两个集合A={1, 2, 3}和B={4, 5},函数f:A→B定义为f={(1,4),(2,4),(3,5)}。
这个函数的定义域是集合A,值域是集合B。
可以看出,函数f中的每个自变量都对应着唯一的因变量,因此该函数是单射函数。
高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【∅=∅ B A ⊆A ∅=B A ⊇2(A U =【补充知识】含绝对值的不等式与一元二次不等式的解法)含绝对值的不等式的解法不等式(2)一元二次不等式的解法〖1.2〗函数及其表示【(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,)()(U B A =()()()UU U A B A B =在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【(1)函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【(4)函数的奇偶性函数的 性 质定义图象判定方法yxo②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换 ②伸缩变换 ③对称变换 (2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。