2019-2020年江苏省高三第一次模拟考试 数学
- 格式:doc
- 大小:76.87 KB
- 文档页数:13
盐城市、南京市2019届高三年级第一次模拟考试数 学 试 题2019.01(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........) 1.已知集合A =(-∞,1],B ={﹣1,1,2},则A B = .2.设复数i z a =+(其中i 为虚数单位),若zz =2,则实数a 的值为 .3.某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽取一个容量为n 的样本,其中样本中A 型号产品有16件,那么此样本的容量n = .4.从1,2,3中选2个不同的数字组成一个两位数,这个两位数是偶数的概率为 .5.如图所示流程图中,若输入x 的值为﹣4,则输出c 的值为.6.若双曲线2212x y m-=的离心率为2,则实数m 的值为 . 7.已知()y f x =为定义在R 上的奇函数,且当x >0时,()1x f x e =+,则(ln 2)f -的值为 .8.已知等比数列{}n a 为单调递增数列,设其前n 项和为n S ,若22a =,37S =,则5a 的值为 .9.如图,PA ⊥平面ABC ,AC ⊥BC ,PA =4,AC BC =1,E ,F 分 别为AB ,PC 的中点,则三棱锥B —EFC 的体积为 .10.设A ={}()347x y x y +≥,,点P ∈A ,过点P 引圆2(1)x ++22(0)y r r =>的两条切线PA ,PB ,若∠APB 的最大值为3π,则r 的值为 .11.设函数()sin()3f x x πω=+,其中0ω>.若函数()f x 在[0,2π]上恰有2个零点,则ω的取值范围是 .12.若正实数a 、b 、c 满足2ab a b =+,2abc a b c =++,则c 的最大值为 .13.设函数32()f x x a x =-(a >0,x ≥0),O 为坐标原点,A(3,﹣1),C(a ,0).若对此函数图象上的任意一点B ,都满足OA OB OA OC ⋅≤⋅成立,则a 的值为 .14.若数列{}n a 满足10a =,414242433n n n n a a a a -----=-=,44141412n n n n a a a a +-==,其中N n *∈,且对任意N n *∈都有n a m <成立,则m 的最小值为 .二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.)15.(本题满分14分)在△ABC 中,设a 、b 、c 分别为角A 、B 、C 的对边,记△ABC 的面积为S ,且2S =AB AC ⋅.(1)求角A 的大小;(2)若c =7,cosB =45,求a 的值.16.(本题满分14分)如图,在直三棱柱ABC —A 1B 1C 1中,D 、E 分别是棱BC 、CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为棱B 1C 1上的点,且A 1F ⊥B 1C 1.(1)求证:平面ADE ⊥平面BCC 1B 1;(2)求证:A 1F ∥平面ADE .。
2019年江苏省高考第一次模拟考试数学Ⅰ试题参考公式圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高. 圆锥的体积公式:V 圆锥13Sh ,其中S 是圆锥的底面积,h 为高. 一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<< 则=A B ________▲________. 2.复数(12i)(3i),z =+- 其中i 为虚数单位,则z 的实部是________▲________. 3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.5.函数y =232x x -- 的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ . 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y = 与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲ .(第10题)11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则f (5a )的值是 ▲ .12. 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是 ▲ .13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ .二、解答题 (本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分) 在ABC △中,AC =6,4πcos .54B C ==, (1)求AB 的长; (2)求πcos(6A -)的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的四倍. (1) 若16m,2m,AB PO ==则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当1PO 为多少时,仓库的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4)(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 的方程;(3) 设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围。
高三年级第一次模拟考试数学(满分160分,考试时间120分钟)参考公式:锥体体积公式:V =13Sh ,其中S 为底面积,h 为高.圆锥侧面积公式:S =πrl ,其中r 为底面半径,l 为母线长. 一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={0,1,2},集合B ={-1,0,2,3},则A ∩B =________.2. 函数f(x)=lg (3-x )的定义域为________.3. 从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为6的概率是________.4. 根据如图所示的伪代码,最后输出的i 的值为________.5. 已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________.6. 抛物线y 2=8x的焦点到双曲线x 216-y 29=1渐近线的距离为________.7. 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.8. 已知函数f(x)=12x -2x ,则满足f(x 2-5x)+f(6)>0的实数x 的取值范围是________.9. 若2cos 2α=sin ⎝⎛⎭⎫π4-α,α∈⎝⎛⎭⎫π2,π,则sin 2α=________. 10. 已知△ABC 是边长为2的等边三角形,D ,E 分别是边AB ,BC 的中点,连结DE 并延长到点F ,使得DE =3EF ,则AF →·BC →的值为________.11. 已知等差数列{a n }的公差为d(d ≠0),前n 项和为S n ,且数列{S n +n}也为公差为d 的等差数列,则d =________.12. 已知x>0,y>0,x +y =1x +4y,则x +y 的最小值为________.13. 已知圆O :x 2+y 2=1,圆M :(x -a)2+(y -2)2=2.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA ⊥PB ,则实数a 的取值范围为________.14. 设函数f(x)=ax 3+bx 2+cx(a ,b ,c ∈R ,a ≠0).若不等式xf ′(x )-af (x )≤2对一切x ∈R 恒成立,则b +c a的取值范围为________.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c cos B +b cos C =3a cos B.(1) 求cos B 的值;(2) 若|CA →-CB →|=2,△ABC 的面积为22,求边b.16. (本小题满分14分)如图,在四棱锥V ABCD 中,底面ABCD 是矩形,VD ⊥平面ABCD ,过AD 的平面分别与VB ,VC 交于点M ,N.(1) 求证:BC ⊥平面VCD ; (2) 求证:AD ∥MN.17. (本小题满分14分)某房地产商建有三栋楼宇A ,B ,C ,三楼宇间的距离都为2千米,拟准备在此三楼宇围成的区域ABC 外建第四栋楼宇D ,规划要求楼宇D 对楼宇B ,C 的视角为120°,如图所示,假设楼宇大小高度忽略不计.(1) 求四栋楼宇围成的四边形区域ABDC 面积的最大值;(2) 当楼宇D 与楼宇B ,C 间距离相等时,拟在楼宇A ,B 间建休息亭E ,在休息亭E 和楼宇A ,D 间分别铺设鹅卵石路EA 和防腐木路ED ,如图.已知铺设鹅卵石路、防腐木路的单价分别为a ,2a(单位:元/千米,a 为常数).记∠BDE =θ,求铺设此鹅卵石路和防腐木路的总费用的最小值.18. (本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的长轴长为4,两准线间距离为4 2.设A 为椭圆C 的左顶点,直线l 过点D(1,0),且与椭圆C 相交于E ,F 两点.(1) 求椭圆C 的方程;(2) 若△AEF 的面积为10,求直线l 的方程; (3) 已知直线AE ,AF 分别交直线x =3于点M ,N ,线段MN 的中点为Q ,设直线l 和QD 的斜率分别为k(k ≠0),k′.求证:k·k′为定值.19. (本小题满分16分)设数列{a n }是各项均为正数的等比数列,a 1=2,a 2a 4=64,数列{b n }满足:对任意的正整数n ,都有a 1b 1+a 1b 2+…+a n b n =(n -1)·2n +1+2.(1) 分别求数列{a n }与{b n }的通项公式;(2) 若不等式λ⎝⎛⎭⎫1-12b 1⎝⎛⎭⎫1-12b 2…⎝⎛⎭⎫1-12b n <12b n +1对一切正整数n 都成立,求实数λ的取值范围;(3) 已知k ∈N *,对于数列{b n },若在b k 与b k +1之间插入a k 个2,得到一个新数列{c n }.设数列{c n }的前m 项的和为T m ,试问:是否存在正整数m .使得T m =2 019?如果存在,求出m 的值;如果不存在,请说明理由.20. (本小题满分16分)已知函数f(x)=a ln x -bx(a ,b ∈R ).(1) 若a =1,b =1,求函数y =f (x )的图象在x =1处的切线方程; (2) 若a =1,求函数y =f (x )的单调区间;(3) 若b =1,已知函数y =f (x )在其定义域内有两个不同的零点x 1,x 2,且x 1<x 2.不等式a <(1-m )x 1+mx 2(m >0)恒成立,求实数m 的取值范围.2019届高三年级第一次模拟考试(二)数学附加题(本部分满分40分,考试时间30分钟)21. (本小题满分10分)求函数y =3cos ⎝⎛⎭⎫2x -π3的图象在x =5π12处的切线方程.22. (本小题满分10分)已知定点A(-2,0),点B 是圆x 2+y 2-8x +12=0上一动点,求AB 中点M 的轨迹方程.23. (本小题满分10分)在直三棱柱ABCA 1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,AA 1=3,D 是BC 的中点. (1) 求直线DC 1与平面A 1B 1D 所成角的正弦值; (2) 求二面角B 1DC 1A 1的余弦值.24. (本小题满分10分)已知x ,y 为整数,且x>y>0,θ∈⎝⎛⎭⎫0,π2,n 为正整数,cos θ=x 2-y 2x 2+y 2,sin θ=2xyx 2+y 2,记A n =(x 2+y 2)n cos nθ,B n =(x 2+y 2)n sin nθ.(1) 试用x ,y 分别表示A 1,B 1;(2) 用数学归纳法证明:对一切正整数n ,A n 均为整数.2019届高三年级第一次模拟考试(二)(镇江)数学参考答案1. {0,2}2. {x|x ≤2}3. 154. 85. 3π36. 657. 128. (2,3)9. -78 10. 13 11. 12 12. 313. [-2,2] 14. ⎣⎡⎭⎫-16,+∞ 15. (1) 由正弦定理a sin A =b sin B =csin C,(1分)且c cos B +b cos C =3a cos B ,得sin C cos B +sin B cos C =3sin A cos B ,(3分)则3sin A cos B =sin (B +C)=sin (π-A)=sin A ,(5分) 又A ∈(0,π),则sin A>0,(6分) 则cos B =13.(7分)(2) 因为B ∈(0,π),则sin B>0,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.(9分)因为|CA →-CB →|=|BA →|=c =2,(10分) 又S =12ac sin B =12a ×2×223=22,解得a =3.(12分)由余弦定理得,b 2=a 2+c 2-2ac cos B =9+4-2×3×2×13=9,则b =3.(14分)故边b 的值为3.16. (1) 在四棱锥V ABCD 中,因为VD ⊥平面ABCD ,BC ⊂平面ABCD , 所以VD ⊥BC.(3分)因为底面ABCD 是矩形,所以BC ⊥CD.(4分) 又CD ⊂平面VCD ,VD ⊂平面VCD ,CD ∩VD =D , 则BC ⊥平面VCD.(7分)(2) 因为底面ABCD 是矩形,所以AD ∥BC ,(8分) 又AD ⊄平面VBC ,BC ⊂平面VBC , 则AD ∥平面VBC ,(11分)又平面ADNM ∩平面VBC =MN ,AD ⊂平面ADNM , 则AD ∥MN.(14分)17. (1) 因为三楼宇间的距离都为2千米, 所以AB =AC =BC =2,(1分)因为楼宇D 对楼宇B ,C 的视角为120°, 所以∠BDC =120°,(2分)在△BDC 中,因为BC 2=BD 2+DC 2-2BD·DC·cos ∠BDC ,(3分)所以22=BD 2+CD 2-2BD·CD·cos 120o =BD 2+CD 2+BD·CD ≥2BD·CD +BD·CD =3BD·CD , 则BD·CD ≤43,(4分)当且仅当BD =CD 时等号成立,此时∠DBC =∠DCB =30°,BD =CD =1cos 30°=233.区域最大面积S =S △ABC +S △BCD =12×2×2×sin 60°+12BD·CD·sin 120°=433(平方千米).(7分)(或者:因为直角三角形△ABD ,△ACD 全等,区域最大面积S =S △ABD +S △ACD =2S △ABD =2×12AB·BD =433(平方千米).(7分))(2)设铺设此鹅卵石路和防腐木路的总费用为y 元, 在Rt △BDE 中,由(1)知,∠BDE =θ∈⎝⎛⎭⎫0,π3,(8分) 则DE =233cos θ,BE =233tan θ,AE =AB -BE =2-233tan θ,(9分)所以y =2a·ED +a·AE =2a ⎝⎛⎭⎫233cos θ+a·⎝⎛⎭⎫2-233tan θ=23a 3⎝⎛⎭⎫2-sin θcos θ+2a ,θ∈⎝⎛⎭⎫0,π3.(10分) 记f(θ)=2-sin θcos θ,令f′(θ)=-1+2sin θcos 2θ=0,解得θ=π6∈⎝⎛⎭⎫0,π3.(11分) 当θ∈⎝⎛⎭⎫0,π6时,f′(θ)<0,函数f(θ)为减函数; 当θ∈⎝⎛⎭⎫π6,π3时,f′(θ)>0,函数f(θ)为增函数. 所以当θ=π6时,f(θ)取最小值,此时y min =4a(元).(12分)答:(1)四栋楼宇围成的四边形区域ABDC 面积的最大值为433平方千米;(2)铺设此鹅卵石路和防腐木路的总费用的最小值为4a 元.(14分) 18. (1)由长轴长2a =4,准线间距离2×a 2c =42,解得a =2,c =2,(2分) 则b 2=a 2-c 2=2,即椭圆方程为x 24+y 22=1.①(4分)(2) 若直线l 的斜率不存在,则EF =6, △AEF 的面积S =12AD·EF =362不合题意;(5分)若直线l 的斜率存在,设直线l :y =k(x -1),②代入①得,(1+2k 2)x 2-4k 2x +2k 2-4=0,③因为点D(1,0)在椭圆内,所以Δ>0恒成立. 设点E(x 1,y 1),F(x 2,y 2), 则x 1,2=4k 2±223k 2+22(1+2k 2),④(6分)EF =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x1-x 2|=1+k 2·223k 2+21+2k 2.(7分)点A 到直线l 的距离d 为3|k|1+k 2,(8分) 则△AEF 的面积S =12d·EF =12·3|k|1+k 2·1+k 2·223k 2+21+2k 2=323k 4+2k 21+2k 2=10,(9分)解得k =±1.综上,直线l 的方程为x -y -1=0或x +y -1=0.(10分) (3)设直线AE :y =y 1x 1+2(x +2), 令x =3,得点M ⎝⎛⎭⎫3,5y 1x 1+2,同理可得点N ⎝⎛⎭⎫3,5y 2x 2+2,所以点Q 的坐标为⎝⎛⎭⎫3,5y 12(x 1+2)+5y 22(x 2+2).(12分)所以直线QD 的斜率为k′=54⎝⎛⎭⎫y 1x 1+2+y 2x 2+2,(13分)而y 1x 1+2+y 2x 2+2=k (x 1-1)x 1+2+k (x 2-1)x 2+2= k ⎝⎛⎭⎪⎫2x 1x 2+x 1+x 2-4x 1x 2+2(x 1+x 2)+4.(14分)由(2)中③得,x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,代入上式得,(15分)y 1x 1+2+y 2x 2+2=k ⎣⎢⎡⎦⎥⎤4k 2-8+4k 2-4(1+2k 2)2k 2-4+8k 2+4+8k 2=-12k 18k 2=-23k . 则k′=-56k,所以k·k′=-56为定值.(16分)19. (1) 设等比数列{a n }的公比为q(q>0), 因为a 1=2,a 2a 4=a 1q·a 1q 3=64, 解得q =2,则a n =2n .(1分)当n =1时,a 1b 1=2,则b 1=1,(2分)当n ≥2时,a 1b 1+a 2b 2+…+a n b n =(n -1)·2n +1+2,① a 1b 1+a 2b 2+…+a n -1b n -1=(n -2)·2n +2,② 由①-②得,a n b n =n·2n ,则b n =n. 综上,b n =n.(4分)(2)不等式λ⎝⎛⎭⎫1-12b 1⎝⎛⎭⎫1-12b 2…⎝⎛⎭⎫1-12b n <12b n +1对一切正整数n 都成立, 即λ⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n <12n +1, 因为⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n >0, 当λ≤0时,不等式显然成立;(5分)当λ>0时,则不等式等价于⎝⎛⎭⎫1-12⎝⎛⎭⎫1-14…⎝⎛⎭⎫1-12n 2n +1<1λ, 设f(n)=(1-12)(1-14)…(1-12n )2n +1,则f (n +1)f (n )=⎝⎛⎭⎫1-12…⎝⎛⎭⎫1-12n ⎝⎛⎭⎫1-12n +22n +3⎝⎛⎭⎫1-12…⎝⎛⎭⎫1-12n 2n +1=2n +1·2n +32n +2=4n 2+8n +34n 2+8n +4<1.(7分)所以f(1)>f(2)>f(3)>…>f(n)>…, 所以1λ>f(n)max =f(1)=32,则0<λ<233,综上λ<233.(8分)(3) 在数列{c n }中,从b 1至b k (含b k 项)的所有项和是:(1+2+3+…+k)+(21+22+…+2k -1)×2=k (k +1)2+2k +1-4.(10分)当k =9时,其和是45+210-4=1 065<2 019, 当k =10时,其和是55+211-4=2099>2019,(12分) 又因为2 019-1 065=954=477×2,(14分)所以当m =9+(2+22+…+28)+477=996时,T m =2 019. 即存在m =996,使得T m =2 019.(16分) 20. 当a =1,b =1时,f(x)=ln x -x ,(1分) 则f′(x)=1x -1,则f′(1)=11-1=0.(3分)又f(1)=-1,则所求切线方程为y =-1.(4分)(2) 当a =1时,f(x)=ln x -bx , 则f′(x )=1x -b =1-bx x,(5分)由题意知,函数的定义域为(0,+∞),①若b ≤0,则f′(x)>0恒成立, 则函数f(x)的增区间为(0,+∞);(6分) ②若b>0,则由f′(x)=0,得x =1b,当x ∈⎝⎛⎭⎫0,1b 时,f′(x)>0,则函数f(x)的单调增区间为⎝⎛⎭⎫0,1b ;(7分) 当x ∈⎝⎛⎭⎫1b ,+∞时,f′(x)<0,则函数f(x)单调减区间为⎝⎛⎭⎫1b ,+∞.(8分) 综上,当b ≤0时,函数f(x)单调递增,增区间为(0,+∞);当b>0时,函数f(x)的单调增区间为⎝⎛⎭⎫0,1b ,单调减区间为⎝⎛⎭⎫1b ,+∞. (3) 因为x 1,x 2分别是方程a ln x -x =0的两个根,即a ln x 1=x 1,a ln x 2=x 2. 两式相减a(ln x 2-ln x 1)=x 2-x 1, 则a =x 2-x 1ln x 2x 1,(9分)则不等式a<(1-m)x 1+mx 2(m>0),可变为x 2-x 1ln x 2x 1<(1-m)x 1+mx 2,两边同时除以x 1得,x 2x 1-1ln x 2x 1<1-m +mx 2x 1,(10分)令t =x 2x 1,则t -1ln t <1-m +mt 在t ∈(1,+∞)上恒成立.因为1-m +mt>0,ln t>0, 所以ln t -t -11-m +mt>0在t ∈(1,+∞)上恒成立,(11分)令k(t)=ln t -t -11-m +mt ,则k′(t)=(t -1)[m 2t -(m -1)2]t (1-m +mt )2=m 2(t -1)⎣⎡⎦⎤t -(m -1)2m 2t (1-m +mt )2,①当(m -1)2m 2≤1,即m ≥12时,k′(t)>0在(1,+∞)上恒成立,则k(x)在(1,+∞)上单调递增,又k(1)=0,则k(t)>0在(1,+∞)上恒成立;(13分) ②当(1-m )2m 2>1,即0<m<12时,当t ∈⎝⎛⎭⎫1,(1-m )2m 2时,k′(t)<0, 则k(x)在⎝⎛⎭⎫1,(1-m )2m 2上单调递减, 则k(x)<k(1)=0,不符合题意.(15分) 综上,m ≥12.(16分)21. 因为y =3cos ⎝⎛⎭⎫2x -π3,所以y′=-6sin ⎝⎛⎭⎫2x -π3,(4分) 所以函数图象在x =5π12处的切线斜率k =-6sin ⎝⎛⎭⎫5π6-π3=-6.(6分) 当x =5π12时,y =3cos ⎝⎛⎭⎫5π6-π3=0,(7分) 所以所求切线方程为y -0=-6⎝⎛⎭⎫x -5π12, 即y =-6x +5π2.(10分)22. 设点M(x ,y),点B(x 0,y 0). 因为M 为AB 的中点,所以x =x 0-22,y =y 0+02,(4分) 所以x 0=2x +2,y 0=2y.(6分)将点B(x 0,y 0)代入圆x 2+y 2-8x +12=0得(2x -2)2+4y 2=4,化简得(x -1)2+y 2=1. 即点M 的轨迹方程为(x -1)2+y 2=1.(10分)23. (1) 在直三棱柱ABCA 1B 1C 1中,有AB ⊥AC ,AA 1⊥AB ,AA 1⊥AC ,故可以{AB →,AC →,AA 1→}为正交基底,建立如图所示的空间直角坐标系.(1分) 因为AB =2,AC =4,AA 1=3,所以A(0,0,0),B(2,0,0),C(0,4,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3). 因为D 是BC 的中点,所以D(1,2,0).所以DC 1→=(-1,2,3).设n 1=(x 1,y 1,z 1)为平面A 1B 1D 的法向量,因为A 1B 1→=(2,0,0),B 1D →=(-1,2,-3),所以⎩⎪⎨⎪⎧A 1B 1→·n 1=0,B 1D →·n 1=0,即⎩⎪⎨⎪⎧2x 1=0,-x 1+2y 1-3z 1=0, 令y 1=3,则x 1=0,z 1=2,所以平面A 1B 1D 的一个法向量为n 1=(0,3,2).(3分) 设直线DC 1与平面A 1B 1D 所成的角为θ,则sin θ=|cos DC 1→,n 1|=1213×14=618291, 所以直线DC 1与平面A 1B 1D 所成角的正弦值为618291.(5分) (2) 由(1)知DC 1→=(-1,2,3),B 1C 1→=(-2,4,0),设n 2=(x 2,y 2,z 2)为平面B 1DC 1的法向量,则⎩⎪⎨⎪⎧DC 1→·n 2=0,B 1C 1→·n 2=0,即⎩⎪⎨⎪⎧-x 2+2y 2+3z 2=0,-2x 2+4y 2=0, 令x 2=2,则y 2=1,z 2=0,所以平面B 1DC 1的一个法向量为n 2=(2,1,0).(7分) 同理可以求得平面A 1DC 1的一个法向量n 3=(3,0,1), 所以cos n 2,n 3=610×5=325,(9分) 由图可知二面角B 1DC 1A 1的余弦值为325.(10分)24. (1) A1=(x2+y2)cosθ=(x2+y2)·x2-y2x2+y2=x2-y2,(1分)B1=(x2+y2)sinθ=(x2+y2)·2xyx2+y2=2xy.(2分)(2) ①当n=1时,由(1)得A1=x2-y2,B1=2xy.因为x,y为整数,所以A1,B1均为整数,所以结论成立;(4分)②当n=k(k≥2,k∈N*)时,假设A k,B k均为整数,则当n=k+1时,A k+1=(x2+y2)k+1cos (k+1)θ=(x2+y2)(x2+y2)k(cos kθcos θ-sin kθsin θ)=(x2+y2)cos θ·(x2+y2)k cos kθ-(x2+y2)k sin kθ·(x2+y2)sin θ=A1·A k-B1·B k.(9分)因为A1,B1,均为整数,所以A k+1也为整数,即当n=k+1时,结论也成立.综合①②得,对一切正整数n,A n均为整数.(10分)。
2020届高三第一次调研检测卷数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(共14题)、解答题(共6题),满分为160分,考试时间 为120分钟。
考试结束后,请将答题卡交回。
2. 答题前,请您务必将自己的姓名、考试证号等用书写黑色字迹的0.5毫米签字笔填写 在答题卡上。
3. 作答试题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位 置作答一律无效。
如有作图需要,可用2B 铅笔作答,并请加黑、加粗,描写清楚。
参考公式: 锥体的体积公式1=3V Sh 锥体, 其中为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答題卡相应位置1. 己知集合{1,1,2},{1,2,4}A B =-=,则A B =▲.2. 设i 为虚数单位,则复数的实部为 ▲.3. 某校共有学生2 400人,其中高三年级600人.为了解各年级学生的兴趣爱好情况,用分层抽样的方法从全校学生中抽取容量为100的样本,则高三年级应抽取的学生人数为 ▲.4. 若从甲、乙、丙、丁 4位同学中选出3名代表参加学 校会议,则甲被选中的概率为 ▲.5. 在如图所示的算法流程图中,若输出的y 的值为-2,则输入的的值为▲.6. 已知双曲线2221(0)x y a a-=>的焦距为4,则的值为▲. 7. 不等式23122x x --<的解集为▲.8. 在棱长为2的正方体1111ABCD A B C D -中,点是棱1BB 的中点,则三棱锥11D DEC -的体积为▲ . 9. 已知等比数列{}n a 的前项和为n S .若2361,80a a a =+=,则5S 的值为▲.10. 将函数()sin()4f x x π=+的图象向右平移个单位,得到函数的图象.则“34πϕ=”是“函数()g x 为偶函数”的 ▲ 条件.(从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中选填一个)11. 已知函数()()x f x ax b e =+,若曲线()y f x =在点处的切线方程为310x y -+=,则的值为▲.12. 设.0,0,24x y x y >>+=,则(4)(2)x y xy++的最小值为▲. 13. 已知()f x 是定义在上且周期为3的周期函数,当(0,3]x ∈时,()11f x x =--. 若函数()log (01)a y f x x a a =->≠且在(0,)+∞上有3个互不相同的零点,则实数的取值范围是▲.14. 在平面直角坐标系xOy 中,(2,2),(0,4)P Q -为两个定点,动点在直线1x =-上, 动点满足2216NO NQ +=,则PM PN +的最小值为▲.二、解答题:本大题共6小题,共90分.请在答題卡指定区域内作答.解答时应写出文字 说明、证明过程或演算步骤.15. (本小题满分14分)如图,在四棱锥中,四边形是平行四边形,相交于点,OP OC =,为PC 的中点,.(1) 求证:平面;(2) 求证:平面16. (本小题满分14分) 在ABC 中,角,,A B C 的对边分别为,,a b c .已知向量(sin(),1)6a A π=+-,向量(1,cos )b A =,且12a b ⋅=. (1)求角的大小;(2)若4,5b c ==,求sin 2B 的值.17. (本小题满分14分)设数列{}n a 的各项均为正数,{}n a 的前n 项和21(2),8n n S a n N *=+∈ (1)求数列{}n a 的通项公式;(2)设等比数列{}n b 的首项为2,公比为(0)q q >,前n 项和为n T .若存在正整数m ,使得33m S S T =⋅,求q 的值.18.(本小题满分16分)如图,某沿海地区计划铺设一条电缆联通,A B 两地,A 地位于东西方向的直线MN 上的陆地处,B 地位于海上一个灯塔处,在A 地用测角器测得4BAN π∠=,在A 地正西方向4km 的点C 处,用测角器测得tan 3BCN ∠=. 拟定铺设方案如下:在岸MN 上选一点P ,先沿线段AP 在地下铺设,再沿线段PB 在水下铺设.预算地下、水下的 电缆铺设费用分别为2万元/km 和4万元/km ,设BPN θ∠=,,42ππθ⎛⎫∈ ⎪⎝⎭,铺设电缆的总费用为()f θ万元. (1)求函数()f θ的解析式;(2)试问点P 选在何处时,铺设的总费用最少,并说明理由.19. (本小题满分16分)在平面直角坐标系xOy 中,己知椭圆2222:1(0)43x y C t t t-=>的左、右顶点为,A B , 右焦点为F .过点A 且斜率为的直线交椭圆于另一点.(1)求椭圆的离心率;(2)若12k =,求22PA PB 的值; (3)设直线:2l x t =,延长AP 交直线l 于点Q ,线段BQ 的中点为E ,求证:点关于直线的对称点在直线PF 上。
S ←0I ←1While I <6I ←I +1S ←S +IEnd WhilePrint S(第4题)徐州市2019~2020学年度高三年级第一次质量检测数学I参考公式:1.样本数据1x ,2x ,…,n x 的方差2211(n i i s x x n ==-∑,其中11ni i x x n ==∑;2.圆锥的体积13V Sh =,其中S 是圆锥的底面圆面积,h 是高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应.....位置上....1.已知集合{|02}A x x =<<,{|11}B x x =-<<,则A B =▲.2.已知复数z 满足24z =-,且z 的虚部小于0,则z =▲.3.若一组数据7,x ,6,8,8的平均数为7,则该组数据的方差是▲.4.执行如图所示的伪代码,则输出的结果为▲.5.函数()f x =的定义域为▲.6.某学校高三年级有A ,B 两个自习教室,甲、乙、丙3名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为▲.7.若关于x 的不等式230x mx -+<的解集是(1,3),则实数m 的值为▲.8.在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与渐近线的交点在抛物线22y px =上,则实数p 的值为▲.注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(共14题)、解答题(共6题),满分为160分,考试时间为120分钟。
考试结束后,请将答题卡交回。
2.答题前,请您务必将自己的姓名、考试号等用书写黑色字迹的0.5毫米签字笔填写在答题卡上。
3.作答题目必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。
如有作图需要,可用2B 铅笔作答,并请加黑、加粗,描写清楚。
9.已知等差数列{}a 的前n 项和为n S ,298a a +=,55S =-,则15S 的值为▲.10.已知函数2y x =的图象与函数cos 2y x =的图象相邻的三个交点分别是A ,B ,C ,则ABC △的面积为▲.11.在平面直角坐标系xOy 中,已知圆M :2248120x y x y +--+=,圆N 与圆M 外切于点(0,)m ,且过点(0,2)-,则圆N 的标准方程为▲.12.已知函数)(x f 是定义在R 上的奇函数,其图象关于直线1x =对称,当]1,0(∈x 时,()e ax f x =-(其中e 是自然对数的底数),若(2020ln 2)8f -=,则实数a 的值为▲.13.如图,在ABC △中,D ,E 是BC 上的两个三等分点,2AB AD AC AE ⋅=⋅ ,则cos ADE ∠的最小值为▲.14.设函数3()||f x x ax b =--,[1,1]x ∈-,其中a ,b ∈R .若()f x M ≤恒成立,则当M 取得最小值时,a b +的值为▲.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)如图,在三棱锥P -ABC 中,AP AB =,M ,N 分别为棱PB ,PC 的中点,平面PAB ⊥平面PBC .(1)求证:BC∥平面AMN ;(2)求证:平面AMN ⊥平面PBC .16.(本小题满分14分)在ABC △中,角A,B ,C 的对边分别为a ,b ,c ,且cos 5A =.(1)若5a =,c =,求b 的值;(2)若4B π=,求tan 2C 的值.A P NM CB(第15题)A (第13题)B CD E如图,在圆锥SO 中,底面半径R 为3,母线长l 为5.用一个平行于底面的平面去截圆锥,截面圆的圆心为1O ,半径为r .现要以截面圆为底面,圆锥底面圆心O 为顶点挖去一个倒立的小圆锥,记小圆锥的体积为V .(1)将V 表示成r 的函数;(2)求小圆锥的体积V 的最大值.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a b y a x C 的右顶点为A ,过点A作直线l 与圆222b y x O =+:相切,与椭圆C 交于另一点P ,与右准线交于点Q .设直线l 的斜率为k .(1)用k 表示椭圆C 的离心率;(2)若0=⋅,求椭圆C 的离心率.A (第17题)BOSMN O 1(第18题)O xy A QPl已知函数1()()ln f x a x x=-()a ∈R .(1)若曲线()y f x =在点(1,(1))f 处的切线方程为10x y +-=,求a 的值;(2)若()f x 的导函数()f x '存在两个不相等的零点,求实数a 的取值范围;(3)当2a =时,是否存在整数λ,使得关于x 的不等式()f x λ≥恒成立?若存在,求出λ的最大值;若不存在,说明理由.20.(本小题满分16分)已知数列{}n a 的首项13a =,对任意的*n ∈N ,都有11n n a ka +=-(0k ≠),数列{1}n a -是公比不为1的等比数列.(1)求实数k 的值;(2)设4n nn n b a n -, ,⎧⎪=⎨-1, ,⎪⎩为奇数为偶数数列{}n b 的前n 项和为n S ,求所有正整数m 的值,使得221m m S S -恰好为数列{}n b 中的项.徐州市2019~2020学年度高三年级第一次质量检测数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,.并在相应的答题区域内作答.............若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵231t ⎡⎤=⎢⎥⎣⎦M 的一个特征值为4,求矩阵M 的逆矩阵1-M .B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为(cos sin )12ρθθ+=,曲线C的参数方程为2sin x y θθ⎧=⎪⎨=⎪⎩,(θ为参数,θ∈R ).在曲线C 上求点M ,使点M 到l 的距离最小,并求出最小值.注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共2页,均为非选择题(第21~23题)。
江苏省苏州市2019-2020学年高考第一次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知1F 、2F 分别为双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,过1F 的直线l 交C 于A 、B 两点,O 为坐标原点,若1OA BF ⊥,22||||AF BF =,则C 的离心率为( )A .2B .5C .6D .7【答案】D 【解析】 【分析】作出图象,取AB 中点E ,连接EF 2,设F 1A =x ,根据双曲线定义可得x =2a ,再由勾股定理可得到c 2=7a 2,进而得到e 的值 【详解】解:取AB 中点E ,连接EF 2,则由已知可得BF 1⊥EF 2,F 1A =AE =EB , 设F 1A =x ,则由双曲线定义可得AF 2=2a+x ,BF 1﹣BF 2=3x ﹣2a ﹣x =2a , 所以x =2a ,则EF 2=23a ,由勾股定理可得(4a )2+(23a )2=(2c )2, 所以c 2=7a 2, 则e 7ca== 故选:D .【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有,,a b c 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.2.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B .3C .4D .5【答案】A 【解析】 【分析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果. 【详解】由三视图的性质和定义知,三棱锥P BCD -的正视图与侧视图都是底边长为2高为1的三角形,其面积都是11212⨯⨯=,正视图与侧视图的面积之和为112+=, 故选:A. 【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.3.若函数2()x f x x e a =-恰有3个零点,则实数a 的取值范围是( ) A .24(,)e +∞ B .24(0,)e C .2(0,4)e D .(0,)+∞【答案】B 【解析】 【分析】求导函数,求出函数的极值,利用函数2()xf x x e a =-恰有三个零点,即可求实数a 的取值范围.【详解】函数2xy x e =的导数为2'2(2)x x xy xe x e xe x =+=+,令'0y =,则0x =或2-,20x -<<上单调递减,(,2),(0,)-∞-+∞上单调递增,所以0或2-是函数y 的极值点, 函数的极值为:224(0)0,(2)4f f ee -=-==, 函数2()xf x x e a =-恰有三个零点,则实数的取值范围是:24(0,)e. 故选B. 【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大. 4.已知函数()(0)f x x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点分别为1x ,2x ,3x ,则( ) A .123x x x << B .213x x x << C .231x x x << D .312x x x <<【答案】C 【解析】 【分析】转化函数()(0)f x x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点为y x =与(0)y x x =>,x y e =-,()ln 0y x x =->的交点,数形结合,即得解.【详解】 函数()(0)f x x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点,即为y x =与(0)y x x =>,x y e =-,()ln 0y x x =->的交点,作出y x =与(0)y x x =>,x y e =-,()ln 0y x x =->的图象,如图所示,可知231x x x << 故选:C 【点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.5.已知向量(,1)a m =r ,(1,2)b =-r ,若(2)a b b -⊥r r r ,则a r 与b r夹角的余弦值为( )A.13-B.13C.65-D.65【答案】B 【解析】 【分析】直接利用向量的坐标运算得到向量2a b -r r 的坐标,利用(2)=0a b b -⋅r r r 求得参数m ,再用cos ,||||a ba b a b ⋅〈〉=r rr r r r计算即可. 【详解】依题意,2(2,3)a b m -=+-r r , 而(2)=0a b b -⋅r r r, 即260m ---=, 解得8m =-,则cos ,13||||a b a b a b ⋅〈〉===r rr r r r .故选:B. 【点睛】本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.6.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以333a b a b +=+=≥, 故34a b +≥(当且仅当a b =时取等号). 又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.7.已知复数z 满足i•z =2+i ,则z 的共轭复数是() A .﹣1﹣2i B .﹣1+2iC .1﹣2iD .1+2i【答案】D 【解析】 【分析】两边同乘-i ,化简即可得出答案. 【详解】i•z =2+i 两边同乘-i 得z=1-2i,共轭复数为1+2i ,选D. 【点睛】(,)z a bi a b R =+∈的共轭复数为z a bi =-8.如图所示是某年第一季度五省GDP 情况图,则下列说法中不正确的是( )A .该年第一季度GDP 增速由高到低排位第3的是山东省B .与去年同期相比,该年第一季度的GDP 总量实现了增长C .该年第一季度GDP 总量和增速由高到低排位均居同一位的省份有2个D .去年同期浙江省的GDP 总量超过了4500亿元 【答案】D 【解析】 【分析】根据折线图、柱形图的性质,对选项逐一判断即可. 【详解】由折线图可知A 、B 项均正确,该年第一季度GDP 总量和增速由高到低排位均居同一位的 省份有江苏均第一.河南均第四.共2个.故C 项正确;4632.1(1 3.3%)44844500÷+≈<. 故D 项不正确. 故选:D. 【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题. 9.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( ) A .23-B .23C .3D .-3【答案】B 【解析】 【分析】把22z m i =-和 113z i =+代入12z z ⋅再由复数代数形式的乘法运算化简,利用虚部为0求得m 值. 【详解】因为()()()()12132632z z i m i m m i ⋅=+-=++-为实数,所以320m -=,解得23m =. 【点睛】本题考查复数的概念,考查运算求解能力.10.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ). A .16 B .283C .5D .4【答案】D 【解析】 【分析】由76523a a a =+,可得3q =,由219m n a a a ⋅=,可得4m n +=,再利用“1”的妙用即可求出所求式子的最小值. 【详解】设等比数列公比为(0)q q >,由已知,525523a a q a q =+,即223q q =+,解得3q =或1q =-(舍),又219m n a a a ⋅=,所以211111339m n a a a --⋅=,即2233m n +-=,故4m n +=,所以1914m n +=1919()()(10)4n m m n m n m n++=++ 1(1044≥+=,当且仅当1,3m n ==时,等号成立. 故选:D. 【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.11.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PABV 的面积为S ,则S AB -的最小值为( ) A .94-B .274-C .3227-D .6427-【答案】D 【解析】 【分析】设出,A B 坐标,联立直线方程与抛物线方程,利用弦长公式求得AB ,再由点到直线的距离公式求得P 到AB 的距离,得到PAB ∆的面积为S ,作差后利用导数求最值.【详解】设()11,A x y ,()22,B x y ,联立214y kx x y=+⎧⎨=⎩,得2440x kx --=则124x x k +=,()21212242y y k x x k +=++=+则21244AB y y p k =++=+由24x y =,得24x y =12y x ⇒'= 设()00,P x y ,则012x k = 02x k ⇒=,20y k =则点P 到直线1y kx =+的距离1d =≥从而()21212S AB d k =⋅=+()()()22322141241S AB k k d d d -=++=-≥.令()3224f x x x =- ()()2681f x x x x ⇒-'=≥当413x ≤≤时,()0f x '<;当43x >时,()0f x '>故()min 464327f x f ⎛⎫==-⎪⎝⎭,即S AB -的最小值为6427- 本题正确选项:D本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.12.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n 的值为10,则输出i 的值为( )A .5B .6C .7D .8【答案】B 【解析】 【分析】根据程序框图列举出程序的每一步,即可得出输出结果. 【详解】输入10n =,1n =不成立,n 是偶数成立,则1052n ==,011i =+=; 1n =不成立,n 是偶数不成立,则35116n =⨯+=,112i =+=; 1n =不成立,n 是偶数成立,则1682n ==,213i =+=; 1n =不成立,n 是偶数成立,则842n ==,314i =+=;1n =不成立,n 是偶数成立,则422n ==,415i =+=;1n =不成立,n 是偶数成立,则212n ==,516i =+=;1n =成立,跳出循环,输出i 的值为6.本题考查利用程序框图计算输出结果,考查计算能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。
2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。
2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。
已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。
6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。
设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。
若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。
e)。
11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。
现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。
江苏省南京市2019-2020学年高考第一次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知01a b <<<,则( )A .()()111bba a ->- B .()()211b ba a ->- C .()()11ab a b +>+ D .()()11a ba b ->-【答案】D 【解析】 【分析】根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案. 【详解】因为01a <<,所以011a <-<,所以()1xy a =-是减函数, 又因为01b <<,所以1b b >,2b b >, 所以()()111b b a a -<-,()()211bb a a -<-,所以A,B 两项均错; 又111a b <+<+,所以()()()111aaba b b +<+<+,所以C 错; 对于D ,()()()111abba ab ->->-,所以()()11aba b ->-, 故选D. 【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.2.已知函数()xe f x ax x=-,(0,)x ∈+∞,当21x x >时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A .(,]e -∞ B .(,)e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦ 【答案】D 【解析】 【分析】 由()()1221f x f x x x <变形可得()()1122x fx x f x <,可知函数()()g x xf x =在(0,)x ∈+∞为增函数, 由()20x g x e ax '=-≥恒成立,求解参数即可求得取值范围.【详解】(0,),x ∈+∞Q()()1122x f x x f x ∴<,即函数2()()x g x xf x e ax ==-在(0,)x ∈+∞时是单调增函数.则()20xg x e ax '=-≥恒成立.2xe a x∴≤.令()x e m x x =,则2(1)()xx e m x x-'= (0,1)x ∈时,()0,()m x m x '<单调递减,(1,)x ∈+∞时()0,()m x m x '>单调递增.min 2()(1),2ea m x m e a ∴≤==∴≤故选:D. 【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.3.已知命题:p x R ∀∈,20x >,则p ⌝是( ) A .x ∀∈R ,20x ≤B .0x ∃∈R ,200x ≤.C .0x ∃∈R ,200x >D .x ∀∉R ,20x ≤.【答案】B 【解析】 【分析】根据全称命题的否定为特称命题,得到结果. 【详解】根据全称命题的否定为特称命题,可得0:p x R ⌝∃∈,200x ≤本题正确选项:B 【点睛】本题考查含量词的命题的否定,属于基础题.4.已知非零向量,a b r r 满足0a b ⋅=r r ,||3a =r ,且a r 与a b +r r 的夹角为4π,则||b =r ( )A .6B .C .D .3【答案】D 【解析】 【分析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可. 【详解】解:非零向量a r ,b r 满足0a b =r r g ,可知两个向量垂直,||3a =r ,且a r 与a b+r r 的夹角为4π, 说明以向量a r ,b r为邻边,a b +r r 为对角线的平行四边形是正方形,所以则||3b =r .故选:D . 【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.5.若关于x 的不等式1127k xx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( )A .9B .8C .7D .6【答案】A 【解析】 【分析】根据题意可将1127kxx ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3x x k ≥,令()ln xf x x=,利用导数,判断其单调性即可得到实数k 的最小值. 【详解】因为不等式有正整数解,所以0x >,于是1127k xx ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3k xx≥, 1x =显然不是不等式的解,当1x >时,ln 0x >,所以ln 3ln 3k x x ≥可变形为ln 3ln 3x x k≥. 令()ln x f x x =,则()21ln xf x x -'=,∴函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,而23e <<,所以 当*x ∈N 时,()(){}max ln 3max 2,33f f f ==,故ln 33ln 33k≥,解得9k ≥.故选:A . 【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.6.设22(1)1z i i=+++(i 是虚数单位),则||z =( )A B .1C .2D 【答案】A 【解析】 【分析】先利用复数代数形式的四则运算法则求出z ,即可根据复数的模计算公式求出||z . 【详解】∵22)1121(1z i i i i i=-+=+=+++,∴||z == 故选:A . 【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用, 属于容易题.7.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且满足()()f x f x ϕϕ+=-,则要得到函数()f x 的图像,可将函数()sin g x x ω=的图像( ) A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 【答案】C 【解析】 【分析】依题意可得2ω=,且x ϕ=是()f x 的一条对称轴,即可求出ϕ的值,再根据三角函数的平移规则计算可得; 【详解】解:由已知得2ω=,x ϕ=是()f x 的一条对称轴,且使()f x 取得最值,则3πk ϕ=,π3ϕ=,π5ππ()cos 2cos 23122f x x x ⎡⎤⎛⎫⎛⎫=+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,π()sin 2cos 22g x x x ⎛⎫==- ⎪⎝⎭,故选:C. 【点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.8.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到A 、B 、C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到A 县的分法有( )A .6种B .12种C .24种D .36种【答案】B 【解析】 【分析】分成甲单独到A 县和甲与另一人一同到A 县两种情况进行分类讨论,由此求得甲被派遣到A 县的分法数. 【详解】如果甲单独到A 县,则方法数有22326C A ⨯=种.如果甲与另一人一同到A 县,则方法数有12326C A ⨯=种.故总的方法数有6612+=种. 故选:B 【点睛】本小题主要考查简答排列组合的计算,属于基础题.9.已知直线l :310kx y k --+=与椭圆22122:1(0)x yC a b a b+=>>交于A 、B 两点,与圆2C :()()22311x y -+-=交于C 、D 两点.若存在[]2,1k ∈--,使得AC DB =u u u r u u u r,则椭圆1C 的离心率的取值范围为( ) A.,33⎣⎦B.3C.(0,3D.3【答案】A 【解析】 【分析】由题意可知直线过定点即为圆心,由此得到,A B 坐标的关系,再根据点差法得到直线的斜率k 与,A B 坐标的关系,由此化简并求解出离心率的取值范围. 【详解】设()()1122,,,A x y B x y ,且线:310l kx y k --+=过定点()3,1即为2C 的圆心,因为AC DB =u u u r u u u r ,所以1212236212C D C D x x x x y y y y +=+=⨯=⎧⎨+=+=⨯=⎩,又因为2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--, 所以2121221212y y x x b x x a y y -+=-⋅-+,所以[]2232,1b k a=-∈--,所以2212,33b a ⎡⎤∈⎢⎥⎣⎦,所以22212,33a c a -⎡⎤∈⎢⎥⎣⎦,所以()2121,33e ⎡⎤-∈⎢⎥⎣⎦,所以e ∈⎣⎦. 故选:A. 【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.10.已知0x =是函数()(tan )f x x ax x =-的极大值点,则a 的取值范围是 A .(,1)-∞- B .(,1]-∞ C .[0,)+∞ D .[1,)+∞【答案】B 【解析】 【分析】 【详解】方法一:令()tan g x ax x =-,则(())f x x g x =⋅,21()cos g'x a x=-, 当1a ≤,(,)22x ππ∈-时,'()0g x ≤,()g x 单调递减, ∴(,0)2x π∈-时,()(0)0g x g >=,()()0f x x g x =⋅<,且()()()>0f x xg'x g x '=+,∴()0f 'x >,即()f x 在(,0)2π-上单调递增,(0,)2x π∈时,()(0)0g x g <=,()()0f x x g x =⋅<,且()()+()<0f 'x =xg'x g x ,∴()0f 'x <,即()f x 在(0,)2π上单调递减,∴0x =是函数()f x 的极大值点,∴1a ≤满足题意;当1a >时,存在(0,)2t π∈使得cos t =,即'()0g t =,又21()cos g'x a x =-在(0,)2π上单调递减,∴,()0x t ∈时,()(0)0g x g >=,所以()()0f x x g x =⋅>, 这与0x =是函数()f x 的极大值点矛盾. 综上,1a ≤.故选B .方法二:依据极值的定义,要使0x =是函数()f x 的极大值点,须在0x =的左侧附近,()0f x <,即tan 0ax x ->;在0x =的右侧附近,()0f x <,即tan 0ax x -<.易知,1a =时,y ax =与tan y x =相切于原点,所以根据y ax =与tan y x =的图象关系,可得1a ≤,故选B .11.若变量,x y ,满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值为( )A .3B .2C.8113D .10【答案】D 【解析】 【分析】画出约束条件的可行域,利用目标函数的几何意义求解最大值即可. 【详解】解:画出满足条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩的平面区域,如图示:如图点坐标分别为()()()0,3,3,1,0,2A B C --, 目标函数22xy +的几何意义为,可行域内点(),x y 与坐标原点()0,0的距离的平方,由图可知()3,1B -到原点的距离最大,故()()x2222ma 0311x y ++-==.故选:D【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题. 12.设 2.71828...e ≈为自然对数的底数,函数()1xxf x e e-=--,若()1f a =,则()f a -=( )A .1-B .1C .3D .3-【分析】利用()f a 与()f a -的关系,求得()f a -的值. 【详解】依题意()11,2aaa a f a e ee e --=--=-=,所以()()11213aa a a f a e e e e ---=--=---=--=-故选:D 【点睛】本小题主要考查函数值的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
扬州市2019~2020学年度高三年级第一次质量检测 数 学 试 题 Ⅰ(全卷满分160分,考试时间120分钟)注意事项:1.答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方.2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题:本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上. 1.已知集合{1,2},A k =-{2,4}B =,且{2}AB =,则实数k 的值为________.2.设2(13)i a bi +=+(,)a b R ∈,其中i 是虚数单位,则a b +=________.3.用分层抽样方法从某校三个年级学生中抽取一个容量为90的样本,在高一抽40人,高二抽30人,若高三有400人,则该校共有________人.4.右图是一个算法流程图,若输入x 的值为1,则输出S 的值为________.5.已知a ∈R ,则“0a =”是“函数()2(sin )f x x a x =+为偶函数”的________条件.(填“充要”、“充分不必要”、“必要不充分”或“既不充分也不必要").6.若一组样本数据21,19,x ,20,18的平均数为20,则该组样本数据的方差为________.7.在平面直角坐标系xOy 中,顶点在原点且以双曲线2213y x -=的右准线为准线的抛物线方程是________. 8.已知{(,)|4,0,0},x y x y x y Ω=+<>>{(,)|2,0,0}A x y x y x y =<>->,若向区域Ω随机投掷一点P ,则点P 落入区域A 的概率为________.9.等差数列{}n a 的公差不为零,首项11,a =2a 是1a 和5a 的等比中项,则159246a a a a a a ++=++________.10.已知定义在(0,)+∞上的函数()f x 的导函数为()f x ',且()()0xf x f x '+<,则(1)(1)(3)3x f x f -->的解集为________.11.已知圆台的一个底面周长是另一个底面周长的3倍,圆台的高为,母线与轴的夹角为30︒,则这个圆台的轴截面的面积等于________2cm .12.已知函数13,1()22ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在实数,m n ()m n <满足()()f m f n =,则2n m -的取值范围为________.13.在ABC中,若sin cos B B +=sin 2tan tan AB C+的最大值为________.14.在平面直角坐标系xOy 中,A 和B 是圆22:(1)1C x y -+=上两点,且AB =,点P 的坐标为(2,1),则|2|PA PB -的取值范围为________.二、解答题:本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分14分)知2()cos 2cos 1f x x x x =⋅+-.(1)求函数()f x 的单调递增区间;(2)若0,,6πθ⎛⎫∈ ⎪⎝⎭3()2f θ=,求2sin 2θ的值.16.(本小题满分14分)如图,ABC 是以BC 为底边的等腰三角形,DA ,EB 都垂直于平面ABC ,且线段DA的长度大于线段EB 的长度,M 是BC 的中点,N 是ED 的中点. 求证:(1)AM ⊥平面EBC ;(2)MN ∥平面DAC.17.(本小题满分14分)如图是一个半径为1千米的扇形景点的平面示意图,23AOB π∠=.原有观光道路OC ,且OC OB ⊥.为便于游客观赏,景点管理部门决定新建两条道路PQ 、PA ,其中P 在原道路OC (不含端点O 、C )上,Q 在景点边界OB 上,且OP OQ =,同时维修原道路的OP 段,因地形原因,新建PQ 段、PA万元、6a 万元,维修OP 段的每千米费用是a 万元.(1)设APC θ∠=,求所需总费用()f θ,并给出θ的取值范围; (2)当P 距离O 处多远时,总费用最小.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1x y C a b +=(0)a b >>的离心率为12,右准线的方程为4,x =1,F 2F 分别为椭圆C 的左、右焦点,A ,B 分别为椭圆C 的左、右顶点. (1)求椭圆C 的标准方程;(2)过(,0)T t ()t a >作斜率为k (0)k <的直线l 交椭圆C 于M ,N 两点(点M 在点N 的左侧),且12F M F N ∥,设直线AM ,BN 的斜率分别为1,k 2k ,求12k k ⋅的值.19.(本小题满分16分)已知函数()(ln 1),f x x x =-()g x ax b =+(,)a b ∈R .(1)若1a =时,直线()y g x =是曲线()f x 的一条切线,求b 的值; (2)若be a=-,且()()f x g x ≥在[,)x e ∈+∞上恒成立,求a 的取值范围; (3)令()()()x f x g x ϕ=-,且()x ϕ在区间2,e e ⎡⎤⎣⎦上有零点,求24a b +的最小值.20.(本小题满分16分)对于项数为m (*m ∈N 且1m >)的有穷正整数数列{}n a ,记{}12min ,,,k k b a a a =⋅⋅⋅(1,2,,)k m =⋅⋅⋅,即k b 为12,,,k a a a ⋅⋅⋅中的最小值,设由123,,,,m b b b b ⋅⋅⋅组成的数列{}n b 称为{}n a 的“新型数列”.(1)若数列{}n a 为2019,2020,2019,2018,2017,请写出{}n a 的“新型数列”{}n b 的所有项;(2)若数列{}n a 满足101,6222,7n n n a n n -⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪-≥⎩,且其对应的“新型数列”{}n b 项数[21,30]m ∈,求{}n b 的所有项的和;(3)若数列{}n a 的各项互不相等且所有项的和等于所有项的积,求符合条件的{}n a 及其对应的“新型数列”{}n b .。
高三第一次模拟考试数 学注意事项:1. 本试卷共160分,考试时间120分钟.2. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 一、 填空题:本大题共14小题,每小题5分,共70分.1. 设集合A ={x |x >0},B ={x |-2<x <1},则A ∩B =________.2. 设复数z 满足(1+i)z =1-3i(其中i 是虚数单位),则z 的实部为________.3. 有A ,B ,C 三所学校,学生人数的比例为3∶4∶5,现用分层抽样的方法招募n 名志愿者,若在A 学校恰好选出9名志愿者,那么n =________.错误!4. 史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为________.5. 执行如图所示的伪代码,则输出x 的值为________.6. 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,2x -y ≤0,x ≥0,则z =x +y 的取值范围是________.7. 在四边形ABCD 中,已知AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 是不共线的向量,则四边形ABCD 的形状是________.8. 以双曲线x 25-y 24=1的右焦点为焦点的抛物线的标准方程是________.9. 已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于________.10. 设公差不为零的等差数列{a n }满足a 3=7,且a 1-1,a 2-1,a 4-1成等比数列,则a 10=________.11. 已知θ是第四象限角,则cos θ=45,那么sin ⎝⎛⎭⎫θ+π4cos (2θ-6π)的值为________.12. 已知直线y =a (x +2)(a >0)与函数y =|cos x |的图象恰有四个公共点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),其中x 1<x 2<x 3<x 4,则x 4+1tan x 4=________.13. 已知点P 在圆M :(x -a )2+(y -a +2)2=1上,A ,B 为圆C :x 2+(y -4)2=4上两动点,且AB =23,则P A →·PB →的最小值是________.14. 在锐角三角形ABC中,已知2sin2A+sin2B=2sin2C,则1tan A+1tan B+1tan C的最小值为________.二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC中,设a,b,c分别是角A,B,C的对边,已知向量m=(a,sinC-sin B),n=(b+c,sin A+sin B),且m∥n.(1) 求角C的大小;(2) 若c=3,求△ABC周长的取值范围.16. (本小题满分14分)在四棱锥P ABCD中,锐角三角形P AD所在平面垂直于平面P AB,AB⊥AD,AB⊥BC.(1) 求证:BC∥平面P AD;(2) 求证:平面P AD⊥平面ABCD.(第16题)17. (本小题满分14分)十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x户(x∈Z,1≤x≤9)从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高x20,而从事包装、销售农户的年纯收入每户平均为⎝⎛⎭⎫3-14x万元.(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728)(1) 至2020年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于1万6千元),至少抽出多少户从事包装、销售工作?(2) 至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点⎝⎛⎭⎫3,12,点P 在第四象限,A 为左顶点,B 为上顶点,P A 交y 轴于点C ,PB 交x 轴于点D . (1) 求椭圆C 的标准方程; (2) 求△PCD 面积的最大值.(第18题)19. (本小题满分16分)已知函数f(x)=e x -a2x 2-ax(a>0).(1) 当a =1时,求证:对于任意x>0,都有f(x)>0成立;(2) 若y =f(x)恰好在x =x 1和x =x 2两处取得极值,求证:x 1+x 22<ln a.20. (本小题满分16分)设等比数列{a n }的公比为q(q>0,q ≠1),前n 项和为S n ,且2a 1a 3=a 4,数列{b n }的前n 项和T n 满足2T n =n(b n -1),n ∈N *,b 2=1.(1) 求数列{a n },{b n }的通项公式;(2) 是否存在常数t ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列?请说明理由;(3) 设c n =1b n +4,对于任意给定的正整数k (k ≥2),是否存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列?若存在,求出l ,m (用k 表示);若不存在,请说明理由.江苏省无锡市2019届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 说明:解答时应写出必要的文字说明、证明过程或演算步骤. 21. (本小题满分10分)选修4-2:矩阵与变换 设旋转变换矩阵A =⎣⎢⎡⎦⎥⎤0-11 0,若⎣⎢⎡⎦⎥⎤a b 1 2·A =⎣⎢⎡⎦⎥⎤34c d ,求ad -bc 的值.22. (本小题满分10分)选修4-4: 坐标系与参数方程自极点O 作射线与直线ρcos θ=3相交于点M ,在OM 上取一点P ,使OM·OP =12,若Q 为曲线⎩⎨⎧x =-1+22t ,y =2+22t (t 为参数)上一点,求PQ 的最小值.23. (本小题满分10分)在平面直角坐标系xOy 中,曲线C 上的动点M(x ,y)(x>0)到点F(2,0)的距离减去M 到直线x =-1的距离等于1.(1) 求曲线C 的方程;(2) 若直线y =k(x +2)与曲线C 交于A ,B 两点,求证:直线FA 与直线FB 的倾斜角互补.24. (本小题满分10分)已知数列{a n }满足a 1=23,1a n -1=2-a n -1a n -1-1(n ≥2).(1) 求数列{a n }的通项公式;(2 )设数列{a n }的前n 项和为S n ,用数学归纳法证明:S n <n +12-ln .江苏省无锡市2019届高三第一次模拟考试数学参考答案及评分标准1. {x|0<x<1}2. -13. 364. 13 5. 256. [0,3]7. 梯形8. y 2=12x9. 3π 10. 21 11.5214 12. -2 13. 19-122 14. 13215. (1) 由m ∥n 及m =(a ,sin C -sin B ),n =(b +c ,sin A +sin B ), 得a (sin A +sin B )-(b +c )(sin C -sin B )=0,(2分) 由正弦定理,得a ⎝⎛⎭⎫a 2R +b 2R -(b +c )⎝⎛⎭⎫c 2R -b2R =0, 所以a 2+ab -(c 2-b 2)=0,得c 2=a 2+b 2+ab ,由余弦定理,得c 2=a 2+b 2-2ab cos C , 所以a 2+b 2+ab =a 2+b 2-2ab cos C , 所以ab =-2ab cos C ,(5分) 因为ab >0,所以cos C =-12,又因为C ∈(0,π),所以C =2π3.(7分) (2) 在△ABC 中,由余弦定理,得c 2=a 2+b 2-2ab cos C , 所以a 2+b 2-2ab cos 2π3=9,即(a +b )2-ab =9,(9分)所以ab =(a +b )2-9≤⎝⎛⎭⎫a +b 22,所以3(a +b )24≤9,即(a +b )2≤12,所以a +b ≤23,(12分)又因为a +b >c ,所以6<a +b +c ≤23+3,即周长l 满足6<l ≤3+23, 所以△ABC 周长的取值范围是(6,3+23].(14分) 16. (1) 因为AB ⊥AD ,AB ⊥BC ,且A ,B ,C ,D 共面, 所以AD ∥BC.(3分)(第16题)因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD.(5分)(2) 如图,过点D 作DH ⊥PA 于点H ,因为△PAD 是锐角三角形,所以H 与A 不重合.(7分)因为平面PAD ⊥平面PAB ,平面PAD ∩平面PAB =PA ,DH ⊂平面PAD , 所以DH ⊥平面PAD.(9分)因为AB ⊂平面PAB ,所以DH ⊥AB.(11分)因为AB ⊥AD ,AD ∩DH =D ,AD ,DH ⊂平面PAD , 所以AB ⊥平面PAD.因为AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD.(14分) 17. (1) 由题意得1×⎝⎛⎭⎫1+x203≥1.6, 因为5x<100-5x ,所以x<10且x ∈Z .(2分) 因为y =⎝⎛⎭⎫1+x203在x ∈[1,9]上单调递增, 由数据知,1.153≈1.521<1.6,1.23=1.728>1.6, 所以x20≥0.2,得x ≥4.(5分)又x <10且x ∈Z ,故x =4,5,6,7,8,9. 答:至少抽取20户从事包装、销售工作.(7分)(2) 假设该村户均纯收入能达到1.35万元,由题意得,不等式1100[5x ⎝⎛⎭⎫3-14x +⎝⎛⎭⎫1+x 20(100-5x )]≥1.35有正整数解,(8分)化简整理得3x 2-30x +70≤0,(10分) 所以-153≤x -5≤153.(11分) 因为3<15<4,且x ∈Z ,所以-1≤x -5≤1,即4≤x ≤6. (13分)答:至2018年底,该村户均纯收入能达到1万3千5百元,此时从事包装、销售的农户数为20户,25户,30户.(14分)18. (1) 由题意得⎩⎨⎧3a 2+14b 2=1,c a =32,a 2=b 2+c 2,得a 2=4,b 2=1,(4分) 故椭圆C 的标准方程为x 24+y 2=1.(5分)(2) 由题意设l AP :y =k(x +2),-12<k<0,所以C(0,2k),由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,消去y 得(1+4k 2)x 2+16k 2x +16k 2-4=0,所以x A x P =16k 2-41+4k 2,由x A =-2得x P =2-8k 21+4k 2,故y P =k(x P+2)=4k1+4k 2, 所以P ⎝ ⎛⎭⎪⎫2-8k 21+4k 2,4k 1+4k 2,(8分) 设D(x 0,0),因为B(0,1),P ,B ,D 三点共线,所以k BD =k PB ,故1-x 0=4k1+4k 2-12-8k 21+4k 2,解得x D=2(1+2k )1-2k ,得D ⎝⎛⎭⎪⎫2(1+2k )1-2k ,0,(10分)所以S △PCD =S △PAD -S △CAD =12×AD ×|y P -y C |=12⎣⎢⎡⎦⎥⎤2(1+2k )1-2k +2⎪⎪⎪⎪4k 1+4k 2-2k =4|k (1+2k )|1+4k 2,(12分)因为-12<k<0,所以S △PCD =-8k 2-4k 1+4k 2=-2+2×1-2k 1+4k 2,令t =1-2k ,1<t<2,所以2k =1-t ,所以g(t)=-2+2t 1+(1-t )2=-2+2t t 2-2t +2=-2+2t +2t -2≤-2+222-2=2-1,(14分) 当且仅当t =2时取等号,此时k =1-22,所以△PCD 面积的最大值为2-1.(16分)19. (1) 由f(x)=e x -12x 2-x ,则f′(x)=e x -x -1,令g(x)=f′(x),则g′(x)=e x -1,(3分)当x>0时,g′(x)>0,则f′(x)在(0,+∞)上单调递增, 故f′(x)>f′(0)=0,所以f(x)在(0,+∞)上单调递增,(5分)进而f(x)>f(0)=1>0,即对任意x>0,都有f(x)>0.(6分) (2) f′(x)=e x -ax -a ,因为x 1,x 2为f(x)的两个极值点,所以⎩⎪⎨⎪⎧f′(x 1)=0,f′(x 2)=0,即⎩⎪⎨⎪⎧e x 1-ax 1-a =0,e x 2-ax 2-a =0.两式相减,得a =e x 1-e x 2x 1-x 2,(8分)则所证不等式等价于x 1+x 22<ln e x 1-e x 2x 1-x 2,即e x 1+x22<e x 1-e x 2x 1-x 2,(10分)不妨设x 1>x 2,两边同时除以e x 2可得:ex 1-x 22<e x 1-x 2-1x 1-x 2,(12分)令t =x 1-x 2,t>0,所证不等式只需证明:e t 2<e t -1t ⇔t e t2-e t +1<0.(14分)设φ(t)=t et 2-e t +1,则φ′(t)=-e t2·⎣⎡⎦⎤e t2-⎝⎛⎭⎫t 2+1,因为e x ≥x +1,令x =t 2, 可得e t 2-⎝⎛⎭⎫t 2+1≥0,所以φ′(t)≤0,所以φ(t)在(0,+∞)上单调递减,φ(t)<φ(0)=0, 所以x 1+x 22<ln a .(16分)20. (1) 因为2a 1a 3=a 4,所以2a 1·a 1q 2=a 1q 3, 所以a 1=q 2,所以a n =q 2q n -1=12q n .(2分)因为2T n =n(b n -1),n ∈N *,①所以2T n +1=(n +1)(b n +1-1),n ∈N ,②②-①,得2T n +1-2T n =(n +1)b n +1-nb n -(n +1)+n ,n ∈N *, 所以2b n +1=(n +1)b n +1-nb n -(n +1)+n , 所以(n -1)b n +1=nb n +1,n ∈N *,③(4分)所以nb n +2=(n +1)b n +1+1,n ∈N ,④④-③得nb n +2-(n -1)b n +1=(n +1)b n +1-nb n ,n ∈N *, 所以nb n +2+nb n =2nb n +1,n ∈N *,所以b n +2+b n =2b n +1, 所以b n +2-b n +1=b n +1-b n ,所以{b n }为等差数列. 因为n =1时b 1=-1,又b 2=1, 所以公差为2,所以b n =2n -3.(6分)(2) 由(1)得S n =q 2(1-q n )1-q ,所以S n +12t =q 2(1-q n )1-q +12t =q n +t 2(q -1)+q 2(1-q )+12t ,要使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列,则通项必须满足指数型函数,即q 2(1-q )+12t=0,解得t =q -1q .(9分)此时S n +1+12t S n +12t =q n +22(q -1)q n +12(q -1)=q , 所以存在t =q -1q ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列.(10分)(3) c n =1b n +4=12n +1,设对于任意给定的正整数k (k ≥2),存在正整数l ,m (k <l <m ),使得c k ,c l ,c m 成等差数列,所以2c l =c k +c m ,所以22l +1=12k +1+12m +1.所以12m +1=22l +1-12k +1=4k -2l +1(2l +1)(2k +1).所以m =2kl -k +2l4k -2l +1=(-4k +2l -1)(k +1)+(2k +1)24k -2l +1=-k -1+(2k +1)24k -2l +1.所以m +k +1=(2k +1)24k -2l +1.因为给定正整数k (k ≥2),所以4k -2l +1能整除(2k +1)2且4k -2l +1>0, 所以4k -2l +1=1或2k +1或(2k +1)2.(14分)若4k -2l +1=1,则l =2k ,m =4k 2+3k ,此时m -l =4k 2+k >0,满足(k <l <m ); 若4k -2l +1=2k +1,则k =l ,矛盾(舍去);若4k -2l +1=(2k +1)2,则l =2k 2,此时m +k =0(舍去). 综上,任意给定的正整数k (k ≥2),存在正整数l =2k ,m =4k 2+3k ,使得c k ,c l ,c m 成等差数列.(16分)江苏省无锡市2019届高三第一次模拟考试数学附加题参考答案及评分标准21. 因为A =⎣⎢⎡⎦⎥⎤0-110,所以⎣⎢⎡⎦⎥⎤a b 12⎣⎢⎡⎦⎥⎤0-110=⎣⎢⎡⎦⎥⎤34cd ,得⎩⎪⎨⎪⎧b =3,-a =4,2=c ,-1=d ,(6分)即a =-4,b =3,c =2,d =-1,(8分)所以ad -bc =(-4)×(-1)-2×3=-2.(10分)22. 以极点O 为直角坐标原点,以极轴为x 轴的正半轴,建立直角坐标系,设P(ρ,θ),M(ρ′,θ), 因为OM·OP =12,所以ρρ′=12.因为ρ′cos θ=3,所以12ρcos θ=3,即ρ=4cos θ, (3分)化为直角坐标方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.(5分)由⎩⎨⎧x =-1+22t ,y =2+22t (t 为参数)得普通方程为x -y +3=0,(7分) 所以PQ 的最小值为圆上的点到直线距离的最小值,即PQ min =d -r =|2-0+3|2-2=522-2.(10分) 23. (1) 由题意得(x -2)2+y 2-|x +1|=1,(2分)即(x -2)2+y 2=|x +1|+1.因为x>0,所以x +1>0,所以(x -2)2+y 2=x +2,两边平方,整理得曲线C 的方程为y 2=8x.(4分)设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +2,得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1x 2=4.(6分)由k FA +k FB =y 1x 1-2+y 2x 2-2=k (x 1+2)x 1-2+k (x 2+2)x 2-2=k (x 1+2)(x 2-2)+k (x 1-2)(x 2+2)(x 1-2)(x 2-2)=2k (x 1x 2-4)(x 1-2)(x 2-2).(8分) 将x 1x 2=4代入,得k FA +k FB =0,所以直线FA 和直线FB 的倾斜角互补.(10分)24. (1) 因为n ≥2,由1a n -1=2-a n -1a n -1-1, 得1a n -1=1-a n -1a n -1-1+1a n -1-1, 所以1a n -1-1a n -1-1=-1,(1分) 所以⎩⎨⎧⎭⎬⎫1a n -1是首项为-3,公差为-1的等差数列,且1a n -1=-n -2,所以a n =n +1n +2.(3分) (2) 下面用数学归纳法证明:S n <n -ln ⎣⎡⎦⎤n +32+12. ①当n =1时,左边=S 1=a 1=23,右边=32-ln 2, 因为e 3>16⇔3ln e >4ln 2⇔ln 2<34, 32-ln 2>32-34=34>23, 所以命题成立;(5分)②假设当n =k(k ≥1,k ∈N *)时成立,即S k <k -ln k +32+12, 则当n =k +1,S k +1=S k +a k +1<k -ln k +32+12+k +2k +3, 要证S k +1<(k +1)-ln (k +1)+32+12, 只要证k -ln k +32+12+k +2k +3<(k +1)-ln (k +1)+32+12, 只要证ln k +4k +3<1k +3,即证ln ⎝⎛⎭⎫1+1k +3<1k +3.(8分) 考查函数F (x )=ln(1+x )-x (x >0),因为x >0,所以F ′(x )=11+x -1=-x 1+x<0, 所以函数F (x )在(0,+∞)上为减函数,所以F (x )<F (0)=0,即ln(1+x )<x ,所以ln ⎝⎛⎭⎫1+1k +3<1k +3,也就是说,当n =k +1时命题也成立.综上所述,S n <n -ln n +32+12.(10分)。