数字时钟设计
- 格式:pptx
- 大小:337.24 KB
- 文档页数:36
数电设计数字钟基于Q U A R T U SHEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】大连理工大学本科实验报告题目:数电课设——多功能数字钟课程名称:数字电路课程设计学院(系):电信学部专业:电子与通信工程班级:学生姓名: ***************学号:***************完成日期:成绩:2010 年 12 月 17 日题目:多功能数字时钟一.设计要求1)具有‘时’、‘分’、‘秒’的十进制数字显示(小时从00~23)2)具有手动校时校分功能3)具有整点报时功能,从59分50秒起,每隔2秒钟提示一次4)具有秒表显示、计时功能(精确至百分之一秒),可一键清零5)具有手动定时,及闹钟功能,LED灯持续提醒一分钟6)具有倒计时功能,可手动设定倒计时范围,倒计时停止时有灯光提示,可一键清零二.设计分析及系统方案设计1. 数字钟的基本功能部分,包括时、分、秒的显示,手动调时,以及整点报时部分。
基本模块是由振荡器、分频器、计数器、译码器、显示器等几部分组成。
利用DE2硬件中提供的50MHZ晶振,经过分频得到周期为1s的时钟脉冲。
将该信号送入计数器进行计算,并把累加结果以“时”“分”“秒”的形式通过译码器由数码管显示出来。
进入手动调时功能时,通过按键改变控制计数器的时钟周期,使用的时钟脉冲进行调时计数(KEY1调秒,LOAD2调分,LOAD3调时),并通过译码器由七位数码从59分50秒开始,数字钟进入整点报时功能。
每隔两秒提示一次。
(本设计中以两个LED灯代替蜂鸣器,进行报时)2. 多功能数字钟的秒表功能部分,计时范围从00分秒至59分秒。
可由输入信号(RST1)异步清零,并由按键(EN1)控制计时开始与停止。
将DE2硬件中的50MHZ晶振经过分频获得周期为秒的时钟脉冲,将信号送入计数器进行计算,并把累计结果通过译码器由七位数码管显示。
数字时钟的毕业设计目录摘要 (Ⅰ)ABSTRACT (Ⅱ)第1章绪论.......................................... 错误!未定义书签。
11.1数字时钟的背景和意义 (1)1.2数字时钟设计思路 (1)1.3数字时钟的主要容 (1)第2章数字时钟模块设计 (2)2.1数字时钟秒脉冲信号的设计 (2)2.1.1 秒时钟信号发生器的设计 (2)2.1.2 秒时钟电路的设计 (3)2.1.3 分时钟电路的设计 (4)2.2 二十四进制计数器设计 (4)第3章校时电路......................................... 错误!未定义书签。
第4章整点报时电路..................................... 错误!未定义书签。
第5章闹钟电路........................................ 错误!未定义书签。
结论................................................ 错误!未定义书签。
致谢................................................ 错误!未定义书签。
参考文献................................................ 错误!未定义书签。
绪论数字钟是一种用数字电路技术实现时、分、秒计时的装置,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播。
而且与传统的机械钟相比,它具有走时准确、显示直观、无机械传动、无需人的经常调整等优点。
数字钟的设计涉及到模拟电子与数字电子技术,其中绝大部分是数字部分、逻辑门电路、数字逻辑表达式、计算真值表与逻辑函数间的关系、编码器、译码器显示等基本原理。
报时数字钟的设计
报时数字钟的设计主要包括以下几个方面:
1.数字显示屏:数字显示屏是报时数字钟的核心部分,可以采用LED、LCD或OLED等技术实现。
数字显示屏通常显示小时数、分钟数和秒数,以及AM/PM等标识符号。
2.时钟芯片:时钟芯片是报时数字钟的控制中心,它可以精确地显示时间,还可以控制报时功能的开关。
时钟芯片的选择应该考虑稳定性、精准度以及易用性等方面。
3.报时功能:报时数字钟的报时功能可以采用语音、铃声或震动等方式实现,一般可以设置相应的时间间隔和报时内容。
4.电源系统:报时数字钟的电源系统一般采用电池或AC电源供电,电池通常是干电池或锂电池,AC电源则需要内置电源适配器,能够适时切换电压。
5.外壳设计:外壳设计应该考虑美观性、实用性以及易于维护等要素,同时还需要考虑灯光亮度、屏幕大小、按钮设置、调整音量等方面。
VHDL数字时钟设计序⾔这个是我在做FPGA界的HelloWorld——数字钟设计时随⼿写下的,再现了数字钟设计的过程⽬标分析1. 时钟具有时分秒的显⽰,需6个数码管。
为了减⼩功耗采⽤扫描法显⽰2. 按键设置时间,需要对按键进⾏消抖3. 时分秒即为2个60进制计数器,⼀个24进制计数器。
模块设计综上所述,我采⽤模块化设计⽅法进⾏设计,绘制框图如下。
1. 时钟分频产⽣各个模块所需频率时钟。
2. 按键处理模块对按键信号进⾏消抖、变长脉冲为短脉冲等处理。
3. 时间控制模块产⽣时间信号或对时间进⾏设置。
4. 数码管驱动模块负责对时间信号BCD码译码为数码管的段码并且扫描输出到数码管。
下⾯对各个模块分别详细叙述时钟分频模块我打算把时钟分频模块做成“数控N分频器”,通过给分频器传⼊数值N来对时钟信号进⾏N分频。
得到的信号频率为原时钟信号的频率/N,占空⽐为1/N。
稍微考虑下其他模块所需时钟:按键处理模块100Hz ,时间控制模块1Hz,数码管驱动50Hz。
⽽输⼊时钟为33.8688MHz。
我不想传⼊的N数值过⼤,我打算先对时钟进⾏两次:第⼀次调⽤时钟分频模块得到1Mhz,第⼆次得到1Khz。
这样N的位数为10可以满⾜需求。
代码如下library IEEE;use IEEE.STD_LOGIC_1164.all;use IEEE.STD_LOGIC_UNSIGNED.all;entity ClkDiv isport(clk_i:IN STD_LOGIC;N_i: IN STD_LOGIC_VECTOR(9 DOWNTO 0);clk_o:OUT STD_LOGIC);end ClkDiv;architecture behavior of ClkDiv issignal count:STD_LOGIC_VECTOR(9 DOWNTO 0):="0000000001";signal clk_temp:STD_LOGIC:='0';beginprocess(clk_i)beginif(clk_i'EVENT and clk_i='1')thenif (count=N_i)thencount<="0000000001";clk_temp<='1';elsecount<=count+1;clk_temp<='0';end if;end if;end process;clk_o<=clk_temp;end behavior;仿真结果如下:2分频:输出信号为f/2Hz,占空⽐1:23分频:输出信号为f/3Hz,占空⽐1:3按键处理模块去抖动根据以往的经验,按键按下弹起电平会有⼀⼩段⽑刺,可能会引起电路误操作,所以要对按键进⾏消抖处理使变为⼲净的矩形信号。
数字时钟各单元电路的设计方案及原理说明数字时钟是现代生活中常见的时间显示工具,它通过使用数字来表示小时和分钟。
而数字时钟的核心组成部分则是由各个数字显示单元电路组成的。
在本文中,我将为您介绍数字时钟各单元电路的设计方案及原理说明,希望能帮助您更深入地了解数字时钟的工作原理。
我们需要了解数字时钟的基本原理。
数字时钟使用了七段显示器来显示数字,每个数字由七个LED(Light Emitting Diode)组成,分别表示了该数字的不同线条。
为了控制七段显示器显示特定的数字,我们需要设计相应的驱动电路。
1. 数字时钟的驱动电路设计方案a. 时钟信号生成器:数字时钟需要一个稳定的时钟信号来驱动各个单元电路,通常使用晶振电路来生成精确的时钟信号。
b. 时分秒计数器:用于计数时间,并将计数结果转化为可以驱动七段显示器的信号。
时分秒计数器可以使用计数逻辑电路来实现,其中包括触发器和计数器芯片等。
c. 译码器:译码器用于将计数器输出的二进制数据转换为可以驱动七段显示器的控制信号。
根据不同的数字,译码器会选通对应的七段LED。
2. 数字时钟的各单元电路原理说明a. 时钟信号生成器的原理:晶振电路通过将晶振与逻辑电路相连,通过振荡来生成稳定的时钟信号。
晶振的振荡频率决定了时钟的精确度,一般使用32.768kHz的晶振来实现。
b. 时分秒计数器的原理:时分秒计数器使用触发器和计数器芯片来实现,触发器可以保存二进制的计数值,并在时钟信号的作用下进行状态切换。
计数器芯片可以根据触发器的状态进行计数和重置操作。
c. 译码器的原理:译码器根据计数器输出的二进制数据选择对应的七段LED。
七段LED通过加电来显示数字的不同线条,然后通过译码器的工作,将二进制数据转换为驱动七段LED的信号。
通过以上的设计方案和原理说明,我们可以更好地理解数字时钟各单元电路的工作原理。
数字时钟通过时钟信号生成器来提供稳定的时钟信号,时分秒计数器记录并计算时间,译码器将计数结果转化为可以驱动七段显示器的信号。
目录摘要 (1)1数字钟的结构设计及方案选择 (2)1.1振荡器的选择 (2)1.2计数单元的构成及选择 (3)1.3译码显示单元的构成选择 (3)1.4校时单元电路设计及选择 (4)2 数字钟单元电路的设计 (4)2.1振荡器电路设计 (4)2.2时间计数单元设计 (4)2.2.1集成异步计数器74LS390 (5)2.2.2 用74LS390构成秒和分计数器电路 (5)2.2.3用74LS390构成时计数器电路 (6)2.2.4 时间计数单元总电路 (7)2.3译码显示单元电路设计 (7)2.4 校时单元电路设计 (7)2.5整点报时单元电路设计 (1)3 数字钟的实现电路及其工作原理 (9)4电路的搭建与调试 (10)5结束语 (10)参考文献 (11)附录1: (12)摘要数字钟被广泛用于个人家庭及公共场所,成为人们日常生活中的必需品。
诸如定时自动报警、按时自动打铃、定时广播、自动起闭路灯、定时开关烘箱、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意。
数字电子钟,从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
数字电子钟有以下几部分组成:振荡器,分频器,60进制的秒、分计时器和12进制计时计数器,秒、分、时的译码显示部分及校正电路等。
关键词:数字钟 555多谐振荡器计数器 74LS390 74LS48数字电子时钟的设计及制作1数字钟的结构设计及方案选择数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。
主要由振荡器、分频器、计数器、译码器显示器和校时电路组成。
振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,通常使用石英晶体震荡器,然后经过分频器输出标准秒脉冲,或者由555构成的多谐振荡器来直接产生1HZ的脉冲信号。
秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“12翻1”规律计数。
数字电子钟的设计数字电子钟的设计随着科技的不断发展,数字电子钟已经成为人们生活中不可或缺的一部分。
它不仅可以告诉我们时间,还可以让我们随时随地掌握时间。
本文将从数字电子钟的功能、设计要素和实现过程三个方面探讨数字电子钟的设计。
一、数字电子钟的功能数字电子钟最基本的功能是显示当前时间。
同时,数字电子钟还可以有多种附加功能,例如显示当前日期、闹钟定时、倒计时、秒表计时等等。
这些功能可以根据用户的需求进行扩展和定制。
数字电子钟还可以根据个人偏好设定显示模式。
比如,可以设定12小时还是24小时制显示,可以选择显示中文还是英文,可以选择不同的背景颜色和字体大小等等。
二、数字电子钟的设计要素数字电子钟的设计要素包括时钟芯片、数字显示器、主芯片、功率模块等多个组成部分。
下面我们来分别介绍一下。
1. 时钟芯片时钟芯片是数字电子钟的核心部件。
它可以提供高精度的时间信号,控制数字显示器显示时间。
常见的时钟芯片有DS1302和DS3231等。
其中,DS3231是一款高精度时钟芯片,可以达到非常高的精度要求。
2. 数字显示器数字显示器是数字电子钟最显著的部分。
常见的数字显示器有LED、LCD和OLED三种类型。
LED数字显示器是最常见的数字显示器,具有显著的视觉效果。
LCD数字显示器可以显示更多的信息,而且更加柔和。
OLED数字显示器颜色更加丰富,显示效果更加真实。
3. 主芯片主芯片是数字电子钟的中央处理器,负责控制各个组成部分间的通讯和协同。
常见的主芯片有STM32和ATMega328P等。
其中,STM32性能比较出色,可以满足高性能要求。
4. 功率模块数字电子钟的功率模块负责提供电源。
常见的功率模块有锂电池和AC/DC适配器两种。
锂电池电量长,使用方便,但是需要经常充电。
AC/DC适配器可以提供长期稳定的电源,但是需要连续供电。
三、数字电子钟的实现过程数字电子钟的实现过程需要进行硬件设计和软件开发两个步骤。
硬件设计包括电路设计和PCB设计两个方面。
数字电路时钟信号设计数字电路中的时钟信号是非常重要的,它用于同步和协调各个元件的操作。
正确设计时钟信号可以确保电路的稳定性和可靠性。
本文将介绍数字电路时钟信号设计的相关知识和技巧。
一、时钟的作用和原理时钟信号在数字电路中起到一个时间基准的作用,它用于定义各种操作的时序和时刻。
数字电路中的元器件根据时钟信号的边沿(上升沿或下降沿)来触发操作,保证在特定时间执行特定的功能。
时钟信号的原理可以简单地理解为一个周期性的方波信号。
它有一个稳定的频率和占空比,频率定义了时钟信号的速度,而占空比则决定了高电平和低电平的时间比例。
合适的频率和占空比确定了时钟信号的工作特性,对整个数字电路的性能至关重要。
二、时钟信号的设计要点1. 频率的选择时钟信号的频率要根据具体应用场景来确定。
一般而言,频率越高,数字电路的响应速度越快,但同时也增加了功耗和热量。
因此,在设计时钟信号时需要权衡这些因素,并选择合适的频率。
2. 占空比的控制占空比是时钟信号中高电平和低电平的时间比例。
在设计时钟信号时,需要根据具体要求来确定合适的占空比。
通常情况下,占空比为50%时最理想,因为它能够最大程度地利用时钟信号的能量并保持稳定性。
3. 时钟的稳定性时钟信号需要具有较高的稳定性,以确保数字电路的正常工作。
稳定性可以通过使用石英晶体振荡器等稳定信号源来实现。
此外,还可以采用锁相环等技术来进一步提高时钟的稳定性。
4. 时钟的延迟和抖动时钟信号在传输过程中会产生延迟和抖动。
延迟是指时钟信号从发出到被接收的时间差,而抖动是指时钟信号的电平在高低之间出现的波动。
为了减小延迟和抖动对数字电路的影响,可以采用合适的传输线路和缓冲器等技术手段。
三、时钟信号设计实例为了更好地理解时钟信号的设计,以下是一个简单的时钟信号设计实例:假设我们需要设计一个频率为1MHz的时钟信号,占空比为50%。
为了实现稳定的时钟信号,我们选择使用石英晶体振荡器作为时钟信号源,并使用锁相环技术来提高稳定性。
数字电路时钟分频设计数字电路时钟分频是现代电子设备中常见的一项技术。
通过分频电路,可以将输入时钟信号的频率减小到所需的频率,以满足特定的应用需求。
本文将介绍数字电路时钟分频的原理和设计方法。
一、分频器的原理分频器是一种常见的数字电路,它可以将输入的时钟信号分频为较小频率的信号。
常见的分频器包括二分频器、四分频器、八分频器等。
这些分频器的原理都基于时钟信号的周期性。
例如,一个二分频器可以将每个上升沿触发的时钟信号变为每两个上升沿触发一次的信号。
通过改变分频器的触发方式和逻辑门的连接方式,可以实现不同的分频比。
二、分频器的设计步骤1. 确定分频比:根据应用需求确定所需的分频比。
分频比是指输入时钟信号的频率与输出时钟信号的频率之比。
例如,如果希望将输入的1MHz时钟信号分频为100kHz,那么分频比为10。
2. 选择适当的分频器类型:根据分频比选择适当的分频器类型。
常见的分频器类型包括二分频器、四分频器、八分频器等。
选择分频器类型时,要考虑到输入时钟信号的频率范围和所需的输出频率。
3. 设计逻辑电路:根据所选的分频器类型,设计相应的逻辑电路。
逻辑电路可以使用逻辑门(如与门、或门、非门等)、触发器(如D触发器、JK触发器等)和计数器等元件来实现。
4. 连接和布线:根据逻辑电路的设计,将各个元件进行连接并进行布线。
在布线过程中,要注意避免干扰和电磁辐射等问题,确保电路的稳定性和可靠性。
5. 测试和优化:完成分频器的设计后,进行测试和优化。
通过测试,检查输出时钟信号的频率是否符合所需的分频比。
如果频率不符合要求,可以对设计进行优化或调整。
三、实例分析以一个八分频器的设计为例,假设输入时钟信号频率为20MHz,要求输出时钟信号频率为2.5MHz。
1. 确定分频比:将输入时钟信号频率除以所需的输出时钟信号频率,得到分频比为8。
2. 选择适当的分频器类型:选择八分频器作为分频器类型。
3. 设计逻辑电路:在八分频器中,可以使用三个D触发器和一个与门来实现。
数字钟原理框图
数字钟系统构成
1、数字钟的构成:振荡器、分频器、计数器、译码器、显示器等几部分
2、数字钟的时、分、秒实际上就是由一个24进制计数器(00-23),两个60进制计数器(00-59)级联构成。
设计数字钟实际上就是计数器的级联。
3、60进制计数器的设计
4、24进制计数器的设计
5、计数器的级联设计
(二)、数字钟设计要点:EWB软件本身提供任意频率的时钟,因此振荡器、分频器不需设计;
另外EWB软件也带有内置译码驱动的数码管,故此译码器和显示器也不需设计。
这样,数字钟的设计实际上就是设计如下图的计数器
EWB软件本身提供任意频率的时钟,因此振荡器、分频器不需设计;
另外EWB软件也带有内置译码驱动的数码管,故此译码器和显示器也不需设计。
这样,数字钟的设计实际上就是设计如下图的计数器.
(三)、芯片选型由于24进制、60进制计数器均由集成计数器级联构成,且都包含有基本的十进制计数器,从设计简便考虑,芯片选择同步十进制计数器74LS160。
(四)、计数器电路
计数器级联时的时钟构成方式可以采用同步时钟,也可以采用异步时钟,这里给出的参考图采用了异步时钟,详图见后页。
数字钟设计报告
《数字钟设计报告》
背景
数字钟是一种非常常见的时钟设计,它使用数字显示时间,通常是以小时和分钟的格式。
数字钟在现代生活中扮演着重要的角色,它们可以用于家庭、办公室、商店等各种场所。
设计要求
本设计报告旨在设计一款简洁大方的数字钟,满足以下设计要求:
1. 数字显示清晰,易于辨认。
2. 外观简约大方,适合不同装饰风格的环境。
3. 可靠的时间显示功能,准确显示当前时间。
4. 具备基本的设置功能,如闹钟、定时器等功能。
设计方案
为了满足设计要求,我们采用LED数字显示屏进行时间显示,LED显示屏具有清晰度高、亮度可调、耗电低的优点,非常适合数字钟设计。
外观方面,我们选择简约的方形设计,选用黑色或白色的外壳,配合仿金属的边框,既简约大方又具有现代感。
在功能方面,我们提供基本的时间设置功能,可设定闹钟和定时器,同时具备自动时间校正功能,确保时间的准确性。
设计实施
在实施过程中,我们充分利用现代的数字技术,采用高性能的芯片和电路设计,保证数字钟的稳定性和可靠性。
LED显示屏采用的是高亮度LED灯珠,确保显示效果清晰明亮。
外壳选择了优质的ABS塑料材料,既坚固耐用又轻便易携带。
在功能实施上,我们特别设计了简单易懂的操作界面,用户可以轻松完成时间设置和功能调整,符合现代用户对便捷操作的需求。
结论
通过本次设计,我们成功设计出一款符合现代生活需求的数字钟。
其采用LED显示屏和简约大方的外观设计,不仅能满足时间显示功能的需求,还能提升用户的生活品质。
我们相信这款数字钟将在市场上获得良好的反响,并为用户带来便利和舒适的使用体验。
数字电路时钟同步设计时钟同步是数字电路设计中非常重要的一项技术,它可以确保多个数字电路元件的时钟信号保持同步,以保证系统的稳定性和可靠性。
本文将介绍数字电路时钟同步的设计原理和方法。
一、引言在数字电路系统中,各个元件的时钟信号是系统运行的基础。
如果不同元件的时钟信号不同步,就会导致数据传输错误、时序问题以及系统崩溃等严重后果。
因此,时钟同步设计是数字电路设计中必不可少的一环。
二、时钟同步的设计原理时钟同步的设计原理是通过引入时钟信号的生成和分配机制,使得各个元件的时钟信号保持一致。
具体来说,可以通过以下步骤实现时钟同步的设计:1. 时钟信号的生成:可以采用晶体振荡器或者PLL锁相环等方式生成时钟信号,保证时钟信号的稳定和准确。
2. 时钟信号的分配:将生成的时钟信号分配给各个元件,使得它们使用的时钟信号保持一致。
3. 时钟信号的延迟补偿:由于数字电路中元件的传播延迟存在差异,需要对时钟信号进行合理的延迟补偿,以保证信号的同步性。
三、常用的时钟同步方法在数字电路设计中,有多种常用的时钟同步方法,下面分别进行介绍:1. 同步时钟模块:通过引入同步时钟模块,可以实现各个元件间的时钟信号同步。
该模块通过接收外部的时钟信号,并将其分发给各个元件,保证它们的时钟信号同步。
2. 延迟锁定环:延迟锁定环是一种常用的时钟同步电路,它可以保证时钟信号在各个元件之间的延迟保持一致。
它通过测量不同路径上的传播延迟,并根据测量结果进行延迟补偿,以保证时钟信号的同步性。
3. 握手协议:握手协议是一种基于通信的时钟同步方法,它通过元件之间的通信来交换时钟信息,以实现时钟信号的同步。
常见的握手协议有基于硬件的握手协议和基于软件的握手协议等。
4. 时钟域划分:时钟域划分是一种将数字电路系统划分成多个时钟域,并在时钟域之间添加时钟同步器,以保证时钟信号同步的方法。
通过合理设计时钟域划分和时钟同步器的位置,可以使得各个时钟域的时钟信号保持同步。
课程设计报告课程名称电子仿真技术课题名称数字钟设计与制作数字钟数字钟电路是一个典型的数字电路系统,其由时、分、秒计数器以及校时和显示电路组成。
下面介绍利用集成十进制递增计数器(74160)和带译码器的七段显示数码管组成的数字钟电路。
一.设计任务与要求任务:设计一个具有“时”、“分”、“秒”的十进制数字显示的计数器。
要求:1.准确计时,显示小时、分、秒,小时能以24小时或12小时计时;2.带有时间校正功能;3.采用555定时器设计时钟电路,用74系列中小规模集成器件实现。
二.方案设计与论证方案一:利用2片74LS160N和译码及其他器件构成十进制“秒”的十进制显示的计时器;根据图 8-11 所示的图案可以清楚的看到,显示“时”、“分”、“秒”须要2片中规模计数器。
其中,“分”、“秒”位计时为六十进制计数器,“时”位为二十四进制计数器。
六十进制计数器和二十四进制计数器都选用 74LS160N 集成快来实现。
实现的方法采用反馈清0法。
六十进制和二十四进制计数器如图8-23、8-24所示。
示的计时;图8-24 24进制方案三:利用一片X1(hour) 和译码器其他器件构成24小时或12小时的子电路的十进制显示的计时;图8-26 (24-12)子电路方案四:利用1片X1M和译码器其他器件构成六十进制的子电路来显示的计时;图 8-25 六十进制计数器的分-秒子电路方案五:利用1片555定时器和其他器件构成555振荡器;如图8-27,由555定时器和外接元件R 1、R 2、C 2构成多谐振荡器,电路没有稳态,仅存两个暂稳态,电路亦不需要外加触发信号,利用电源通过R 1、R 2向电容C 2充电,以及C 2通过R2向放电端DIS 放电,使电路产生振荡。
电容C2在1/3Vcc 和2/3Vcc 之间充电和放电。
输出信号时间参数是T=t w1+t w2,t w1=0.7(R 1+R 2)C 2,t w2=0.7R 2C 2。
基于单片机的数字钟设计开题报告基于单片机的数字钟设计开题报告一、研究背景与意义随着科技的不断发展,智能化与数字化已成为日常生活中不可或缺的元素。
其中,数字钟作为一种精确度高、可编程性强、易于显示的计时工具,在各种场合得到广泛应用,如家庭、办公室、交通等。
基于单片机设计的数字钟,更以其灵活的控制、低成本等优势,具有更为广阔的应用前景。
本课题旨在通过单片机技术设计一款数字钟,实现时、分、秒的准确显示,并为使用者提供定时、报时等功能。
该设计具有以下意义:1、提高单片机的应用能力,加深对单片机内部结构、工作原理的理解。
2、掌握数字钟的基本原理和实现方法,了解数字电路的设计与调试技巧。
3、拓展单片机在计时领域的应用,提高单片机系统的综合性能。
二、研究目标与内容本研究的目标是设计一款基于单片机的数字钟,实现以下功能:1、显示时、分、秒,能够准确到毫秒级别。
2、具有定时功能,能根据设定定时开关机,显示特定时间等。
3、具有报时功能,能够在整点或半点报时。
4、可通过按键进行时间设定、定时设定等操作。
研究内容主要包括以下几个方面:1、单片机选型:根据设计要求,选择合适的单片机型号,了解其性能参数、内部结构及工作原理。
2、硬件电路设计:设计数字钟的硬件电路,包括单片机最小系统、显示模块、时钟模块、按键模块等。
3、软件编程:根据设计要求,编写数字钟的软件程序,实现时、分、秒的显示,定时、报时等功能。
4、调试与优化:对设计好的数字钟进行调试与优化,确保其性能稳定,满足设计要求。
三、研究方法与步骤本研究将采用以下方法与步骤:1、文献调研:搜集与单片机、数字钟相关的文献资料,了解研究现状、技术难点及发展趋势。
2、方案设计:根据设计要求,制定详细的方案,包括硬件电路设计、软件编程方案等。
3、硬件制作:根据方案设计,制作数字钟的硬件电路板,进行元件的焊接与调试。
4、软件编写:根据方案设计,使用单片机开发环境编写软件程序。
5、系统调试:将编写好的程序下载到单片机中,进行系统调试,检查是否满足设计要求。
名目第一章绪论现代社会的标志之一确实是根基信息产品的广泛使用,而且是产品的性能越来越强,复杂程度越来越高,更新步伐越来越快。
支撑信息电子产品高速开展的根底确实是根基微电子制造工艺水平的提高和电子产品设计开发技术的开展。
前者以微细加工技术为代表,而后者的代表确实是根基电子设计自动化〔electronicdesignautomatic,EDA〕技术。
本设计采纳的VHDL是一种全方位的硬件描述语言,具有极强的描述能力,能支持系统行为级、存放器传输级和逻辑门级这三个不同层次的设计;支持结构、数据流、行为三种描述形式的混合描述,覆盖面广,抽象能力强,因此在实际应用中越来越广泛。
ASIC是专用的系统集成电路,是一种带有逻辑处理的加速处理器;而FPGA是特不的ASIC芯片,与其它的ASIC芯片相比,它具有设计开发周期短、设计制造本钞票低、开发工具先进、标准产品无需测试、质量稳定以及可实时在线检测等优点。
在操纵系统中,键盘是常用的人机交换接口,当所设置的功能键或数字键按下的时候,系统应该完成该键所对应的功能。
因此,按键信息输进是与软件结构紧密相关的过程。
依据键盘结构的不同,采纳不同的编码方法,但不管有无编码以及采纳什么样的编码,最后都要转换成为相应的键值,以实现按键功能程序的转移。
[1]钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
诸如定时自动报警、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些根基上以钟表数字化为根底的。
因此研究数字钟以及扩大其应用有着特不现实的意义。
1.1选题背景本节将从FPGA嵌进式应用开发技术与数字钟技术开展的客瞧实际动身,通过对该技术开展状况的了解及课题本身的需要,指出研究基于FPGA的芯片系统与设计——数字钟的设计与实现的必要性。
课题相关技术的开展当今电子产品正向功能多元化,体积最小化,功耗最低化的方向开展。
它与传统的电子产品在设计上的显着区不是大量使用大规模可编程逻辑器件,使产品的性能提高,体积缩小,功耗落低,同时广泛运用现代计算机技术,提高产品的自动化程度和竞争力,缩短研发周期。