信号与系统的基本概念
- 格式:ppt
- 大小:486.00 KB
- 文档页数:32
第一章信号与系统的基本概念一、信号的定义①广义地说,信号就是随时间和空间变化的某种物理量或物理现象.②在通信工程中,一般将语言、文字、图像、数据等统称为消息,在消息中包含着一定的信息③信号是消息的载体,是消息的表现形式,是通信的客观对象,而消息则是信号的内容④应当注意,信号与函数在概念的内涵与外延上是有区别的。
信号一般是时间变量t的函数,但函数并不一定都是信号,信号是实际的物理量或物理现象,而函数则可能只是一种抽象的数学定义。
二、信号的分类(1) 确定信号与随机信号。
按信号随时间变化的规律来分,信号可分为确定信号与随机信号。
实际传输的信号几乎都是随机信号。
因为若传输的是确定信号,则对接收者来说,就不可能由它得知任何新的信息,从而失去了传送消息的本意。
但是,在一定条件下,随机信号也会表现出某种确定性,例如在一个较长的时间内随时间变化的规律比较确定,即可近似地看成是确定信号。
随机信号是统计无线电理论研究的对象。
本书中只研究确定信号。
(2)连续时间信号与离散时间信号。
按自变量t取值的连续与否来分,信号有连续时间信号与离散时间信号之分,分别简称为连续信号与离散信号。
(3)周期信号与非周期信号。
设信号f(t),t∈R,若存在一个常数T,使得f(t-nT)=f(t) n∈Z (1-1)则称f(t)是以T为周期的周期信号。
从此定义看出,周期信号有三个特点:1) 周期信号必须在时间上是无始无终的,即自变量时间t的定义域为t∈R。
2) 随时间变化的规律必须具有周期性,其周期为T。
3) 在各周期内信号的波形完全一样。
(4) 正弦信号与非正弦信号。
(5) 功率信号与能量信号。
三、信号的相关名词1. 有时限信号与无时限信号若在有限时间区间(t1<t<t2)内信号f(t)存在,而在此时间区间以外,信号f(t)=0,则此信号即为有时限信号,简称时限信号,否则即为无时限信号。
2. 有始信号与有终信号设t1为实常数。
若t<t1时f(t)=0, t>t1时f(t)≠0,则f(t)即为有始信号,其起始时刻为t1。
信号与系统考研笔记一、信号与系统的基本概念1.信号的定义和分类:信号可以分为确定性信号和随机信号,周期信号和非周期信号,连续时间信号和离散时间信号等。
2.系统的定义和分类:系统可以分为线性系统和非线性系统,时不变系统和时变系统,连续时间和离散时间系统等。
3.信号的基本运算:包括信号的加法、减法、乘法、除法等基本运算。
4.系统的基本运算:包括系统的串联、并联、反馈等基本运算。
二、傅里叶变换1.傅里叶级数和傅里叶变换的定义:傅里叶级数用于表示周期信号,而傅里叶变换则用于表示非周期信号。
2.傅里叶变换的性质:包括对称性、线性(叠加性)、奇偶虚实性、尺度变换特性、时移特性、频移特性、微分特性、积分特性、卷积特性、相关与自相关特性等。
3.傅里叶变换的应用:包括频域分析、系统响应分析、滤波器设计等。
三、拉普拉斯变换和Z变换1.拉普拉斯变换的定义和性质:拉普拉斯变换是用来分析具有无穷大的时间域信号的一种方法。
2.Z变换的定义和性质:Z变换是用来分析离散时间信号的一种方法。
3.拉普拉斯变换和Z变换的应用:包括系统响应分析、控制系统设计等。
四、线性时不变系统1.LTI系统的定义和性质:LTI系统是指具有线性特性和时不变特性的系统。
2.LTI系统的分析和设计:包括系统的频率响应分析、系统稳定性分析、系统均衡和滤波等。
3.LTI系统的状态空间表示:包括状态空间模型的建立、系统的稳定性和可控性分析等。
五、采样定理和离散傅里叶变换1.采样定理的理解和应用:采样定理规定了采样频率和信号带宽之间的关系,对于连续时间信号的离散化采样具有重要意义。
2.DFT的理解和应用:DFT是离散时间信号的一种基本运算,可以用于信号的分析和处理。
3.快速傅里叶变换(FFT)的理解和应用:FFT是一种高效计算DFT的算法,可以大大提高信号处理的速度和效率。
六、信号与系统的应用和实践1.数字信号处理的应用和实践:包括数字滤波器设计、数字波形合成、数字音频处理等。
信号与系统基本概念
信号与系统是信号处理领域的基本概念。
信号指的是随时间变化的物理量或信息,可以是连续的或离散的。
系统是对信号进行处理、传输或变换的过程或装置。
信号可以分为连续信号和离散信号。
连续信号是随时间连续变化的信号,可用连续函数表示。
离散信号是在一些特定时刻取值的信号,可用数列表示。
系统可以分为线性系统和非线性系统。
线性系统满足叠加性质,即输入信号的线性组合对应于输出信号的线性组合。
非线性系统则不满足这一性质。
信号与系统的关系可以用系统的输入和输出表示。
输入信号经系统处理后,得到输出信号。
信号可以通过系统进行传输、处理或变换。
常见的系统包括滤波器、放大器、变换器等。
信号与系统在通信、图像处理、音频处理等领域有广泛应用。
通过对信号和系统进行研究,可以实现信号的提取、增强、压缩等操作,从而得到想要的结果。
信号与系统---基本概念⼀、系统理论概念1、信号:信号是信息和能量的载体。
2、系统:系统⽤来对信号并因此也对信息和能量进⾏处理;3、信息:信息是⼀种知识内容,这种知识的物理体现(知识表现)就是信号;4、抽象的系统:为了进⾏系统研究,需要使⽤⼀个数学模型。
已经表明,在采⽤抽象的数学公式进⾏描述时,许多表⾯上不同的系统都表现为相同的形式。
系统理论的巨⼤优势就在于这种数学上的抽象概括。
因此不同专业领域的⼈就可以说同⼀种语⾔,并且能够共同地处理⼀项任务。
由于这个原因,系统理论具有了中⼼的地位。
抽象理论的另⼀个优点是,对系统进⾏描述,与系统的实际实现⽆关。
系统理论是⼀个思想流派,它允许:进⾏更⼴义的思考;把外来的解决⽅案应⽤到其他问题上。
5、数学模型:⼀个真实系统的数学模型是⼀组数学⽅程。
为了能够脱离物理意义⽽⼯作,常常是采⽤定标的,⽆量纲形式对信号进⾏记录的。
为了使数学上的⼯作量保持在可控的范围内,在模型中只对实际系统中需要关注的主要部分进⾏映像变换。
因此简单化的模型不再与实际样本相符。
但是,只要模型能够为真实系统的特征提供有⽤的解释和预测,这样的由于简化⽽带来的不符合也就⽆关紧要了。
否则就必须使模型得到逐步完善。
从原则上讲,⼀个模型应当尽可能简单,⽽且只要在必要时才是复杂的。
在应⽤⽅⾯,最为困难的部分是建模。
⾄于⼀个模型是否能够精确地解决⼀个具体课题,就只能通过经验回答这个问题了。
可以通过仿真对模型的特征与实际系统的特征进⾏⽐较。
但是为此需要对各种物理关系有深⼊的认识。
系统理论做为纯粹的数学学科不能对这种物理诠释提供⽀持。
因此,系统理论也只不过是⼀种⼯具(尽管是⼀种引⼈⼊胜的强⼤⼯具)⽽已,绝不可能使使⽤者摒弃其原专业领域坚实的专业知识。
系统理论在电⽓技术⽅⾯的主要应⽤领域是通信技术、调节技术和测量技术。
这些专业的典型特征是抽象并侧重理论,⽽且理论具有通⽤性。
对于应⽤⽽⾔,除了理论以外,在理论应⽤过程中所获得经验也是必要的。
第一章信号与系统的基本概念§1.1 绪言信号与系统是一门重要的专业基础课。
是许多专业(通信、信息处理、自动化、计算机、系统工程)的必修课。
重要性体现在两个方面:一是我们将来从事专业技术工作的重要理论基础;二是上述各类专业硕士研究生入学考试课程。
在教学计划中起着承前启后的作用,前期课程是高数、微分方程、差分方程、工程数学中的积分变换(傅立叶变换和拉普拉斯变换),还有电路分析基础;而其本身是后续专业课(通信原理、数字信号处理)的基础。
信号研究的主要内容:顾名思义系统合成:信号一个典型的电系统—通信系统信息源转换电信号电信号还原受信者(声音、文字、图象)/响应通信系统○1系统:控制系统抽象为理想化的模型,讨论激励与响应的关系经济系统○2信号:时间的函数f(t),一维函数,确定信号* 信号与系统的关系:互相依存信号是运载消息的工具,要很好的利用信号,需经过系统的传输、处理.系统则是为传输信号或对信号进行处理而由元器件构成的某种组合。
离开了信号,系统就失去了意义.§1.2 信号一.定义:信号是带有信息的(如声音、图象等)随时间(或空间)变化的物理量。
本课程主要研究电信号(电流、电压)。
二.信号的分类:从不同的角度1 从函数的定义域(时间)是否连续:○1连续时间信号:在连续的时间范围内有定义。
t是连续的,f (t)可是,也可不是表达方式时间的函数(解析式),如f(t)=Asinπt波形图表示:上述两种表达方式,可以互换。
信号和函数两个词可互相通用○2离散时间信号:在一些离散的瞬间才有定义。
t=kT点上有定义,其余无定义序列f (k )=2k ,k ≥0 表达方式 图形表示:序列值f (k )={0、1、2、4、8、……}2 从信号的重复性:○1 周期信号:定义在(-∞,+∞)区间,每隔一定时间T 重复变化连续f (t )=f (t+mT )离散f (k )=f (k+mK ) K 为整数 ○2 非周期信号:不具有周期性的信号 例:正弦序列f (k )=sink β β为角频率,反映周期性重复的速率, 决定序列是否具有周期性按定义:sink β=sin(β·k+m ·2π) β=6π时,βπ2 =12,为整数,是周期序列,k =12β=318π时,βπ2=431,为有理数,是周期序列,k =31β=21时,βπ2 =4π,为无理数,是非周期序列tf (kt )−−→−简化f (k ) 0 T 2T 3T间隔相等 kT3 实信号:物理可实现的复信号:实际上不能产生,但理论分析重要——复指数信号 表达式:f (t )=e st ,-∞<t <+∞, δ= σ+j ω f (t )=e (σ+j ω)t =e σ t ·e j ωt = e σ t cos ωt+j e σ t sin ωt σ>0,增幅振荡 σ<0,衰减振荡 σ=0,等幅振荡当ω=0,f (t )= e σt 为实指数信号当σ=ω=0,f (t )=1,为直流信号 重要特性:对时间的微分和积分仍然是复指数信号。