机器视觉(2)
- 格式:pdf
- 大小:586.05 KB
- 文档页数:11
机器视觉技术是一种能够使机器“看”的技术,通过摄像头、图像处理器和相关的算法,使机器能够模拟人眼的功能,实现对物体、场景等视觉信息的感知和理解。
在众多领域中,机器视觉技术都得到了广泛的应用,本文将结合实际案例,介绍机器视觉技术在工业和医疗领域中的应用,并阐述其工作原理。
一、工业领域中的机器视觉应用案例1. 自动化生产线中的质量检测在工业生产中,产品质量的稳定性和一致性对于企业的生产效率和产品质量都至关重要。
传统的质量检测需要大量的人力和时间,而且不够准确,难以满足大规模工业生产需求。
机器视觉技术的应用,可以实现对产品表面、尺寸、外观等多个维度的快速检测,大大提高了检测效率和准确性。
具体工作原理是通过摄像头获取产品的图像信息,然后借助图像处理算法对图像进行分析和处理,最终实现对产品各项指标的检测和评估。
2. 无人驾驶车辆中的视觉感知技术无人驾驶汽车作为近年来智能交通领域的一项重要技术突破,其中的视觉感知技术是实现无人驾驶的重要一环。
通过激光雷达、摄像头等设备,无人驾驶汽车可以实时感知周围环境的图像信息,包括道路、交通标志、车辆、行人等,然后利用机器学习和深度学习算法对这些图像信息进行分析和理解,从而实现车辆的自主导航和智能决策。
这一技术的应用,将对未来交通、出行和城市规划等领域产生深远的影响。
二、医疗领域中的机器视觉应用案例1. 医学影像诊断在医学影像诊断领域,机器视觉技术发挥了巨大作用。
医学影像如CT、MRI等传统上需要医生凭借经验和专业知识进行诊断,费时费力且存在一定主观性,而引入机器视觉技术后,可以实现对医学影像的自动分析和诊断,辅助医生进行更准确、更快速的临床诊断。
其工作原理是通过机器学习算法对大量医学影像数据进行学习和训练,从而建立起对各种疾病、病变的自动识别和分析能力,大大提高了医学影像诊断的准确性和效率。
2. 手术辅助系统在微创手术和精准手术领域,机器视觉技术的应用也成为了一大亮点。
简述机器视觉系统的组成部分一、引言机器视觉是指通过计算机技术实现对图像或视频的自动分析和处理,从而达到模拟人类视觉感知和认知的目的。
它包括了图像采集、预处理、特征提取、目标检测与识别等多个方面,是人工智能领域中的一个重要分支。
本文将详细介绍机器视觉系统的组成部分。
二、图像采集图像采集是机器视觉系统中最基本的部分之一,其主要任务是通过相机或其他传感器获取目标场景中的图像信息。
现代相机可以通过光学透镜将外界光线聚焦在传感器上,然后将传感器上的电信号转化为数字信号,并通过数据接口传输给计算机进行处理。
三、预处理由于采集到的图像可能存在噪声、失真等问题,因此需要对其进行预处理以提高后续算法的准确性。
预处理包括了灰度化、滤波、增强等多个步骤。
其中灰度化是将彩色图像转换为灰度图像,以便于后续处理;滤波则是通过卷积运算去除噪声;增强则是对图像进行锐化或者对比度调整等操作,以使目标更加明显。
四、特征提取特征提取是机器视觉系统中最核心的部分之一,其主要任务是从预处理后的图像中提取出有用的信息。
这些信息可以用于目标检测、识别等多个方面。
特征可以分为局部特征和全局特征两种。
局部特征包括了SIFT、SURF、ORB等多个算法,其主要思想是通过检测关键点并计算其周围区域的梯度来描述图像;全局特征则包括了HOG、LBP等多个算法,其主要思想是通过对整张图像进行处理来描述图像。
五、目标检测与识别目标检测与识别是机器视觉系统中最重要的应用之一,其主要任务是在图像或视频中自动识别出感兴趣的物体,并进行分类或跟踪。
目前常用的算法包括了Haar Cascade、YOLO、SSD等多个算法。
这些算法可以通过训练模型来实现对不同类别物体的检测和识别。
六、应用领域机器视觉系统广泛应用于工业自动化、智能交通、医疗影像分析等众多领域。
在工业自动化中,机器视觉可以用于产品质量检测、机器人视觉引导等方面;在智能交通中,机器视觉可以用于车辆识别、交通流量统计等方面;在医疗影像分析中,机器视觉可以用于疾病诊断、手术辅助等方面。
机器视觉开发任务之二--基于OpenCV的工件几何尺寸测量系统原创文章,未经许可,严禁转载。
如有需要请联系作者!本篇在上篇《机器视觉开发任务之一-基于OpenCV的工件外形轮廓检测系统》的基础上进行开发,首先检测并标出工件的外形轮廓位置,在此基础上结合相机标定的相关知识,计算出标准工件的几何尺寸。
对于圆形工件,将计算出其圆心坐标及直径。
对矩形工件,计算出其宽度和高度值。
对于正六边形工件,计算出其边长的平均值。
这里的值均为标定后计算出的物理值,并可与通过实际测量工具(游标卡尺或卷尺等)测出的值进行对比误差分析。
结果表明,该系统可实现的测量精度在±1毫米左右,可实现较高的测量精度,后续通过优化算法、改进光照条件以及提高标定精度等方法可进一步提升尺寸测量的精度。
1.项目功能描述:摄像头安装在传送带正上方,标准工件从传送带上以一定的速度(匀速)进入Camera 的视野范围。
首先进行像素尺寸标定,为简单起见,这里没有考虑畸变与透视形变的影响(后续可视测量精度需要增加畸变校正功能),检测标准棋盘格图像的角点的像素位置,同时棋盘格每个方格的物理尺寸为已知的固定值,从而可以计算出图像的像素尺寸。
在此基础上,根据上篇文字中从实时视频流中检测出的工件的外形轮廓位置,可以实现工件几何尺寸的测量功能。
2.开发平台与工具:Window7 64 Bit+Visual Sutdio 2013+OpenCV 2.4.93.算法思路与流程:4.算法实际检测结果图1 圆形工件测量结果(游标卡尺测量长度50mm)图2-矩形工件测量结果(游标卡尺测量长度45mm)图3 六边形工件测量结果(游标卡尺测量长度28mm)图5 同时测量多个工件几何尺寸。
机器视觉技术及应用 B卷(时间70分钟,满分100分)姓名______________一、填空题(每空1分,共16分)得分______________1.机器视觉系统通常由相机、镜头、光源、___________和_____________组成。
2.CogPMAlignTool是基于___________特征的模板而不是基于像素灰度值的模板匹配工具,支持图像的旋转与_______。
3.光圈的作用_______________________________,光圈值f1.4和f2.8中_____成像更亮。
4.Caliper工具中代表卡尺的扫描方向,代表卡尺的_________方向。
在抓边过程中,_________方向要与查找的边缘平行。
5.黑白相机成像原理为:有光线进入相机区域表现为__________色,无光线进入相机的区域表现为_________色。
6.每个像素所代表的实际尺寸称为(FOV/像素个数)_____________________。
7.最常见的成像传感器器类型是__________和__________。
8.写出你知道LED光源的名称__________________________________________(至少3个)。
9.像素:___________________________________________________________。
10.其它条件一定,光圈越大,景深越______。
二、不定项选择题(每题4分,共24分)()1.以下哪些连接是正确的:A. B.CS口镜头+ CS口相机 C口镜头+ C口相机C. D.CS口镜头+5mm接圈+C口相机 C口镜头+5mm接圈+ CS口相机()2.下列方法可以提高图片亮度的素有()A、增大曝光B、增大工作距离C、将光圈值从F8调到F1.4D、调大光源亮度()3.以下关于感光元件描述正确的是()A、CCD:噪点多、图像效果较差、价格便宜B、CCD:噪点少、图像效果较好、价格高C、CMOS:噪点多、速度快、价格便宜D、CMOS:噪点多、速度快、价格高()4.如下图所示,通过CogFindLineTool PointResults 可以知道,当Caliper设置对比度大于()时,将会抓不到边。
opencv 2 计算机视觉编程手册摘要:1.OpenCV 简介2.OpenCV2 计算机视觉编程手册的内容3.手册的特点和适用对象4.手册的内容安排5.案例与实践正文:OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,用于开发各种计算机视觉和机器视觉应用程序。
它包含了大量的图像处理、分割和识别等算法,适用于各种场景。
对于那些想要学习OpenCV 的人来说,《OpenCV2 计算机视觉编程手册》是一个很好的资源。
《OpenCV2 计算机视觉编程手册》以案例的形式介绍OpenCV2.x 的新特性和C++新接口。
手册内容涵盖了OpenCV 的核心功能,如底层数据结构和算法函数,以及图像读写、用户界面操作等。
手册的特点在于很好地平衡了基础知识与进阶内容,要求读者具有基础的C++知识。
因此,该手册既适合想要学习计算机视觉的C++初学者,也适合专业的软件开发人员。
手册的内容安排如下:首先,介绍OpenCV 的基本概念和安装方法;然后,分别讲解OpenCV 的各个模块,如core、highgui、features2d、calib3d 和video 等;最后,通过实际案例和练习,帮助读者巩固所学知识。
通过学习《OpenCV2 计算机视觉编程手册》,读者可以掌握OpenCV 的基本用法和进阶技巧。
此外,手册还提供了最佳实践和建议,以便读者能够确定如何在开发环境中设置OpenCV 以及如何使用各种算法。
总之,《OpenCV2 计算机视觉编程手册》是一本实用性很强的教程,既可以作为高等院校计算机视觉课程的辅助教材,也可以作为图像处理和计算机视觉领域研究人员的参考手册。
python+opencv实现机器视觉基础技术(2)(宽度测量,缺陷检测,医学处理) 本篇博客接着讲解机器视觉的有关技术和知识。
包括宽度测量,缺陷检测,医学处理。
在传统的⾃动化⽣产中,对于尺⼨的测量,典型的⽅法就是千分尺、游标卡尺、塞尺等。
⽽这些测量⼿段测量精度低、速度慢,⽆法满⾜⼤规模的⾃动化⽣产需求。
基于机器视觉的尺⼨测量属于⾮接触式的测量,具有检测精度⾼、速度快、成本低、安装简便等优点。
可以检测零件的各种尺⼨,如长度、圆、⾓度、线弧等测量。
利⽤python+opencv⽅法可以进⾏宽度的测量。
步骤是先选取出⼀个矩形,然后进⾏阈值分割,再进⾏反⾊,边缘提取之后进⾏点的选择,输出坐标做出两条线段,根据线段进⾏矩形绘制,这样之后就可以计算两条直线之间的距离,也就是我们需要求得的宽度。
OpenCV是⼀个c++库,⽤于实时处理计算机视觉⽅⾯的问题,涵盖了很多计算机视觉领域的模块。
配合python调⽤c++库,可以很⽅便地进⾏宽度测量,实现要求。
步骤如下:import cv2import cv2 as cvimport numpy as npimport imutilsimg = cv2.imread("1.jpg") ⼿动地进⾏选取我们感兴趣的部分,然后截取出来。
img = imutils.resize(img, width=500)roi = cv2.selectROI(windowName="image1", img=img, showCrosshair=True, fromCenter=False)x, y, w, h = roicv2.rectangle(img=img, pt1=(x, y), pt2=(x + w, y + h), color=(0, 0, 255), thickness=2)s = img[y:y+h,x:x+w] 截取后会出现空⽩区域很多⿊⾊的情况,需要进⾏反⾊,⽤到的⽅法是255去除值。
机器视觉中的二值化与边缘检测技术研究随着科技的不断进步,在机器视觉领域中的二值化和边缘检测技术已经成为了必不可少的技术手段。
本文将介绍机器视觉中的二值化和边缘检测技术的概念和原理,并阐述其在实际应用中的重要性。
一、二值化技术概述二值化是指将灰度图像的像素值转化为0或1的二维矩阵,用于分离目标对象和背景。
二值化技术是图像处理中最常用的基本处理方法之一,其实现原理是将图像中的灰度值映射到0和255两个灰度值之间,从而使得图像呈现出黑白分明的效果,便于后续的处理和分析。
在机器视觉领域,二值化技术可应用于图像的分割、识别、增强和去噪等方面。
例如,在OCR文字识别中,采用二值化技术将图片转化为黑白图像,可以大大提高识别准确率。
此外,在医学图像分析中,二值化技术可用于识别疾病病变区域,提高医学诊断的准确性。
二、边缘检测技术概述边缘检测是指在图像中寻找边缘的过程。
在图像中,边缘一般被定义为颜色、亮度等突变的地方,它是图像中最基本的特征之一。
边缘检测技术可应用于目标检测、视觉跟踪、图像分割、三维重建等领域。
常用的边缘检测算法包括Canny算子、Sobel算子和Laplacian 算子等。
Canny算子是一种常见的边缘检测算法,其将边缘检测问题转化为一个优化问题,并采用高斯滤波、非极大值抑制和双阈值等方法进行边缘检测。
三、二值化和边缘检测的应用案例1、物体识别在智能制造领域,二值化和边缘检测技术可应用于物体识别和分拣领域。
例如,对于自动化仓库中的物品识别,采用二值化和边缘检测技术可以准确识别出目标物体并进行分拣。
2、人脸检测在安防领域,人脸识别技术已经得到广泛应用。
在人脸检测的过程中,需要对人脸图像进行二值化和边缘检测操作,以获取人脸的轮廓并进行特征提取和分析。
3、医学诊断在医学诊断中,二值化和边缘检测技术可用于识别疾病病变区域。
例如,在肺癌病人的CT图像中,通过对图像进行二值化和边缘检测,可以准确识别出病变部位,为医生的诊断提供支持。