第一部分 专题二 第1讲 能量观点在力学中的应用
- 格式:ppt
- 大小:732.50 KB
- 文档页数:46
动量、动力学和能量观点在力学中的应用[学习目标] 1.进一步熟悉牛顿第二定律、动能定理、动量守恒定律、能量守恒定律等规律.2.灵活运用动力学观点、动量观点和能量观点解决力学问题.一、力的三个作用效果与五个规律作用效果对应规律公式表达三个基本观点力的瞬时作用效果牛顿第二定律F合=ma动力学观点力对空间积累效果动能定理W合=ΔE k W合=12m v22-12m v12能量观点机械能守恒定律mgh1+12m v12=mgh2+12m v22力对时间积累效果动量定理F合t=p′-pI合=Δp动量观点动量守恒定律m1v1+m2v2=m1v1′+m2v2′二、力学规律的选用原则1.如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及相对位移问题时优先考虑利用能量守恒定律求解,根据系统克服摩擦力所做的总功等于系统机械能的减少量(即转化为系统内能的量)列方程.5.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间极短,因此动量守恒定律一般能派上大用场.如图1所示,较长的曲面与水平桌面平滑连接,将m 1、m 2之间的轻弹簧压缩后用细线连接,置于水平桌面上,弹簧与两物体不拴连.现将细线烧断,弹簧将两物体弹开,m 2离开弹簧后从右边飞出,m 1冲上曲面.已知桌面高为h ,m 2平抛的水平射程为x ,m 1=2m ,m 2=m ,不计一切摩擦,重力加速度为g ,求:图1(1)m 2离开弹簧时的速度大小;(2)m 1上升到曲面最高点时距桌面的高度H ; (3)弹簧的最大弹性势能. 答案 (1)xg 2h (2)x 216h (3)3mgx 28h解析 (1)对m 2平抛过程分析,有 h =12gt 2, x =v 2t 解得v 2=xg 2h. (2)弹簧将两物体弹开的过程,m 1、m 2组成的系统动量守恒,取向左为正方向,由动量守恒定律有m 1v 1-m 2v 2=0 解得v 1=x2g 2h对m 1冲上曲面过程,由机械能守恒定律有 m 1gH =12m 1v 12解得H =x 216h.(3)弹簧的最大弹性势能为E p =12m 1v 12+12m 2v 22解得E p =3mgx 28h.(1)灵活选取系统.根据题目的特点可选取其中动量守恒或能量守恒的几个物体为研究对象,不一定选所有的物体为研究对象.(2)灵活选取物理过程.在综合题目中,物体运动常有几个不同的过程,根据题目的已知、未知条件灵活地选取物理过程来研究.列方程前要注意分析、判断所选过程动量、能量的守恒情况.(2020·湖北曾都高二期中)如图2,光滑的水平地面上静止放置一辆小车A ,质量m A=5 kg ,上表面光滑,可视为质点的物块B 置于A 的最右端,B 的质量m B =3 kg.现对A 施加一个水平向右的恒力F =10 N ,A 运动一段时间后,小车左端固定的挡板与B 发生碰撞,碰撞时间极短,碰后A 、B 粘合在一起,共同在F 的作用下继续运动,碰撞后经时间t =0.8 s ,二者的速度达到v t =2 m/s.求:图2(1)A 开始运动时加速度a 的大小; (2)A 、B 碰撞后瞬间的共同速度v 的大小; (3)A 的上表面长度l .答案 (1)2.0 m/s 2 (2)1 m/s (3)0.64 m解析 (1)以A 为研究对象,由牛顿第二定律有F =m A a 代入数据解得a =Fm A=2.0 m/s 2(2)A 、B 碰撞后一起在F 的作用下运动时间t 的过程中,由动量定理得 Ft =(m A +m B )v t -(m A +m B )v 代入数据解得v =1 m/s(3)设A 、B 发生碰撞前,A 的速度为v A , 对A 、B 发生碰撞的过程,由动量守恒定律有 m A v A =(m A +m B )vA 从开始运动到与B 发生碰撞前,由动能定理有 Fl =12m A v A 2代入数据可得l =0.64 m.1.(动力学和动量观点的综合应用)(多选)如图3所示,一平台到地面的高度为h =0.45 m ,质量为M =0.3 kg 的木块放在平台的右端,木块与平台间的动摩擦因数为μ=0.2.地面上有一质量为m =0.1 kg 的玩具青蛙,距平台右侧的水平距离为x =1.2 m ,旋紧发条后释放,让玩具青蛙斜向上跳起,当玩具青蛙到达木块的位置时速度恰好沿水平方向,玩具青蛙立即抱住木块并和木块一起滑行.已知木块和玩具青蛙均可视为质点,玩具青蛙抱住木块过程时间极短,不计空气阻力,重力加速度g =10 m/s 2,则下列说法正确的是( )图3A .玩具青蛙在空中运动的时间为0.3 sB .玩具青蛙在平台上运动的时间为2 sC .玩具青蛙起跳时的速度大小为3 m/sD .木块开始滑动时的速度大小为1 m/s 答案 AD解析 由h =12gt 12得玩具青蛙在空中运动的时间为t 1=0.3 s ,A 项正确;玩具青蛙离开地面时的水平速度和竖直速度分别为v x =xt 1=4 m/s ,v y =gt 1=3 m/s ,则玩具青蛙起跳时的速度大小为v 0=v x 2+v y 2=5 m/s ,C 项错误;由动量守恒定律得m v x =(M +m )v ,解得木块开始滑动时的速度大小为v =1 m/s ,D 项正确;对木块及玩具青蛙,由动量定理得:-μ( M +m )gt 2=0-(M +m )v ,解得玩具青蛙在平台上运动的时间为t 2=0.5 s ,B 项错误.2.(力学三大观点的综合运用)(2021·忻州一中月考)如图4所示,一水平轻弹簧右端固定在粗糙水平面右侧的竖直墙壁上,质量为M =2 kg 的物块静止在水平面上的P 点,质量为m =1 kg 的小球用长l =0.9 m 的轻绳悬挂在P 点正上方的O 点.现将小球拉至轻绳与竖直方向成60°角位置,静止释放.小球到达最低点时恰好与物块发生弹性正碰.碰后物块向右运动并压缩弹簧,之后物块被弹回,刚好能回到P 点.设小球与物块只碰撞一次,不计空气阻力,物块和小球均可视为质点,重力加速度取g =10 m/s 2.求:图4(1)小球第一次摆到最低点与物块碰撞前瞬间对轻绳的拉力大小; (2)弹簧的最大弹性势能E p . 答案 (1)20 N (2)2 J解析 (1)小球静止释放,由机械能守恒定律:mgl (1-cos 60°)=12m v 02小球在最低点由牛顿第二定律得:F T -mg =m v 02l又由牛顿第三定律有小球对轻绳的拉力F T ′=F T 解得:F T ′=20 N.(2)小球与物块发生弹性碰撞,由动量守恒定律和能量守恒定律得:m v 0=m v 0′+M v 1 12m v 02=12m v 0′2+12M v 12 物块从P 点运动到最右端,由能量守恒定律得:12M v 12=E p +Q小球反弹后回到P 点的过程,又有:E p =Q 联立解得:E p =2 J.1.(多选)如图1所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧恢复原长后某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图1A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算 答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,故A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,解得B 能达到的最大高度为h ′=14h ,故C 正确,D 错误.2.(多选)如图2甲,光滑水平面上放着长木板B ,质量为m =2 kg 的木块A 以速度v 0=2 m/s 滑上原来静止的长木板B 的上表面,由于A 、B 之间存在摩擦,之后木块A 与长木板B 的速度随时间变化情况如图乙所示,重力加速度g =10 m/s 2,则下列说法正确的是( )图2A .木块A 与长木板B 之间的动摩擦因数为0.1 B .长木板的质量M =2 kgC .长木板B 的长度至少为2 mD .木块A 与长木板B 组成的系统损失的机械能为4 J 答案 AB解析 由题图可知,木块A 先做匀减速运动,长木板B 先做匀加速运动,最后一起做匀速运动,共同速度v =1 m/s ,取向右为正方向,根据动量守恒定律得m v 0=(m +M )v ,解得M =m =2 kg ,故B 正确;由题图可知,长木板B 匀加速运动的加速度为a B =Δv Δt =11 m/s 2=1 m/s 2,对长木板B ,根据牛顿第二定律得μmg =Ma B ,解得μ=0.1,故A 正确;由题图可知前1 s 内长木板B 的位移为x B =12×1×1 m =0.5 m ,木块A 的位移为x A =2+12×1 m =1.5 m ,所以长木板B 的最小长度为L =x A -x B =1 m ,故C 错误;木块A 与长木板B 组成的系统损失的机械能为ΔE =12m v 02-12(m +M )v 2=2 J ,故D 错误.3.(2020·广东省实验中学、广雅中学、佛山一中高二下期末)如图3所示,一质量为M B =6 kg 的木板B 静止于光滑的水平面上,物块A 的质量M A =6 kg ,停在B 的左端,一质量为m = 1 kg 的小球用长为l =0.8 m 的轻绳悬挂在固定点O 上.将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A 发生碰撞后反弹,反弹所能达到的最大高度h =0.2 m ,物块A 与小球均可视为质点,A 、B 达到共同速度后A 还在木板上,不计空气阻力,g 取10 m/s 2.图3(1)小球和物块A 碰后瞬间物块A 的速度大小; (2)A 、B 组成的系统因摩擦损失的机械能. 答案 (1)1 m/s (2)1.5 J解析 (1)对于小球,在运动的过程中机械能守恒,则有mgl =12m v 12,得v 1=2gl =4 m/s ,mgh =12m v 1′2,得v 1′=2gh =2 m/s小球与物块A 碰撞过程中,系统的动量守恒,以向右为正方向,则有:m v 1=-m v 1′+M A v A , 解得v A =1 m/s(2)物块A 与木板B 相互作用过程中: M A v A =(M A +M B )v 共,解得v 共=0.5 m/s. A 、B 组成的系统因摩擦而损失的机械能 ΔE =12M A v A 2-12(M A +M B )v 共2代入数据,解得ΔE =1.5 J4.如图4所示,光滑的水平面上有一质量M =9 kg 的木板,其右端恰好和14光滑固定的圆弧轨道AB 的底端等高对接(木板的水平上表面与圆弧轨道相切),木板右端放有一质量m 0=2 kg 的物体C (可视为质点),已知圆弧轨道半径R =0.9 m ,现将一质量m =4 kg 的小滑块(可视为质点),在轨道顶端A 点由静止释放,滑块滑到B 端后冲上木板,并与木板右端的物体C 粘在一起沿木板向左滑行,最后恰好不从木板左端滑出,已知滑块和物体C 与木板上表面间的动摩擦因数均为μ=0.2,取g =10 m/s 2.求:图4(1)滑块到达圆弧的B 端时,轨道对它的支持力大小; (2)木板的长度l .答案 (1)120 N (2)1.2 m解析 (1)滑块从A 端下滑到B 端,由机械能守恒定律得 mgR =12m v 02解得v 0=3 2 m/s在B 点,由牛顿第二定律得 F N -mg =m v 02R解得轨道对滑块的支持力F N =120 N.(2)滑块滑上木板后,滑块与木板右端的物体C 发生碰撞,以向左为正方向,设碰撞后共同的速度为v 1,则 m v 0=(m +m 0)v 1 代入数据得v 1=2 2 m/s对滑块、物体C 以及木板,三者组成的系统沿水平方向的动量守恒,设末速度为v 2,由动量守恒定律有(m +m 0)v 1=(m +m 0+M )v 2 由能量守恒定律得μ(m +m 0)gl =12(m +m 0)v 12-12(M +m +m 0)v 22解得l =1.2 m.5.如图5所示,C 是放在光滑的水平面上的一块木板,木板的质量为3m ,在木板的上表面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ.最初木板静止,A 、B 两木块同时以相向的水平初速度v 0和2v 0滑上长木板,木板足够长,A 、B 始终未滑离木板也未发生碰撞.重力加速度为g ,求:图5(1)此后运动过程中木块B 的最小速度是多少?(2)木块A 从刚开始运动到A 、B 、C 速度刚好相等的过程中,木块A 发生的位移是多少? 答案 见解析解析 (1)由题知,B 向右减速,A 向左减速,此时C 静止不动;A 先减速到零后与C 一起反向向右加速,B 向右继续减速,三者共速时,B 的速度最小. 取向右为正方向,根据动量守恒定律有 m ·2v 0-m v 0=5m v 解得B 的最小速度v =v 05.(2)A 向左减速的过程,根据动能定理有 -μmgx 1=0-12m v 02向左的位移为x 1=v 022μgA 、C 一起向右加速的过程,根据动能定理有 μmgx 2=12×4m ⎝⎛⎭⎫v 052向右的位移为x 2=2v 0225μg取向右为正方向,整个过程A 发生的位移为 x =x 2-x 1=-21v 0250μg即此过程中A 发生的位移向左,大小为21v 0250μg.6.(2020·嘉祥县第一中学高二期中)如图6所示,小球A 质量为m ,系在细线的一端,细线的另一端固定在O 点,O 点到光滑水平面的距离为h .物块B 和C 的质量分别是4m 和2m ,物块B 、C 与轻弹簧接触不拴接,静止置于光滑的水平面上,且物块B 位于O 点正下方.现拉动小球A 使细线水平伸直,小球A 由静止释放,运动到最低点时与物块B 发生正碰(碰撞时间极短),反弹后上升到最高点时与水平面的距离为h9.小球A 与物块B 、C 均可视为质点,不计空气阻力,重力加速度为g ,求碰撞过程:图6(1)物块B 受到的冲量大小; (2)碰后轻弹簧获得的最大弹性势能; (3)物块C 获得的最大速度的大小. 答案 (1)4m 32gh (2)427mgh (3)492gh解析 (1)设小球A 运动到最低点与物块B 碰撞前的速度大小为v 1,取小球A 运动到最低点时的重力势能为零,根据机械能守恒定律有mgh =12m v 12解得v 1=2gh设碰撞后小球A 反弹的速度大小为v 1′, 根据机械能守恒定律有:12m v 1′2=mg h9解得v 1′=2gh3设碰撞后物块B 的速度大小为v 2,取水平向右为正方向, 由动量守恒定律有m v 1=-m v 1′+4m v 2 解得v 2=2gh 3由动量定理可得,碰撞过程物块B 受到的冲量大小为I =4m v 2=4m 2gh3(2)碰撞后当物块B 与物块C 速度相等时轻弹簧的弹性势能最大, 根据动量守恒定律有4m v 2=6m v 3根据机械能守恒定律有E pm =12×4m v 22-12×6m v 32解得E pm =427mgh (3)当压缩的弹簧恢复原长时,C 物块获得的速度最大,根据动量守恒定律和能量守恒定律有 4m v 2=4m v 2′+2m v 3′12×4m v 22=12×4m v 2′2+12×2m v 3′2 解得v 3′=492gh。
第1课时动量观点和能量观点在力学中的应用动能定理和机械能守恒定律的应用1.必须领会的“2种物理思想和3种方法”(1)守恒的思想、分解思想;(2)守恒法、转化法、转移法。
2.必须辨明的“4个易错易混点”(1)分析含弹簧的物体机械能守恒时,必须是包括弹簧在内的系统;(2)动能定理是标量方程,注意不要分方向应用;(3)机械能守恒定律三种表达式应用情景的区别;(4)摩擦产生内能的计算公式ΔE内=F f x中x是相对滑动的两物体间的相对位移。
命题角度一功和功率的理解与计算【例1】(多选)(2018·全国卷Ⅲ,19)地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面。
某竖井中矿车提升的速度大小v随时间t的变化关系如图1所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。
不考虑摩擦阻力和空气阻力。
对于第①次和第②次提升过程()图1A.矿车上升所用的时间之比为4∶5B.电机的最大牵引力之比为2∶1C.电机输出的最大功率之比为2∶1D.电机所做的功之比为4∶5命题角度二应用动能定理解决多过程问题【例2】(2019·全国卷Ⅲ,17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。
距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图2所示。
重力加速度取10 m/s2。
该物体的质量为()图2A.2 kgB.1.5 kgC.1 kgD.0.5 kg使用动能定理解决多过程问题“两点注意”(1)要注意在几个运动性质不同的分过程中,有些力是全过程都起作用的,有些力在分过程中起作用。
(2)求解功时要分清哪个力的功,计算时要把各力的功连同符号(正负)一同代入公式。
命题角度三机械能守恒定律和动力学观点的综合应用【例3】2017~2018赛季国际雪联单板滑雪U型场地世界杯在崇礼云顶滑雪场落幕,中国女将夺冠。
专题五能量与动量1.功.(1)恒力的功:W=Fs cos a;(2) 变力做功:①用动能定理或功能关系求解.②用图象法求解,其中在F-s图象中,曲线下的面积表示功的大小.③当力的功率恒定时W=Pt.2.功率.(1)平均功率:(2) 瞬时功率:3.动能定理.(1)内容:外力对物体做的总功等于物体动能的变化.(2)公式:4.机械能守恒定律(1)机械能守恒的条件:(2)定律可写成多种表达式:5.功与能的关系:功是能量转化的量度(1)动能定理:(2)重力功W G与△E p的关系:(3)功能原理:(4)摩擦力的功与摩擦生热的关系:(5)电场力的功W电与△E p的关系:(6)电磁感应现象中,(7)热力学第一定律中:(8)光电效应:(9)核能:6.动量和动量守恒定律7.爆炸与碰撞(1)爆炸与碰撞:(3)求解碰撞类问题时应同时遵守三条原则①系统动量守恒原则:碰撞是作用时间很短的相互作用过程,物体间的相互作用很大,通常系统所受的外力(如重力、摩擦力等)的影响可忽略,认为系统动量守恒.②不违背能量守恒原则:即碰撞过程中系统的总动能不可能增加,有③物理情景(过程)可行性原则:a.如果碰撞前两物体同向运动,则后面物体的速度必前面物体的速度,否则无法实现碰撞.b.碰撞后,原来在前的物体的速度一定,且原来在前的物体速度原来在后的物体的速度,否则碰撞没有结束.c.如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都,除非两物体碰撞后速度均为.1.变力作用下的直线运动问题【例1】如图所示,一辆质量为6t的汽车,额定功率为90kW,以a=2m/s2的加速度在平直公路从静止启动,车受的阻力为车重的0.05倍,g取10m/s2.问:(1)汽车做匀加速运动的时间有多长?(2)汽车能够达到的最大速度是多少?(3)若汽车从达到额定功率时起经86.4s而达到最大速度,则汽车在这段时间中前进了多远?(4)汽车的速度是20m/s时,它的加速度是多少?【变式练习】(双选)质量为m的汽车以恒定功率P沿倾角为q的倾斜路面向上行驶,最终以速度v匀速运动,若保持汽车的功率P不变,使汽车沿这个倾斜路面向下运动,最终匀速行驶,因此可知(汽车所受f不变)( )A.汽车的最终速度一定大于vB.汽车的最终速度一定小于vC.汽车所受的阻力一定大于mg sin qD.汽车所受的阻力可能小于mg sin q2.动能定理的综合应用【例2】如图所示,物体在离斜面底端4m处由静止滑下,若动摩擦因数均为0.5,斜面倾角为37°,斜面与平面间由一小段圆弧连接,求物体能在水平面上滑行多远?【同类变式】(2011·珠海模拟)如图所示,AB是倾角为q的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体(可以看做质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O 等高,物体与轨道AB间的动摩擦因数为μ,求:(1)物体做往返运动的整个过程中,在AB轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E时,对轨道的压力.3.机械能守恒定律的综合应用基本思路如下:(1)取研究对象——物体系统或物体.(2)根据研究对象所经历的物理过程,进行受力分析和做功分析,判断机械能是否守恒.(3)恰当地选取参考平面,确定研究对象在研究过程的初末状态时的机械能.(4)根据机械能守恒定律列方程,进而求解.【例3】如图所示,M是半径R=0.9m的固定于竖直平面内的光滑圆弧轨道,轨道上端切线水平,轨道下端竖直相切处放置竖直向上的弹簧枪,弹簧枪可发射速度不同的质量m=0.2kg 的小钢珠.假设某次发射的小钢珠沿轨道内壁恰好能从M上端水平飞出,落至距M下方h=0.8m平面时,又恰好能无碰撞地沿圆弧切线从A点切入一光滑竖直圆弧轨道,并沿轨道下滑.A、B为圆弧轨道两端点,其连线水平,圆弧半径r=1m,小钢珠运动过程中阻力不计,g取10m/s2,sin53°=0.8,cos53°=0.6.求:(1)发射小钢珠前,弹簧枪弹簧的弹性势能E p;(2)从M上端飞出到A点的过程中,小钢珠运动的水平距离s;(3)AB圆弧对应的圆心角;(结果可用角度表示,也可用正切值表示)(4)小钢珠运动到AB圆弧轨道最低点时对轨道的压力大小.【例4】如图所示,半径R=0.40m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A.一质量m=0.10kg的小球,以初速度v0=7.0m/s在水平地面上向左做加速度a=3.0m/s2的匀减速直线运动,运动4.0m后,冲上竖直半圆环,最后小球落在C 点,求A、C间的距离.(取重力加速度g=10m/s2)。
高一物理《动量、动力学和能量观点在力学中的应用》知识
点总结
一、解决力学问题的三个基本观点和五个规律
二、力学规律的选用原则
1.如果物体受恒力作用,涉及运动细节可用动力学观点去解决.
2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.
3.若研究的对象为几个物体组成的系统,且它们之间有相互作用,一般用两个守恒定律解决问题,但需注意所研究的问题是否满足守恒的条件.
4.在涉及相对位移问题时优先考虑利用能量守恒定律求解,根据系统克服摩擦力所做的总功等于系统机械能的减少量(即转化为系统内能的量)列方程.
5.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间极短,因此动量守恒定律一般能派上大用场.。