非线性有限元 第2章非线性代数方程组的解法
- 格式:pdf
- 大小:350.56 KB
- 文档页数:12
一、材料非线性问题的有限单元法1.1 引言以前各章所讨论的均是线性问题。
线弹性力学基本方程的特点是1.几何方程的应变和位移的关系是线性的。
2.物性方程的应力和应变的关系是线性的。
3.建立于变形前状态的平衡方程也是线性的。
但是在很多重要的实际问题中,上述线性关系不能保持。
例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。
又如长期处于高温条件下工作的结构,将发生蠕变变形,即在载荷或应力保持不变的情况下,变形或应变仍随着时间的进展而继续增长,这也不是线弹性的物性方程所能描述的。
上述现象都属于材料非线性范畴内所要研究的问题。
工程实际中还存在另一类所谓几何非线性问题。
例如板壳的大挠度问题,材料锻压成型过程的大应变问题等,这时需要采用非线性的应变和位移关系,平衡方程也必须建立于变形后的状态以考虑变形对平衡的影响。
由于非线性问题的复杂性,利用解析方法能够得到的解答是很有限的。
随着有限单元法在线性分析中的成功应用,它在非线性分析中的应用也取得了很大的进展,已经获得了很多不同类型实际问题的求解方案。
材料非线性问题的处理相对比较简单,不需要重新列出整个问题的表达格式,只要将材料本构关系线性化,就可将线性问题的表达格式推广用于非线性分析。
一般说,通过试探和迭代的过程求解一系列线性问题,如果在最后阶段,材料的状态参数被调整得满足材料的非线性本构关系,则最终得到问题的解答。
几何非线性问题比较复杂,它涉及非线性的几何关系和依赖于变形的平衡方程等问题,因此,表达格式和线性问题相比,有很大的改变,这将在下一章专门讨论。
这两类非线性问题的有限元格式都涉及求解非线性代数方程组,所以在本章开始对非线性代数方程组的求解作—一般性的讨论。
这对下一章也是必要的准备。
正如在前面已指出的,材料非线性问题可以分为两类。
可编辑修改精选全文完整版
非线性方程组的解法
非线性方程组的解法包括:
(1)近似法。
近似法是根据所给非线性方程组,使用一定的数值方法,建立非线性方程组结果的拟合曲线,以此求解非线性方程组的常用方法,目前有贝塔、拉格朗日近似法和微分近似法等。
(2)多元分割法。
多元分割法根据非线性方程组的参数和变量空间,
将整个运算范围分割成多余小区间,利用各区间中只含有一个未知变
量的简单方程组,将非线性方程组转换成多个一元方程组,再用一次法、弦截法和二分法等算法求解,最终得出整个非线性方程组的解。
(3)迭代映射法。
迭代映射法是通过给定一个初始值,然后利用迭代,反复运算,最终达到收敛点的一种方法,主要包括牛顿法、收敛法、
弦截法、松弛法和隐函数法等。
(4)最小二乘法。
最小二乘法是将非线性方程组表示为残差函数,然
后求解残差函数最小值,获得未知变量的最优解,常用于数值分析中。
(5)特征法。
特征法是采用将非线性方程组表示为线性方程组特征值
和它们关于某一特征量的关系式,利用梯度下降法,最小化残差函数,求解非线性方程组的方法。
以上是非线性方程组的解法的简单综述,它们在一定程度上增加了解
决非线性方程组的效率,但并非所有情况都能使用以上求解方法。
正
确使用相应的求解方法就可以有效的求解非线性方程组,以便更好的
解决实际问题。