八年级数学整式的乘法3(2019年8月整理)
- 格式:ppt
- 大小:251.50 KB
- 文档页数:11
一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
文章标题:深度剖析八年级上册数学整式的乘除知识点在八年级上册的数学课程中,整式的乘除是一个重要的知识点。
通过学习整式的乘除,我们可以更好地理解代数表达式的变化规律,掌握数学运算的技巧和方法,为进一步学习代数知识打下坚实的基础。
本文将深度剖析八年级上册数学整式的乘除知识点,帮助读者全面、深刻地理解这一重要内容。
1. 整式的乘法整式的乘法是整式运算中的基本内容之一。
在整式的乘法中,我们需要掌握多项式之间的乘法规律和技巧。
我们需要了解乘法分配律的应用,即将一个多项式的每一项与另一个多项式的每一项分别相乘,并将结果相加得到最终的乘积。
我们需要熟练掌握多项式中的同类项的合并和系数的运算。
我们还需要注意乘法中的特殊情况,如平方公式的运用和多项式的高次项乘法。
2. 整式的除法整式的除法是整式运算中的另一个重要内容。
在整式的除法中,我们需要掌握多项式之间的除法规律和方法。
我们需要了解除法的基本步骤,即先将被除式与除数进行逐项相除,然后合并同类项得到商,最后再进行余数的判断和处理。
我们需要注意整式除法中的特殊情况,如整式除不尽时的余数处理和除式中的零系数问题。
总结回顾通过对整式的乘除知识点的深度剖析,我们不仅掌握了整式的乘法和除法的基本规律和方法,还能够灵活运用和应用这些知识解决实际问题。
整式的乘法和除法在数学中具有重要的地位,它不仅是代数表达式的基本运算,还是后续学习中多项式、因式分解等内容的重要基础。
我们应该认真学习整式的乘除知识点,深入理解其中的原理和技巧,为今后的学习打下坚实的基础。
个人观点在学习整式的乘除知识点时,我认为重点在于深入理解其运算规律和方法,而不仅仅是死记硬背。
通过多做习题和实际应用,我相信我能更好地掌握整式的乘除知识点,并能够灵活运用于解决实际问题中。
在本文中,我们深度剖析了八年级上册数学整式的乘除知识点,侧重从简到繁、由浅入深地探讨了整式的乘法和除法。
通过本文的阐述,相信读者对整式的乘除知识点有了更全面、深刻的理解。
第十四章 整式的乘法与因式分解14.1 整式的乘法一、同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】1.同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).2.同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数). 二、幂的乘方1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. 2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】1.幂的乘方的法则可推广为[()]m n p mnpa a =(m ,n ,p 都是正整数).2.幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数). 三、积的乘方1.积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3.2.积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn ab ab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()nn nab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘. 四、单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.1.只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. 3.单项式乘单项式的结果仍然是单项式.【注意】1.积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算. 五、单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】1.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.2.计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. 3.对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果. 六、多项式与多项式相乘1.法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.2.多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc . 【注意】1.运用多项式乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 七、同底数幂的除法 同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】1.同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). 2.同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ). 八、零指数幂的性质 零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】1.底数a 不等于0,若a =0,则零的零次幂没有意义. 2.底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. 3.a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0. 九、单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性. 十、多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】1.多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.2.多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项. 3.多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.一、相加 二、相乘 三、乘方四、相乘五、相加六、相加七、相减八、1九、相除十、相加1.同底数幂的乘法(1)同底数幂的乘法法则只有在底数相同时才能使用. (2)单个字母或数字可以看成指数为1的幂.(3)底数不一定只是一个数或一个字母,也可以是单项式或多项式.计算m 2·m 6的结果是A .m 12B .2m 8C .2m 12D .m 8【答案】D【解析】m 2·m 6=m 2+6=m 8,故选D .计算-(a -b )3(b -a )2的结果为A .-(b -a )5B .-(b +a )5C .(a -b )5D .(b -a)5【答案】D【解析】-(a-b )3(b -a )2=(b -a )3(b -a )2=(b -a )5,故选D .2.幂的乘方与积的乘方(1)每个因式都要乘方,不能漏掉任何一个因式.(2)要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.计算24()a 的结果是A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D .下列等式错误的是A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D【解析】A .(2mn )2=4m 2n 2,该选项正确; B .(-2mn )2=4m 2n 2,该选项正确; C .(2m 2n 2)3=8m 6n 6,该选项正确;D .(-2m 2n 2)3=-8m 6n 6,该选项错误.故选D .3.整式的乘法(1)单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.(2)单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.计算:3x 2·5x 3的结果为A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D .下列各式计算正确的是A .2x (3x -2)=5x 2-4xB .(2y +3x )(3x -2y )=9x 2-4y 2C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误; B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确; C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .4.同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.计算2x 2÷x 3的结果是 A .xB .2xC .x -1D .2x -1【答案】D【解析】因为2x 2÷x 3=2x -1,故选D .计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A .计算:22(1510)(5)x y xy xy --÷-的结果是A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy xyx y x y ------÷-=+=+.故选B .5.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.1.计算3(2)a -的结果是 A .38a -B .36a -C .36aD .38a2.下列计算正确的是 A .77x x x ÷=B .224(3)9x x -=-C .3362x x x ⋅=D .326()x x =3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n ·(-9)·3n +2的结果是 A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算223(2)(3)m m m m -⋅-⋅+的结果是 A .8m 5B .–8m 5C .8m 6D .–4m 4+12m 57.若32144m nx y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.3119(1.210)(2.510)(410)⨯⨯⨯=__________. 11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________.12.若1221253()()m n n m a b a b a b ++-= ,则m +n 的值为__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--. (3)(21x 4y 3–35x 3y 2+7x 2y 2)÷(–7x 2y ).14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.“三角”表示3xyz ,“方框”表示-4a b d c .求×的值.16.下列运算正确的是A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a =17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2019•镇江)下列计算正确的是A .236a a a ⋅=B .734a a a ÷=C .358()a a =D .22()ab ab =23.(2019•泸州)计算233a a ⋅的结果是A .54aB .64aC .53aD .63a24.(2019•柳州)计算:2(1)x x -=A .31x -B .3x x -C .3x x +D .2x x -25.(2019•天津)计算5x x ⋅的结果等于__________. 26.(2019•绥化)计算:324()m m -÷=__________. 27.(2019•乐山)若392m n ==,则23m n +=__________. 28.(2019•武汉)计算:2324(2)x x x -⋅. 29.(2019•南京)计算:22()()x y x xy y +-+.1.【答案】A【解析】33(2)8a a -=-,故选A . 2.【答案】D【解析】A 、76x x x ÷=,故此选项错误; B 、224(3)9x x =-,故此选项错误; C 、336x x x ⋅=,故此选项错误; D 、326()x x =,故此选项正确, 故选D . 3.【答案】A【解析】已知等式整理得:x 2-4x -12=x 2+px +q ,可得p =-4,q =-12,故选A .4.【答案】D【解析】∵x +y -3=0,∴x +y =3,∴2y ·2x =2x +y =23=8.故选D .5.【答案】C【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】A【解析】原式=4m 2·2m 3=8m 5,故选A .7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】241.210⨯【解析】原式=1.2×103×(2.5×1011)×(4×109)=12×1023=1.2×1024.故答案为:1.2×1024. 11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】2【解析】(a m +1b n +2)(a 2n –1b 2m )=a m +1+2n –1·b n +2+2m =a m +2n ·b n +2m +2=a 5b 3, ∴25223m n n m +=++=⎧⎨⎩, 两式相加,得3m +3n =6,解得m +n =2,故答案为:2.13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a=6a 3-35a 2+13a .(3)原式=21x 4y 3÷(–7x 2y )–35x 3y ÷(–7x 2y )+7x 2y 2÷(–7x 2y )=–3x 2y 2+5xy –y .14.【解析】(1)原式=x 2-x +2x 2+2x -6x 2+17x -5=(x 2+2x 2-6x 2)+(-x +2x +17x )-5=-3x 2+18x -5.当x =2时,原式=19.(2)原式=-m 2·m 4·(-m 3)=m 2·m 4·m 3=m 9.当m =-2时,则原式=(-2)9=-512.15.【解析】由题意得×=(3mn ·3)×(–4n 2m 5) =[]526333(4)()()36m m n n m n ⨯⨯-⋅⋅⋅=-.16.【答案】C【解析】A 、2326a a a ⨯=,故本选项错误;B 、844a a a ÷=,故本选项错误;C 、()3133a a --=-,正确;D 、32611()39a a =,故本选项错误, 故选C .17.【答案】A【解析】因为5642333352363341312(3)222a b c a b c a b c ab c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40.19.【答案】15- 【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.20.【解析】因为2x =3,所以2y =6=2×3=2×2x =2x +1, 2z =12=2×6=2×2y =2y +1.所以y =x +1,z =y +1.两式相减,得y -z =x -y ,所以x +z =2y .21.【解析】(1)由题意得:(2x -a )(3x +b )=6x 2+(2b -3a )x -ab ,(2x +a )(x +b )=2x 2+(a +2b )x +ab , 所以2b -3a =11①,a +2b =-9②,由②得2b =-9-a ,代入①得-9-a -3a =11,所以a =-5,2b =-4,b =-2.(2)由(1)得(2x +a )(3x +b )=(2x -5)(3x -2)=6x 2-19x +10.22.【答案】B【解析】A 、a 2·a 3=a 5,故此选项错误;B 、a 7÷a 3=a 4,正确;C 、(a 3)5=a 15,故此选项错误;D 、(ab )2=a 2b 2,故此选项错误,故选B .23.【答案】C【解析】23533a a a ⋅=,故选C .24.【答案】B【解析】23(1)x x x x -=-,故选B .25.【答案】6x【解析】56⋅=x x x ,故答案为:6x .26.【答案】2m【解析】原式64642m m m m ÷-===,故答案为:m 2.27.【答案】4【解析】∵23=9=32=m n n ,∴2233339224+=⨯=⨯=⨯=m n m n m n ,故答案为:4.28.【解析】2324(2)x x x -⋅=668x x -67x =.29.【解析】22()()x y x xy y +-+322223x x y xy x y xy y =-++-+ 33x y =+.。
第十四章 整式的乘法与因式分解第19讲 整式的乘除知识导航1.幂的运算:同底数幂的乘法,幂的乘方,积的乘方;2.整式的乘法:单项式乘单项式,单项式乘多项式,多项式乘多项式;3.整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式【板块一】幂的运算运算法则:(1)同底数幂相乘:同底数幂相乘,底数不变,指数相加,用式子表示为:m n m n a a a +⋅=(m ,n 都是正整数).(2)幂的乘方:幂的乘方,底数不变,指数相乘,用式子表示为:()n m mn a a =(m ,n 都是正整数).(3)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,用式子表示为:()n n n ab a b =(n 都是正整数).(4)同底数幂相除:同底数的幂相除,底数不变,指数相减,用式子表示为:m n m n a a a -÷=(m >n )(5)规定:01a =(a ≠0),零的零次幂无意义.(6)负整数幂的运算法则:1n na a -=(n 是正整数,a ≠0).方法技巧:1.从已知出发,构造出结果所需要的式子;2.从结果出发,构造符合已知条件的式子.题型一 基本计算【例1】计算:(1)()()32x x -⋅-;(2)()()2332a a -⋅-;(3)()22248x yy ÷; (4)323221334a b ab ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭.【例2】计算:()()()2014201420150.12524-⨯-⨯-.题型二 逆向运用幂运算 【例3】(1)已知2228162x x ⋅⋅=,求x 的值;(2)已知4a y =,16b y =,求22a b y +的值.题型三 灵活进行公式变形【例4】已知:5210a b ==,求11a b+的值.题型四 比较大小【例5】已知552a =,334b =,225c =,试比较a ,b ,c 的大小.针对练习11.计算:(1)3224a a a a a ⋅⋅+⋅;(2)()57x x -⋅;(3)()()57x y x y +⋅--;(4)()()2332y y ⋅.2.计算:(1)6660.12524⨯⨯;(2)599329961255⎛⎫⨯ ⎪⎝⎭;(3)()()2018201720172 1.513⎛⎫⨯⨯- ⎪⎝⎭;(4)4322023452%3%4%5%103456⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-⨯⨯-⨯⨯-⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.3.(1)若()3915n m a b ba b =,求m ,n 的值;(2)已知27a =,86b =,求()322a b +的值;(3)若a +3b -2=0,求327a b ⋅的值;(4)已知:21233324m m ++=,求m 的值;(5)已知124x y +=,1273x -=,求x -y 的值;(6)已知129372n n +-=,求n 的值.4.已知252000x =,802000y =,求11x y+的值.5.已知k >x >y >z ,且16522228k x y z +++=,k ,x ,y ,z 是整数,求k 的值.6.是否存在整数a ,b ,c 使9101628915a b c⎛⎫⎛⎫⎛⎫⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭?若存在,求出a ,b ,c 的值;若不存在,说明理由.7.比较653,524,396,2615四个数的大小.8.你能比较两个数20122011和20112012的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n +n 的大小(n 是自然数),然后,我们分析1n =,2n =,3n =,⋯中发现规律,经过归纳,猜想得出结论.(1)通过计算,比较下列各组中两个数的大小(在空格内填写“>”、“ =”、“<”号)①21 12;②32 23;③43 34;④54 45;⑤65 56….(2)从第(1)题的结果经过归纳,可猜想出1n n +与(1)n n +的大小关系是 .(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小20122011,20112012.9.(1)已知()432a =,()342b =,()423c =,()234d =,()324e =,比较a ,b ,c ,d ,e 的大小关系;(2)已知:220002001200220012002200120022001200220012002a =+⨯+⨯++⨯+⨯,20022002b =,试比较a 与b 的大小.【板块二】整式的乘法方法技巧:(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a +b +c 为单项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++.题型一 基本计算【例6】计算:(1)()()23234x y x y -⋅= ;(2)()()223234x y x y -⋅= ; (3)()254342x x y xy -⋅-= ;(4)()()22323253a b ab a b ⋅-+= ;(5)()()322a b x y +-= ;(6)()()332a b a b +-= .题型二 混合运算 【例7】计算:()()()()242422325235333x x x x x x +++-+++.题型三 展开后不含某项【例8】若()()2283x ax x x b ++-+的乘积中不含x 2项和x 3项,则a = ,b = .题型四 比较对应项的系数求值【例9】已知()()2226x my x ny x xy y ++=+-,求()m n mn +的值.【板块二】整式的乘法方法技巧(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为: m (a+b+c) =ma+mb+mc,其中m为单项式,a+b+c为多项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:(m+n)( a+b) =ma+mb+na+nb.题型一基本计算【例6】计算:(1)(-3x2y)·(4x3y2)=__________;(2)(-3x2y) 2·(4x3y2)=__________;(3)-3x2·(4x5y-2xy4)=__________;(4)(2a2b3)·(-5ab2+3a3b)=__________;(5)(3a+2b)·(2x-y)=__________;(6)(3a+b)·(3a-2b)=__________;题型二混合运算【例7】计算:(3x2+2)( 5x4+2x2+3)-(5x4+x2+3)( 3x2+3)题型三展开后不含某项【例8】若(x2+ax+8)( x2-3x+b)的乘积中不含x2和x3项,则a=__________,b=__________.题型四比较对应项的系数求值【例9】已知(x+my)( x-ny)=x2+2xy-6y2,求(m+n) mn的值题型五巧设特殊值【例10】设()5=a5x5+a4x4+a3x3+a2x2+a 1x+a0(1)a1+a2+a3+a4+a5+a0的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值;针对练习21.计算:(1)(x+2y)(4a+3b)=__________;(2)(3x-y)( x+2y)=__________;(3)(x+3)( x-4)=__________;(4)(43a2b-83a3b2+1)×(-0.25ab)=__________;(5)3a b2 [(-ab) 2-2b2 (a2-23a3b)]=__________;(6)(5x3+2x-x2-3)(2-x+4x2)=__________;2.计算:(1)(x2-2x+3)(x-1)( x+1);(2)[(12x-y)2+(12x+y)2] (12x2-2y2);(3)(-x3+2x2-5)(2x2-3x+1);(4)(x+y)( x2-xy+y2);(5)(x-y)( x2+xy+y2);(6)(-2x-y)(4x2-2xy+y2).3.(1)多项式x2+ax+2和x2+2x-b的积中没有x2和x3两项,求a,b的值;(2)若(1+x)(2x2+ax+1)的结果中x2项的系数为-2,求a的值;(3)已知多项式3x2+ax+1与bx2+x+2的积中不含x2和x项,求系数a,b的值.4.(1)已知多项式x4+x3+x2+2=(x 2+m x+1)( x 2+n x+2),求m与n的值;(2)若不论x取何值,多项式x3-2x3-4x-1与(x+1)(x2+m x+n)都相等,求m和n的值;(3)已知(x+a y)(2 x-b y)=2x2-3xy-5y 2,则2a2b-ab2的值.5.已知ab2=6,求ab (a 2b5-ab3-b)的值.6.已知x-y=-1,xy=2,求(x-1)( y+1)的值.7.已知2 a 2+3 a-6,求3a (2a+1)-(2a+1)( 2a-1)的值.8.已知x2-8x-3=0,求(x-1)( x-3)( x-5)( x-7)的值.9.已知2 x+3x (x+1)( x+2)( x+3)的值.【板块三】整式的除法方法技巧(1)单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.(2)多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加,公式为:(3)多项式除以多项式:大除法.题型一基本计算【例11】计算:(1)(23a4b2-19a2b8)÷(-12ab3)2(2)(35a3b7-65a3b4-1.8a2b3)÷0.6ab2题型二大除法【例12】计算:(1)(x3-1)÷(x-1);(2)(3 x4-5x3+x2+2)÷(x2+3);。