污水中氨氮的去除
- 格式:docx
- 大小:138.41 KB
- 文档页数:21
污水及废水氨氮去除处理工艺液膜法分析与设计实施方案(附:14种氨氮污水处理方法优缺点与选择原则)一.液膜法1、概述:许多人认为液膜分离法有可能成为继萃取法之后的第二代分离纯化技术,尤其适用于低浓度金属离子提纯及废水处理等过程。
乳状液膜法去除氨氮的机理是:氨态氮(NH3-N)易溶于膜相(油相),它从膜相外高浓度的外侧,通过膜相的扩散迁移,到达膜相内侧与内相界面,与膜内相中的酸发生解脱反应,生成的NH4+不溶于油相而稳定在膜内相中,在膜内外两侧氨浓度差的推动下,氨分子不断通过膜表面吸附,渗透扩散迁移至膜相内侧解吸,从而达到分离去除氨氮的目的。
通常采用硫酸为吸收液,选用耐酸性疏水膜,NH3在吸收液-微孔膜界面上为H2SO4吸收,生成不挥发的(NH4)2SO4而被回收。
已经对膜吸收法中膜的渗漏问题进行了研究,并发现较高的氨氮和盐量能有效抑制水的渗透蒸馏通量。
该法具有投资少、能耗低、高效、使用方便和操作简单等特点,此外膜吸收法还有传质面积大的优点和没有雾沫夹带、液泛、沟流、鼓泡等现象发生。
2、土壤灌溉:土壤灌溉是把低浓度的氨氮废水( < 50mg/ L)作为农作物的肥料来使用,既为污灌区农业提供了稳定的水源,又避免了水体富营养化,提高了水资源利用率。
西红柿罐头废水与城市污水混合并经氧化塘处理至11mg 氨氮/ L 后用于灌溉,氨氮可完全被吸收;马铃薯加工厂废水也用于喷淋灌溉,经测定25mg 氨氮/ L 的排放水中有75%的氨氮被吸收。
只需占总面积5%的水稻田就可以吸收该地区所有排污渠中一半的氨氮负荷。
但用于土壤灌溉的废水必须经过预处理,去除病菌、重金属、酚类、氰化物、油类等有害物质,防止对地面、地下水的污染及病菌的传播。
二.氨氮污水处理技术分析与选择原则1、氨氮污水的处理技术都有各自的优势与不足:生物法处理氨氮污水较稳定,但一般要求氨氮浓度在400 mg/L以下,总氮去除率可达70%~95%,是目前运用最多的一种方法。
氨氮去除原理
氨氮去除的原理是利用一系列化学和生物过程将含氨废水中的氨氮转化为无害物质或使其从水体中脱落。
首先,氨氮可以被化学氧化剂氧化为亚硝酸盐和硝酸盐。
这一过程被称为氨氮硝化。
通常,常见的氨氮硝化方法是通过添加氧化剂如次氯酸钠或过氧化氢来触发氨氮的氧化反应。
接下来,亚硝酸盐可以进一步被氧化为硝酸盐,这个过程被称为亚硝酸盐硝化。
常见的亚硝酸盐硝化方法是利用硝化细菌进行微生物硝化作用,这些细菌能够将亚硝酸盐氧化为硝酸盐。
除了氧化,氨氮还可以通过生物过程进行去除。
其中一种常见的方法是利用硝化细菌和反硝化细菌的共同作用。
硝化细菌将氨氮转化为亚硝酸盐和硝酸盐,并将其释放到水中。
反硝化细菌然后会利用硝酸盐作为电子受体进行反硝化作用,将硝酸盐还原为氮气或氮氧化物,从而将氨氮从水体中去除。
此外,还有一些其他的氨氮去除方法,如吸附剂和膜分离技术。
吸附剂可以将氨氮吸附在其表面上,并进行后续处理;膜分离技术则是利用不同孔径大小的膜将水中的氨氮分离出来。
总的来说,氨氮的去除过程可以通过氧化反应、硝化细菌、反硝化细菌以及吸附剂和膜分离技术等多种方式进行。
通过这些方法,可以有效地将水体中的氨氮转化为无害物质或使其从水中去除,以实现废水处理和水环境保护的目的。
污水处理中的氨氮去除技术污水处理是一项重要而复杂的环境工程技术,其中氨氮去除技术是其中一个关键环节。
本文将详细介绍污水处理中的氨氮去除技术,并分点列出其相关内容。
一、氨氮的来源及危害1. 氨氮的来源:工业废水、农业面源废水、生活污水、农业非点源废水等。
2. 氨氮的危害:氨氮过量排放会导致水体富营养化,引发水华、水生生物死亡及水环境恶臭等问题,严重危害生态环境和人类健康。
二、常见的氨氮去除技术1. 生物法:包括厌氧法和好氧法。
- 厌氧法:利用厌氧菌群将氨氮转化为氮气,常见的反应器有厌氧反应槽和厌氧滤池等。
- 好氧法:利用好氧菌群将氨氮转化为硝酸盐,常见的处理单元有好氧池、好氧滤池和硝化反硝化池等。
2. 物理法:主要用于氨氮浓度较低的水体。
- 蒸发浓缩法:利用加热蒸发水体,浓缩氨氮浓度,常用于工业废水处理。
- 膜分离法:利用膜的选择性透过性,将氨氮分离出来,常见的膜法有超滤、反渗透和离子交换膜等。
3. 化学法:通过添加化学药剂达到去除氨氮的目的。
- 高锰酸钾法:利用高锰酸钾氧化氨氮生成氮气,广泛应用于农村生活污水处理。
- 硝化法:通过添加化学药剂加速氨氮转化为硝态氮,常见的药剂有硝酸铵和硫酸铵等。
三、氨氮去除技术的特点及应用情况1. 生物法:- 特点:技术成熟、操作简单、能耗低、无二次污染。
- 应用情况:广泛应用于城市生活污水处理、工业废水处理和农村污水处理等领域。
2. 物理法:- 特点:适用于氨氮浓度较低的水体、处理效果稳定。
- 应用情况:主要应用于工业废水处理和海水淡化等领域。
3. 化学法:- 特点:适用性广、处理效果较好。
- 应用情况:常见于农村生活污水处理和工业废水处理等领域。
四、氨氮去除技术的发展趋势1. 生物法:加强氮素转化功能菌的研究,提高转化效率。
2. 物理法:研发更高效、节能的膜分离技术,开发新型浓缩设备。
3. 化学法:研究更环保、高效的化学药剂,减少药剂使用量。
五、国内外氨氮去除技术研究进展1. 国内研究进展:随着环保意识的提高,氨氮去除技术研究受到重视,取得了不少成果。
污水处理中的去除有机氮和氨氮的技术随着城市化进程的推进和工业化水平的提高,污水排放对环境的影响日益突出。
其中,有机氮和氨氮的高浓度含量给水环境带来了严重的污染问题。
为了净化污水,保护生态环境,科学家们不断研究和探索去除有机氮和氨氮的技术。
本文将针对污水处理中的去除有机氮和氨氮的技术进行探讨。
一、生物学方法生物学方法是污水处理中最常用的方法之一,其主要利用微生物对有机氮和氨氮的降解作用。
生物反应器是这一方法中的核心设备,常见的生物反应器有活性污泥法、膜生物反应器法等。
活性污泥法利用具有高度活性的污泥微生物来去除污水中的有机氮物质。
在生物反应器中,废水与污泥充分接触,微生物利用废水中的有机氮进行代谢和降解,将其转化为无机氮物质。
这种方法具有操作简单、设备投资较少的特点,广泛应用于污水处理厂。
膜生物反应器法是一种近年来兴起的污水处理技术,它采用微孔膜过滤的方式实现有机氮和氨氮的去除。
在反应器中,微生物附着在膜上,废水通过膜过滤,有机氮和氨氮物质被截留在膜表面,使水质得到净化。
相比传统的生物处理技术,膜生物反应器法具有处理效果好、出水质量稳定等优点。
二、化学法化学法是另一种用于去除有机氮和氨氮的常见技术。
该方法通过添加化学药剂,使有机氮和氨氮发生物理化学反应,从而达到去除的目的。
常用的化学法有氧化法、还原法和吸附法等。
氧化法是利用强氧化剂如臭氧、过氧化氢等对有机氮和氨氮进行氧化分解。
氧化剂能够与有机氮和氨氮发生反应,将其转化为无机氮,从而降低水体中氮的浓度。
还原法则是采用还原剂对有机氮和氨氮进行还原反应。
常用的还原剂有亚硫酸盐、氢气等,它们能够与有机氮和氨氮发生反应,将其转化为无机氮,达到去除的效果。
吸附法则是利用具有吸附性能的材料对有机氮和氨氮进行吸附。
常见的吸附材料有活性炭、分子筛等,它们具有大表面积和较强的吸附能力,能够将有机氮和氨氮物质吸附在材料上,从而实现去除。
三、物理法物理法是污水处理中去除有机氮和氨氮的辅助技术,常用的方法有沉淀法、过滤法和电化学法。
除废水氨氮随着工业化和城市化进程的加快,废水污染问题日益严重。
废水中的氨氮是一种常见的有机氮,对水环境和生态系统有着严重的影响。
因此,除去废水中的氨氮对于保护水资源、维护生态平衡至关重要。
废水中的氨氮来源主要包括生活污水、工业废水和农业面源污染等。
生活污水中的氨氮主要来自于尿液的分解以及洗浴、厨房等活动中产生的废水。
工业废水中的氨氮通常来自于化肥、冶金、制药、皮革等行业。
农业面源污染主要是指农田中施用农药和化肥后,通过土壤和径流进入水体中。
除去废水中的氨氮的方法主要包括物理方法、化学方法和生物方法三种。
物理方法是通过物理手段将废水中的氨氮进行物理分离和去除。
常用的物理方法有吸附、离子交换和膜分离等。
吸附是指利用某种吸附剂将废水中的氨氮物理吸附,在吸附剂上形成氨吸附剂络合物,然后将络合物与吸附剂分离。
离子交换是指利用离子交换树脂将废水中的氨离子与树脂上的其他离子进行交换,实现氨离子的去除。
膜分离是指利用微孔膜、超滤膜或逆渗透膜等将废水中的氨离子进行物理筛选,使氨离子无法通过膜孔,达到去除氨氮的效果。
化学方法是指通过化学反应将废水中的氨氮转化成其他物质,从而实现氨氮的去除。
常用的化学方法有氧化法、沉淀法和还原法等。
氧化法是指利用氧化剂对废水中的氨氮进行氧化反应,将其转化为无害的氧化产物。
常用的氧化剂有高锰酸钾、臭氧等。
沉淀法是指利用化学沉淀剂对废水中的氨氮进行沉淀反应,将其转化成易于沉淀的沉淀物。
常用的沉淀剂有氢氧化钙、氢氧化铁等。
还原法是指利用还原剂对废水中的氨氮进行还原反应,将其转化成无害的还原产物。
常用的还原剂有亚硫酸盐等。
生物方法是指利用生物活性物质如细菌、藻类等对废水中的氨氮进行生物吸附、生物降解或生物转化,使氨氮得以去除。
常用的生物方法有生物滤池法、参芪槐籽系列菌株法和藻类培养法等。
生物滤池法是指将废水通过装有生物滤料的滤池,细菌在滤料表面附着并吸附氨氮,进而对其进行降解。
参芪槐籽系列菌株法是指利用经过培养和筛选的参芪槐籽系列细菌对废水中的氨氮进行去除。
污水氨氮去除方法
污水中氨氮的去除方法如下:
1、吹脱法
氨吹脱工艺是将水的pH值提到10.5到11.5的范围,在吹脱塔中反复形成水滴,通过塔内大量空气循环,气水接触,使氨气逸出。
这种方法广泛用于处理中高浓度的氨氮废水,常需加石灰,经吹脱可以回收氨气。
2、离子交换法
离子交换实际是不溶性离子化合物(离子交换剂)上的可交换离子与溶液中的其它同性离子的交换反应,是一种特殊的吸附过程。
用离子交换法去除氨氮时,常用离子交换剂沸石、活性炭等,也有研究采用合成树脂。
3、生物处理法
目前,生物法是实际应用中使用最广泛的处理低浓度氨氮废水的方法。
生物脱氮是在微生物的作用下,将有机氮和氨态氮转化为N2和NxO气体的过程,其中包括硝化和反硝化两个反应过程。
曝气法去除废水中氨氮的实验报告一、 实验目的根据反应机理:NH 3+ + Cao = NH 3↑+ Ca(OH)2 + Ca 2+ ; 用生石灰作处理剂,进行曝气去除废水中的氨氮,以达到国家污水中氨氮排放标准。
二、试验流程和操作步骤1、流程示意图2、操作步骤①取原废水分析氨氮含量,若PH 呈酸性,则用电石渣或石灰调PH=6~9;若PH 呈碱性则不需处理。
②按氨氮:生石灰质量比=1:35计算加入生石灰(破碎)。
③进行曝气6小时,至氨氮小于15mg/L 。
④加入按废水量1L :0.025g 聚丙烯酰胺计算,加入沉降剂搅拌均匀一分钟即可。
⑤离心过滤,废渣回收包装;液体用硫酸中和处理。
⑥分析检验,合格后可排放或者回收利用。
三、实验数据(见下表格,附加化验单)四、结论1、直接取未经处理废水,用生石灰曝气可以去除氨氮。
2、废水经预处理后,按氨氮量:氧化钙质量比=1:35投入生石灰,曝气6小时以上,氨氮量≦15mg/l;废水未经预处理(偏酸性时),与同上比例加入石灰曝气,去除氨氮时间要比前一步骤慢1小时左右。
3、加入按废水量1L:0.025g沉降剂比例加入沉降剂即可达到较好的沉降效果。
4、氨氮:氧化钙质量比=1:40与1:35相比较去除氨氮效果不明显。
5、废水经用生石灰曝气、沉淀过滤后水溶液呈碱性,需要用酸进行中和成中性。
6、原废水有时呈酸性有时呈碱性;酸性时,有时因酸度高用生石灰预处理量大,用电石渣处理较好。
7、经试验直接取原废水,经预处理(酸性时调ph=6~9),按氨氮量:生石灰质量比=1:35计算加入生石灰,进行曝气6小时后,氨氮可以降至国家氨氮污水排放标准(小于15mg/l);曝气7小时后,可以降至广东省氨氮污水排放标准(小于10mg/l)。
五、成本计算NH3-N以100-150mg/L计,各项消耗如下:生石灰:在150mg/L时,每1000L加入量为5.25公斤每天按60立方计有:5.25 × 60 = 315公斤生石灰以700元计有:315 × 0.7 = 220.5 元电费:按每天吹2次,30立方/次风机用电按7.5kw/h计:7.5 × 14 = 105 kw/h费用按0.8元/kw/h计有:0.8 × 105 = 84元PH调节剂约需1.8公斤/M3 (SA):每天处理量60 M3则有:1.8 × 60 = 108公斤按原行价350元/吨:0.35 × 108 = 37.8 元沉降剂:约用量为20元/日合计金额(150mg/L):220.5 + 84 + 37.8 + 20 = 362.3 元每吨废水处理费用:362.3 ÷ 60 = 6.04 元/ M3注明:①原废水有时呈酸性,而且酸度不稳定,则不能准确计算出原料成本,所以未计算入成本预算中。
总氮简称为TN,水中它的含量是衡量水质的重要指标之一。
它的定义是水中各种形态无机和有机氮的总量,包括NO3-、NO2-和NH4+等无机氮和蛋白质、氨基酸和有机胺等有机氮,常被用来表示水体受营养物质污染的程度。
这时如果要把污水正常的排放到河道中去,是需要对其进行去除的,那具体的方法是什么呢?具体的去除方法一般分为三个步骤:1、氨氮的去除含氨氮废水目前市场上技术已经非常成熟,一般通过以下几种办法去除。
第一,折点加氯氧化法,通过加入次氯酸钠或者漂白粉进行氧化,将氨氮转化为氮气释放,目前市场上常见的氨氮去除剂基本以漂白粉为主。
其反应方程式如下所示:2NH2Cl + HClO →N2↑+3H++3Cl- +H2O第二,利用微生物硝化和反硝化去除废水中的氨氮,其原理是硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。
首先通过硝化细菌和亚硝化细菌将氨氮转化为亚硝酸盐和硝酸盐,然后再进行反硝化,将硝酸盐转化为氮气。
其反应原理图如下所示:2NH3+3O2→HNO2+H2O+能量(亚硝化作用)2HNO2+O2→2HNO3+能量(硝化作用)2、有机氮的去除生物法,氮化合物在生物作用下可实现向氮气的转化:化学法,通过氧化使氮化合物直接从有机氮、氨氮直接转化为氮气:生物法成本较低,效果稳定,但工艺复杂,操作困难,且占地面积较大,运行时间较长;化学法省去中间转化步骤,更快速直接,但成本较高,折点加氯法控制难度大,效果不稳定。
3、硝态氮的去除主要是指硝酸根离子,目前有采用离子交换、膜渗透、吸附以及生物脱氮的方法。
其中离子交换法、膜渗透法以及吸附法都只是硝酸根离子的浓缩与转移,无法真正去除总氮,浓缩以后的硝酸根废液需要进一步处理。
以上就是巩义市景阳净水材料有限公司分享的全部内容,希望对大家有所帮助。
这家公司主要经营产品有:聚丙烯酰胺PAM(阴,阳,非离子)污水除磷剂聚合氯化铝、碱式氯化铝、聚合氯化铝铁、聚合硫酸铁、氧化钙、磷酸二氢钾、活性炭、聚合硅酸铝、硫酸亚铁等各种脱色除臭、助凝剂。
物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持―假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
‖遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
水中氨氮的去除方法有多种,但目前常见的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等。
下面我们详细介绍一下这几种水中氨氮的去除方法:一、生物硝化与反硝化(生物陈氮法)(一) 生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
生物硝化的反应过程为:由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取>2 ,或>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。
若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。
所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。
(二) 生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。
本文摘自再生资源回收-变宝网()污水中氨氮的主要去除方法近20年来,对氨氮污水处理方面开展了较多的研究。
其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。
一、生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。
因而,污水的生物脱氮包括硝化和反硝化两个阶段。
生物脱氮工艺流程见图1。
硝化反应是将氨氮转化为硝酸盐的过程,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。
反硝化过程中的电子供体是各种各样的有机底物(碳源)。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此在国内外运用最多。
但缺点是占地面积大,低温时效率低。
2.传统生物法目前,国内外对氨氮污水实际处理中应用较成熟的生物处理方法是传统的前置反硝化生物脱氮,如A/O、A2/O工艺等,都能在一定程度上去除污水中的氨氮。
传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。
1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack 和Ettinger于1962年提出了前置反硝化工艺(pre-denitrification),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)UCT、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺。
污水中氨氮去除方法总结氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
一、生物脱氮法微生物去除氨氮过程需经两个阶段。
第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。
第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。
在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。
常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
1、多级污泥系统此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长、构筑物多、基建费用高、需要外加碳源、运行费用高、出水中残留一定量甲醇等。
2、单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。
前置反硝化的生物脱氮流程,通常称为A/O流程与传统的生物脱氮工艺流程相比,A/O工艺具有流程简单、构筑物少、基建费用低、不需外加碳源、出水水质高等优点。
后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果可高于前置式,理论上可接近100%的脱氮。
交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。
该系统本质上仍是A/O系统,但其利用交替工作的方式,避免了混合液的回流,因而脱氮效果优于一般A/O流程。
其缺点是运行管理费用较高,且一般必须配置计算机控制自动操作系统。
3、生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。
此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
二、物化除氮物化除氮常用的物理化学方法有折点氯化法、化学沉淀法、离子交换法、吹脱法、液膜法、电渗析法和催化湿式氧化法等。
氨氮处理方法氨氮是水体中的一种常见污染物,其过量排放会对水环境造成严重影响。
因此,对氨氮的处理成为了环境保护工作中的重要内容。
本文将介绍几种常见的氨氮处理方法,以供参考。
首先,生物法是一种常见的氨氮处理方法。
生物法主要是通过微生物的作用将氨氮转化为无害的物质。
生物法的优点是处理效果好,操作简单,成本低廉。
常见的生物法包括生物滤池法、生物接触氧化法等。
生物法处理氨氮的具体步骤是将含氨氮的水体通过生物滤池或生物接触氧化池,使水体中的氨氮在微生物的作用下逐渐降解,最终转化为无害的氮气排放。
其次,化学法也是一种常用的氨氮处理方法。
化学法主要是通过添加化学药剂将水体中的氨氮转化为无害物质。
常见的化学法包括氯化铁法、氯化铝法等。
化学法处理氨氮的具体步骤是将含氨氮的水体添加适量的化学药剂,使氨氮与化学药剂发生反应,最终转化为无害的物质。
化学法处理氨氮的优点是处理速度快,效果明显,适用于一些特殊情况下的氨氮处理。
另外,物理法也是一种常见的氨氮处理方法。
物理法主要是通过物理手段将水体中的氨氮去除。
常见的物理法包括吸附法、膜分离法等。
物理法处理氨氮的具体步骤是将含氨氮的水体通过吸附材料或膜分离设备,使水体中的氨氮被吸附或分离出来,从而达到去除氨氮的目的。
物理法处理氨氮的优点是操作简单,无需添加化学药剂,对水体没有二次污染。
综上所述,生物法、化学法和物理法是目前常见的氨氮处理方法。
在实际应用中,可以根据水体的具体情况选择合适的处理方法进行氨氮去除,以保护水环境,维护人类健康。
希望本文介绍的氨氮处理方法能对相关工作提供一定的参考和帮助。
污水氨氮高怎么办污水氨氮高怎么办?氨氮对水生生物的危害主要是指非离子氨即氨气的危害,非离子氨进入水生生物体内后,对酶水解反应和膜稳定性产生明显影响,表现出呼吸困难、不摄食、抵抗力下降、惊厥、昏迷等现象,甚至导致水生生物大批死亡。
污水氨氮高怎么办?下面我们一起来看看吧,希望对大家有所帮助。
1、微生物法脱硝:采用微生物法将氨氮转为亚硝酸盐,再转为硝酸盐,然后反硝化脱硝,排氮气到大气。
2、吹脱法:采用将废水中的非离子氨吹脱到大气,由于受到了《恶臭污染物排放标准》(GB 14554-93)对氨的相关排放限值的限制,造成风机数量多,且能耗很高,导致的结果是设备投资很高和运营成本很高。
3、吸附法:是一种或者几种物质(称为吸附物)的浓度在另一种物质(称为吸附剂)表面上自动发生变化的过程,其实质是无食从液相或气相到固体表面的一种传质现象。
COD剂氨氮去除剂去磷剂除臭剂管道清洗除臭剂COD 剂 氨氮去除剂 去磷剂 除臭剂 管道清洗除臭剂 4、.化学法:是在污水中直接投加一种可以降低氨氮的浓度的药剂——氨氮去除剂;氨氮去除剂是一种含有特殊架状结构的高分子无机化合物,对氨氮的去除率达90%以上,无2次污染。
污水氨氮高怎么办?详情请咨询南京永禾环保材料有限公司。
南京永禾环保工程有限公司是以承接水处理工程项目为主,并开发经营水处理相关产品,为用户提供综合技术服务的高科技工程公司。
环境工程行业中颇具发展,公司实力雄厚,现有从事化工、水处理、环境工程专业和土建、电器、自动控制等专业的高中级工程技术人员20余人。
技术可广泛应用于锅炉水处理、电子、医药、饮料行业的纯水制备:苦碱水、海水淡化以及浓水提取、分离等各个领域。
优秀的设计,成熟的技术,优秀的人才,设计、制造、检测等方面有强劲的实力。
实业是基础,锐意进取;技术是向导,勇攀高峰。
本公司将以不懈的努力,精益求精,以更优秀技术和产品服务与用户。
去除氨氮的最好方法
首先,生物法是目前去除氨氮的常用方法之一。
生物法通过微生物的作用将水中的氨氮转化为无害的氮气排放到大气中。
生物法具有操作简单、投资成本低、处理效果好等优点,因此在实际应用中得到了广泛的推广。
但是,生物法也存在着对水质要求高、适用范围窄等局限性,因此在处理某些特殊水体时需要结合其他方法。
其次,化学法也是一种常见的去除氨氮的方法。
化学法通过向水中添加化学药剂,使氨氮与药剂发生化学反应,从而将氨氮转化为无害物质。
化学法具有处理速度快、适用范围广等优点,特别适用于处理水质波动大、氨氮浓度较高的水体。
但是,化学法也存在着药剂残留、处理成本高等缺点,因此在实际应用中需要根据具体情况进行选择。
此外,物理法也可以用于去除氨氮。
物理法主要通过吸附、膜分离等方式将水中的氨氮分离出来,达到去除的目的。
物理法具有操作简单、无二次污染等优点,特别适用于处理氨氮浓度较低的水体。
但是,物理法也存在着设备投资大、运行成本高等问题,因此在实际应用中需要综合考虑。
综上所述,去除氨氮的最好方法并不存在统一的标准答案,而是需要根据具体水体的情况和需求来选择合适的方法。
在实际应用中,可以根据水体的氨氮浓度、水质波动情况、处理成本等因素来综合考虑,结合生物法、化学法和物理法等多种方法,以达到最佳的去除效果。
希望通过不断的研究和实践,能够找到更加高效、经济、环保的去除氨氮方法,为保护水环境和人类健康做出更大的贡献。
去除氨氮的最好方法氨氮是水体中的一种重要污染物,它来自于农业、工业、生活污水等多种渠道。
过高的氨氮含量会对水质造成严重影响,不仅影响水生生物的生存,还会对人类健康和环境造成危害。
因此,去除水体中的氨氮是十分重要的。
那么,如何去除水体中的氨氮呢?下面将介绍一些最好的方法:1. 植物吸收法。
植物吸收法是一种生物修复水体的方法,通过植物的吸收作用,可以有效去除水体中的氨氮。
选择适合吸收氨氮的水生植物,如莲藕、菰、藕等,将其种植在水体中,让植物吸收水中的氨氮,起到净化水体的作用。
这种方法不仅可以去除氨氮,还可以美化水域环境,是一种比较环保的方法。
2. 生物滤池法。
生物滤池是一种利用微生物降解氨氮的方法。
将水体通过生物滤池,滤过滤材和填料层,让其中的微生物降解水中的氨氮,从而达到去除氨氮的目的。
这种方法操作简单,成本较低,可以长期稳定地去除水体中的氨氮。
3. 化学氧化法。
化学氧化法是一种利用化学药剂氧化氨氮的方法。
常用的氧化剂有臭氧、氯气、次氯酸钠等。
将这些氧化剂加入水体中,可以将氨氮氧化成无害的物质,从而去除水体中的氨氮。
这种方法去除效果较好,但需要注意药剂的使用量和排放物的处理。
4. 生物膜法。
生物膜法是一种利用生物膜降解氨氮的方法。
在水体中设置生物膜反应器,通过生物膜上的微生物降解氨氮,达到去除氨氮的目的。
这种方法去除效果稳定,操作简单,适用于不同类型的水体。
5. 聚合物吸附法。
聚合物吸附法是一种利用聚合物吸附氨氮的方法。
将具有亲和力的聚合物加入水体中,可以吸附水中的氨氮,从而去除氨氮。
这种方法操作简单,效果较好,但需要注意聚合物的再生和回收利用。
综上所述,去除水体中的氨氮有多种方法,每种方法都有其适用的场景和特点。
在实际应用中,可以根据水体的特点和氨氮的含量选择合适的方法进行去除,以保障水体的水质和生态环境的健康。
希望以上方法对您有所帮助,谢谢阅读!。
氨氮的去除根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
去除氨氮的主要方法有:物理法、化学法、生物法。
物理法有反渗透、蒸馏、土壤灌溉等处理技术;化学法有离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法有藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
最全的脱氨脱氮工艺汇总含氨氮废水的处理方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法等。
本文对氨氮废水处理方法作一综述并对各种方法的优缺点进行分析汇总。
化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg²﹢、PO4³﹣在水溶液中反应生成磷酸铵镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。
磷酸铵镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。
反应方程式如下:Mg²﹢+NH4﹢+PO4³﹣=MgNH4P04影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。
以氯化镁和磷酸氢二钠为沉淀剂对氨氮废水进行处理,结果表明当pH值为10,镁、氮、磷的摩尔比为1.2:1:1.2时,处理效果较好。
以氯化镁和磷酸氢二钠为沉淀剂进行研究,结果表明当pH值为9.5,镁、氮、磷的摩尔比为1.2:1:1时,处理效果较好。
对新出现的高浓度氨氮有机废水一生物质煤气废水进行研究,结果表明,MgC12+Na3PO4.12H20明显优于其他沉淀剂组合。
当pH值为10.0,温度为30℃,n(Mg²﹢):n(NH4+):n(P04³-)=1:1:1时搅拌30min废水中氨氮质量浓度从处理前的222mg/L降到17mg/L,去除率为92.3%。
将化学沉淀法和液膜法相结合用于高浓度工业氨氮废水的处理。
在对沉淀法工艺进行优化的条件下,使氨氮去除率达到98.1%,然后联用液膜法进一步处理使其氨氮浓度降低到0.005g/L,达到国家一级排放标准。
对化学沉淀法进行改进研究,考察Mg²﹢以外的二价金属离子(Ni²﹢,Mn²﹢,Zn²﹢,Cu²﹢,Fe²﹢)在磷酸根作用下对氨氮的去除效果。
氨氮废水处理方法
氨氮的构成:
废水中氨氮的构成主要有两种:一种是氨水形成的氨氮,一种是无机氨形成的氨氮;主要是硫酸铵和氯化铵等等。
氨氮主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。
氨氮废水处理方法:
1.物理法:一般是在废水中加入絮凝剂,然后利用格栅或其它物理隔栅工具把一部分污染物处理下来,带走一部分有机物。
但是这个方法基本上只对浓度上千的氨氮起微少的作用,一般到几百的时候就很难光靠此方法处理了。
2.生物法:在污水处理厂或者大型的废水站中运用得比较多,一般都是靠各种的菌种,活性污泥等生物处理,对其进行好氧厌氧等处理后,形成完整的处理工艺,能有效去除溶解性的和胶体状态的可生化有机物等。
3.化学法:运动化学药剂的氧化作用分解氨氮,这种方法下的氨氮分解效率快,处理时间快。
一般都直接在出水口投加希洁氨氮去除剂SN-1使用,没有过多繁琐的操作。
能在5~6分钟左右降解氨氮,并且浓度好调节,灵活性强,根据不同的浓度投加不同的药剂量就能很好地控制氨氮的浓度了。