机器视觉培训教程第四讲
- 格式:ppt
- 大小:3.28 MB
- 文档页数:44
机器视觉培训系列教程之基础入门培训第一节:机器视觉的概念和应用机器视觉是一种用于模拟人眼视觉系统的技术,它可以让机器像人一样“看”和“理解”周围的环境。
机器视觉的应用非常广泛,包括工业自动化、智能制造、无人驾驶、智能医疗等领域。
它可以帮助我们实现自动化生产,提高生产效率和产品质量;可以帮助机器人在复杂环境中实现导航和操作;可以帮助交通管理部门进行智能监控和交通管制。
通过机器视觉技术,我们可以让机器更好地适应人类生活和工作的需求,实现智能化、便捷化和高效化。
第二节:机器视觉技术的原理机器视觉技术主要包括图像采集、图像处理和图像识别三个方面。
图像采集是指通过摄像头等设备获取环境的图像信息;图像处理是指对采集到的图像进行处理和分析,包括去噪、滤波、边缘检测等操作;图像识别是指通过图像处理技术对图像中的目标进行识别和分类。
这三个方面相互配合,共同构成了机器视觉技术的基本原理和方法。
第三节:机器视觉的技术方法机器视觉的技术方法主要包括特征提取、对象识别、目标跟踪等。
特征提取是指从图像中提取出具有代表性的特征信息,如颜色、纹理、形状等;对象识别是指通过对特征点进行匹配和分类,识别出图像中的对象;目标跟踪是指通过对图像序列的处理和分析,实现对目标的实时监测和跟踪。
这些方法在机器视觉技术中起着非常重要的作用,对于实现各种应用场景具有至关重要的意义。
第四节:机器视觉的发展趋势机器视觉技术正以前所未有的速度和规模发展,未来的发展趋势主要包括深度学习、云端计算、多传感器融合等方面。
深度学习是指通过建立多层神经网络模型对图像进行识别和分类,实现更加精准和智能的图像处理;云端计算是指通过云平台实现图像数据的存储和计算,实现更加灵活和便捷的信息处理;多传感器融合是指通过多种传感器对环境进行多维度、多层次的感知,实现更加全面和深入的信息获取。
这些发展趋势将进一步推动机器视觉技术的发展,为各种应用场景提供更加全面、智能和便捷的解决方案。
机器视觉培训系列教程在当今科技飞速发展的时代,机器视觉作为一项关键技术,正逐渐在各个领域展现出其巨大的潜力和应用价值。
从工业生产中的质量检测,到医疗领域的疾病诊断,再到智能交通系统中的车辆识别,机器视觉都发挥着不可或缺的作用。
为了让更多的人能够掌握这一前沿技术,我们精心打造了这套机器视觉培训系列教程。
首先,让我们来了解一下什么是机器视觉。
简单来说,机器视觉就是让机器具备像人一样的视觉能力,能够从图像或视频中获取信息,并对其进行分析和理解。
这涉及到一系列的技术和知识,包括图像处理、模式识别、深度学习等。
在机器视觉系统中,图像采集是第一步。
这就像是我们的眼睛看到物体一样,需要有合适的设备来获取图像。
常见的图像采集设备有摄像头、工业相机等。
这些设备的性能和参数,如分辨率、帧率、感光度等,会直接影响到采集到的图像质量,进而影响后续的处理和分析结果。
接下来是图像处理环节。
这就像是对我们看到的图像进行“加工”,使其更清晰、更易于分析。
图像处理的方法有很多,比如灰度化、二值化、滤波、边缘检测等。
通过这些处理,可以去除图像中的噪声,突出有用的信息。
模式识别则是机器视觉的核心部分之一。
它要让机器能够识别出图像中的物体、形状、特征等。
这需要运用到各种算法和模型,比如基于特征的识别方法、基于模板匹配的方法等。
而深度学习的出现,更是为机器视觉带来了革命性的变化。
通过深度神经网络,机器可以自动学习图像中的特征和模式,大大提高了识别的准确性和效率。
那么,如何学习机器视觉呢?首先,要掌握扎实的数学基础。
机器视觉涉及到很多数学知识,如线性代数、概率论、微积分等。
这些数学知识是理解和运用机器视觉算法的基础。
其次,要学习编程语言。
Python 是目前机器视觉领域中最常用的编程语言之一,掌握Python 及其相关的库,如OpenCV、TensorFlow 等,对于实现机器视觉算法非常重要。
再者,要多实践。
通过实际的项目和案例,来加深对机器视觉技术的理解和应用能力。
机器视觉培训教程第一点:机器视觉基础理论机器视觉是人工智能的一个重要分支,它涉及到计算机科学、图像处理、模式识别、机器学习等多个领域。
在本部分,我们将介绍机器视觉的基础理论,包括图像处理、特征提取、目标检测、图像分类等核心概念。
1.1 图像处理:图像处理是机器视觉的基本环节,主要包括图像增强、图像滤波、图像边缘检测等操作。
这些操作可以帮助机器更好地理解图像中的信息,提取出有用的特征。
1.2 特征提取:特征提取是机器视觉中的关键步骤,它的目的是从图像中提取出具有区分性的特征信息。
常用的特征提取方法有关联矩阵、主成分分析(PCA)、线性判别分析(LDA)等。
1.3 目标检测:目标检测是机器视觉中的一个重要任务,它的目的是在图像中找到并识别出特定目标。
常用的目标检测方法有基于滑动窗口的方法、基于区域的方法、基于深度学习的方法等。
1.4 图像分类:图像分类是机器视觉中的应用之一,它的目的是将给定的图像划分到预定义的类别中。
常用的图像分类方法有支持向量机(SVM)、卷积神经网络(CNN)等。
第二点:机器视觉应用案例机器视觉在现实生活中的应用非常广泛,涵盖了工业检测、自动驾驶、安防监控、医疗诊断等多个领域。
在本部分,我们将介绍几个典型的机器视觉应用案例,以帮助大家更好地理解机器视觉的实际应用。
2.1 工业检测:机器视觉在工业检测领域的应用非常广泛,它可以用于检测产品的质量、尺寸、形状等参数,提高生产效率,降低人工成本。
2.2 自动驾驶:机器视觉在自动驾驶领域的应用主要包括环境感知、车辆定位、目标识别等。
通过识别道路标志、行人、车辆等障碍物,自动驾驶系统可以做出相应的决策,保证行驶的安全性。
2.3 安防监控:机器视觉在安防监控领域的应用主要包括人脸识别、行为识别、车辆识别等。
通过实时监控和分析监控画面,机器视觉系统可以有效地发现异常情况,提高安防效果。
2.4 医疗诊断:机器视觉在医疗诊断领域的应用主要包括病变识别、组织分割、影像分析等。
第四章 区域分析(qq584883658)图像中的区域是指相互连结的具有相似特性的一组像素.由于区域可能对应场景中的物体,因此,区域的检测对于图像解释十分重要.一幅图像可能包含若干个物体,而每一个物体又可能包含对应于物体不同部位的若干个区域.为了精确解释一幅图像,首先要把一幅图像划分成对应于不同物体或物体不同部位的区域.4.1 区域和边缘图像区域划分有两种方法:一种是基于区域的方法,另一种是使用边缘检测的轮廓预估方法.在基于区域的方法中,把所有对应于一个物体的像素组合在一起,并进行标记,以表示它们属于一个区域,这一处理过程称为分割.在某一评判标准下,把像素分配给某一区域,就可以把这些像素同图像其余部分分开.图像分割中的两个最基本的原则是数值相似性和空间接近性.如果两个像素具有相似的强度特性,或它们之间十分靠近,则可以把它们分配到同一区域,例如,两个像素之间的数值相似性度量可以是它们的灰度值之差,也可以是区域灰度值分布;它们的空间接近性度量可以是欧几里德距离,也可以是区域致密度. 相似性和接近性原则来源于如下假设:同一物体上的点投影到图像上得到的像素点在空间上十分靠近,且具有相似的灰度值.很显然,这一假设并不是在任何情况下都成立.然而可以使用这一假设来组合图像中的像素,然后利用相关域知识来匹配物体模型和区域.在简单的情况下,可以通过阈值法和连通成份标记法来进行图像分割,这一点在第三章讨论过了.对于复杂的图像,可以使用更高级的方法实现图像分割.分割也可以通过求取区域边界上的像素来进行.这些像素点(也称为边缘)可以通过搜寻邻近像素的方法来得到.由于边缘像素是在边界上,在边界两边的区域具有不同的灰度值,这样,区域的边界可以通过测量邻近像素差值来求取.尽管边缘检测可能使用诱导特性(如纹理和运动)来检测边缘.但大多数边缘检测器仅使用强度特性作为边缘检测的基础. 在理想的图像中,一个区域是由一条封闭轮廓线包围着.原则上,区域分割和边缘检测应该产生相同的结果,即使用边界跟踪算法可以得到区域的边缘(或封闭的轮廓线);反过来,使用区域填充算法也可以得到边缘所包围的区域.但在实际的图像中,很少能够从区域中得到正确的边缘,反之亦然.由于噪声和其它因素的影响,不论是区域分割还是边缘检测,都无法提供完整的信息.本章将讨论区域的基本概念,主要集中在两个问题上:图像分割和区域表示.4.2 分割已知一幅图像像素集I 和一个一致性谓词)(⋅P ,求图像I 表示成n 个区域i R 集合的一种划分:I Rn i i == 1 (4.1)一致性谓词和图像划分具有如下特性,即任何区域满足如下谓词:True )(=i R P (4.2)任何两个相邻区域不能合并成单一区域,必满足谓词:False )(=j i R R P (4.3)一致性谓词)(⋅P 定义了在区域i R 上的所有点与区域模型的相似程度.把一幅灰度图像转换成二值图像是图像分割的最简单形式.用于求取二值图像的阈值算法可以推广到求取多值图像,其中的阈值算法已经在第三章中讨论过了.为了在各种变化的场景中都能得到鲁棒的图像分割,阈值分割算法应能根据图像强度取样来自动选取合适的阈值.阈值分割法不要过分依赖于物体的灰度知识,且使用有关灰度值的相对特性来选取合适的阈值.这一简单的思想在许多计算机视觉算法中十分有用.4.2.1 自动阈值化法为了使分割更加鲁棒,系统应能自动选择阈值.基于场景中的物体、环境和应用域等知识的图像分割算法比基于固定阈值算法更具有普遍性.这些知识包括:对应于物体的图像灰度特性,物体的尺寸,物体在图像中所占的比例,图像中不同类型物体的数量等.图像灰度直方图就是一种灰度特性,它是指图像所有灰度值出现的相对频率.使用上述知识并在无人介入的情况下自动选取阈值的方法称为自动阈值化方法.自动阈值化算法通常使用灰度直方图来分析图像中灰度值的分布,并使用特定应用域知识来选取最合适的阈值.由于所用的知识具有普遍性,因此大大增加了算法的应用范围.假设一幅图像中包含有n 个物体n O O O ,,,21⋅⋅⋅,包括背景,并假设不同的区域n πππ,,,21⋅⋅⋅的灰度值具有概率分布函数)(,),(),(21z p z p z p n ⋅⋅⋅.在许多应用中,物体在图像中出现的概率n ,P ,,P P ⋅⋅⋅21也许是已知的.使用这些知识来严格地计算阈值是完全可能的.由于场景中的照明控制着图像中强度值的概率分布函数)(z p i , 因此预先计算阈值是不可能的.我们将要看到,大多数自动阈值的选取算法使用了物体尺寸和出现概率,并通过计算灰度直方图估算强度分布.下面将讨论几种常用的自动阈值化方法.为了简化表示,我们将遵循物体在图像中的表示惯例,即物体相对于光亮背景是黑的.也就是说,低于某一阈值的灰度值属于物体,而高于这一阈值的灰度值属于背景.下面将要讨论的算法稍作改动就可以应用到其它场合,如光亮物体相对于黑暗背景,灰暗物体相对于光亮和黑暗背景,光亮或黑暗物体相对于灰暗背景.一些算法还可以推广到由任意像素值集合组成的物体.(1) 模态方法如果图像中的物体具有同一灰度值,背景具有另一个灰度值,图像被零均值高斯噪声污染,那么就可以假定灰度分布曲线是由两个正态分布函数),(),(222211σμσμ和叠加而成.图像直方图将会出现两个分离的峰值,如图4.1所示.在理想恒定灰度值情况下,021==σσ,其直方图为两条线分别对应两个峰值,这时的阈值可以设置在两个最大值之间的任何位置.在实际应用中,两个最大值并不是分得很开,此时需要检测直方图曲线的波谷和波峰,并把阈值设置成波谷对应的像素值.可以证明,当物体的尺寸和背景相等时,这样选取阈值可使误分类概率达到极小值.在大多数情况下,由于直方图在波谷附近的像素很稀疏,因此,阈值的选取对图像分割影响不大.这一方法可推广到具有不同灰度均值的多物体图像中.假设有n 个物体,其强度值的正态分布参数为),(,),,(),,(2222211n n σμσμσμ⋅⋅⋅,背景也服从正态分布),(200σμ.如果这些均值明显的不同,方差值很小,且没有小尺寸物体,那么图像直方图将包含n+1个波峰,并可确定波谷的位置n T T T ,...,,21,落入每一个间隔),(1+i i T T 中的所有像素被分配给对应的物体,如图4.2所示.图4.1(a) 理想情况下,背景和物体的灰度值可以分的很开.(b)大多数情况下,物体和背景的强度值相互重叠.图4.2 具有不同灰度值的多物体图像直方图(2) 迭代式阈值选择迭代式阈值选择方法如下:首先选择一个近似阈值作为估计值的初始值,然后连续不断地改进这一估计值.比如,使用初始阈值生成子图像,并根据子图像的特性来选取新的阈值,再用新阈值分割图像,这样做的效果将好于用初始阈值分割的图像.阈值的改进策略是这一方法的关键.算法4.1给出了这一方法的步骤.算法4.1 迭代式阈值选择算法选择一个初始阈值的估算值T ,比如,图像强度均值就是一个较好的初始值. 利用阈值T 把图像分割成两组,1R 和2R .计算区域1R 和2R 的均值21,μμ.选择新的阈值T)(2121μμ+=T 重复2-4步,直到1μ和2μ的均值不再变化.(3) 自适应阈值化方法如果场景中的照明不均匀,那么上述的自动阈值化方法就不能使用.显然,在这种情况下,一个阈值无法满足整幅图像的分割要求。