频分复用与时分复用
- 格式:ppt
- 大小:697.50 KB
- 文档页数:11
时分复用和频分复用时分复用频分复用简介数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。
举个例最简单的例子:从A地到B地坐公交2块。
打车要20块为什么坐公交便宜呢这里所讲的就是“多路复用”的原理。
频分复用(FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。
因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。
在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。
在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。
为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。
根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。
①前群,又称3路群。
它由3个话路经变频后组成。
各话路变频的载频分别为12,16,20千赫。
取上边带,得到频谱为12~24千赫的前群信号。
②基群,又称12路群。
它由4个前群经变频后组成。
各前群变频的载频分别为84,96,108,120千赫。
取下边带,得到频谱为 60~108千赫的基群信号。
频分复⽤、时分复⽤和码分复⽤频分复⽤(FDM):按频率划分的不同信道,⽤户分到⼀定的频带后,在通信过程中⾃始⾄终都占⽤这个频带,可见频分复⽤的所有⽤户在同样的时间占⽤不同的带宽资源(带宽指频率带)时分复⽤(TDM):按时间划分成不同的信道,每⼀个时分复⽤的⽤户在每⼀个TDM帧中占⽤固定序列号的间隙,可见时分复⽤的所有⽤户是在不同时间占⽤同样的频带宽度码分复⽤(CMD):更常⽤的是码分多址(CMDA),每⼀个⽤户可以在同样的时间使⽤同样的频带进⾏通信,由于各⽤户使⽤经过特殊挑选的不同码型,因此各⽤户之间不会造成⼲扰。
码分复⽤最初⽤于军事通信,因为这种系统发送的信号有很强的抗⼲扰能⼒,其频谱类似于⽩噪声,不易被敌⼈发现,后来才⼴泛的使⽤在民⽤的移动通信中,它的优越性在于可以提⾼通信的话⾳质量和数据传输的可靠性,减少⼲扰对通信的影响,增⼤通信系统的容量,,降低⼿机的平均发射功率等,其⼯作原理如下:在CDMA中,每⼀个⽐特时间在划分为m个短的间隔,称为码⽚(chip),通常m的值为64或128,为了⽅便说明,取m为81. 使⽤CDMA的每⼀个站被指派⼀个唯⼀的m bit码⽚序列,⼀个站如果要发送⽐特1,则发送它⾃⼰的m bit码⽚序列,如果要发送0,则发送该码⽚序列的⼆进制反码,按照惯例将码⽚中的0写成-1,将1写成+12. CDMA给每⼀个站分配的码⽚序列不仅必须各不相同,并且还必须互相正交,⽤数学公式表⽰,令向量S表⽰站S的码⽚向量,再令T表⽰其他任何站的码⽚向量。
两个不同站的码⽚序列正交,就是向量S和T的规格化内积都是S * T = 03. 任何⼀个码⽚向量和该码⽚向量⾃⼰的规格化内积都是S * S = 14. 任何⼀个码⽚向量和该码⽚的反码的向量的规格化内积都是-1所有其他站的信号都被过滤,⽽只剩下S站发送的信号。
当S站发送⽐特1时,在X站计算内积结果为+1;当S站发送⽐特0时,内积结果为-1;当S站不发送时,内积结果为0,S与X正交。
简述频分复用与时分复用的工作原理、特点和应用场景频分复用和时分复用是传输技术中常用的两种方式,它们的工作原理、特点和应用场景都有所不同。
本文将从这三个方面详细介绍这两种技术。
一、频分复用的工作原理、特点和应用场景1. 工作原理频分复用是一种将多个信号通过不同的频率进行分离传输的技术。
它的原理是将多路信号分别调制到不同的载波频率上,然后再将这些频率合并成为一个宽带信号进行传输。
在接收端,再将这个宽带信号分离成多个不同频率的信号,最后进行解调还原原始信号。
2. 特点频分复用的特点是可以在同一条传输线路上传输多路信号,从而提高了传输效率和带宽利用率。
此外,频分复用还可以实现不同传输速率和协议的兼容性,使得不同类型的数据可以在同一条线路上传输。
3. 应用场景频分复用在通信领域有着广泛的应用,例如:(1)电视信号的传输:在有线电视网络中,频分复用技术可以将多个电视信号合并在一起,从而提高了电视信号的传输效率。
(2)移动通信:在移动通信网络中,频分复用技术可以将多个用户的信号合并在一起,从而提高了网络的容量和覆盖范围。
(3)卫星通信:在卫星通信中,频分复用技术可以将多个用户的信号合并在一起,从而提高了卫星的传输效率和带宽利用率。
二、时分复用的工作原理、特点和应用场景1. 工作原理时分复用是一种将多个信号通过不同的时间片进行分离传输的技术。
它的原理是将多个信号在时间上分割成为若干个时隙,然后将这些时隙组成一个宽带信号进行传输。
在接收端,再将这个宽带信号分离成多个不同时间片的信号,最后进行解调还原原始信号。
2. 特点时分复用的特点是可以在同一条传输线路上传输多路信号,从而提高了传输效率和带宽利用率。
此外,时分复用还可以实现不同传输速率和协议的兼容性,使得不同类型的数据可以在同一条线路上传输。
3. 应用场景时分复用在通信领域也有着广泛的应用,例如:(1)电话网络:在电话网络中,时分复用技术可以将多个电话信号合并在一起,从而提高了电话网络的容量和效率。
1.简述时分复用(TDM )和频分复用(FDM )原理。
解:所谓频分复用是指多路信号在频率位置上分开,但同时在一个信道内传输的技术。
因 此频分复用信号在频谱上不会重叠,但在时间上是重叠的。
在发送端各路信号首先通过低通滤波器,用来限制最高频率m f 。
为简单起见,假设各路信号的m f 都相等,对应有相同的频谱密度函数。
然后各路信号对各路副载波)进行调制,调制方式可以是调幅、调频或调相,但常用的是单边带调制方式,因为它最节省频带。
为保证各路信号频谱不重叠,相邻的副载波之间应保持一定的频率间隔,同时为了防止相邻信号互相干扰引起串扰,相邻的副载波之间还应考虑一定的保护间隔g f 。
在接收端,利用中心频率不同的带通滤波器来区分各路信号,并进行相应的解调以恢复各路的调制信号。
时分复用(TDM )的主要特点是利用不同时隙来传送各路信号,其理论基础是抽样定理。
抽样定理告诉我们,模拟信号可用时间上离散出现的抽样脉冲值来代替,这样在抽样脉冲之间就留出了时间空隙。
利用这种空隙就可以传输其它信号的抽样值,因此在一个信道上可以同时传输多路信号。
这种复用信号到了接收端只要在时间上恰当地进行分离,就能恢复各路信号。
2.已知二元离散信源只有‘0’、‘1’两种符号,若‘0’出现的概率为1/3,求出现‘1’所含的信息量。
解题思路:考查信息量的基本概念,用公式1log ()a I P =。
底数a 一般采用2,这时信息量单位为bit解:由题知,‘1’出现的概率为2/3,bit P I 58.0667.0log log 2121≈-=-= 3.已知英文字母中e 出现概率为0.105, z 出现的概率为0.001,求英文字母e 和z 的 解题思路:考查信息量的基本概念,用公式1log ()a I P=。
底数a 一般采用2,这时信息量单位为bit解:bit P I e e 25.3105.0log log 22≈-=-=, bit P I z z 97.9001.0log log 22≈-=-=4.某气象员用明码报告气象状态,有四种可能的消息:晴、云、雨、雾。
mimo中的时分和频分复用
在无线通信中,时分复用(Time Division Multiplexing,简称TDM)和频分复用(Frequency Division Multiplexing,简称FDM)是常用的多路复用技术,在MIMO系统中也可以应用。
时分复用是指将可用的时间分割成多个时隙,并将不同的用户数据分别放置在这些时隙中进行传输。
在MIMO系统中,可以将不同的MIMO链路分配到不同的时隙中,以实现不同链路之间的并行传输。
频分复用是指将可用的频谱分割成多个频带,并将不同的用户数据分别放置在这些频带中进行传输。
在MIMO系统中,可以将不同的MIMO链路分配到不同的频带中,以提高系统的频谱利用率。
时分复用和频分复用可以结合使用,即时分频分复用(Time Division Frequency Division Multiplexing,简称TDM-FDM)。
在TDM-FDM中,将可用的时间分割成多个时隙,并将每个时隙进一步分割成多个子时隙(slot),再将不同的MIMO链路分配到这些子时隙中,以实现多链路的并行传输。
时分复用和频分复用都是为了提高多用户或多链路之间的数据传输效率和频谱利用率,从而增加系统容量。
在MIMO系统中,应用这些复用技术可以进一步提高系统的性能和吞吐量。
多路复用技术多路复用技术是指在一条物理通信线路上同时传输多个独立的信号,从而提高通信效率的技术。
这种技术可以让多个数据源通过共享带宽的方式同时传输数据,从而减少了网络传输的拥塞,提高了数据传输的效率和带宽利用率。
本文将从多路复用技术的基本原理、分类和应用场景三个方面进行阐述。
一、多路复用技术的基本原理多路复用技术是一种基于带宽共享的技术,它的基本原理是通过将多个通信信号复用到同一物理通信线路上,相互不干扰地共享带宽,并在接收端将这些信号再次分离。
多路复用技术根据信号的特征和传输方式不同,可以分为时分复用、频分复用、波分复用和码分复用等多种类型。
下面我们将分别介绍这些类型的多路复用技术。
1、时分复用时分复用技术(Time Division Multiplexing,TDM)是将一条通信线路分割成若干个时隙,每个时隙只允许发送一个信号,不同的信号依次占用不同的时隙。
在接收端,将这些信号按照时序要求进行分离,从而实现了多路数据传输的目的。
时分复用技术在数字通信系统中广泛应用,它可以将多条低速率的信号通过复用技术合并成为一条高速率的信号进行传输,从而有效地提高了信道带宽的利用率。
2、频分复用频分复用技术(Frequency Division Multiplexing,FDM)是将一条通信线路分割成若干个频段,每个频段只允许发送一个信号,不同的信号依次占用不同的频段。
在接收端,将这些信号进行频率分离,从而实现了多路数据传输的目的。
频率复用技术在模拟通信系统中应用比较广泛,它可以将多个低速率的模拟信号通过复用技术合并成为一个高速率的信号进行传输,从而提高了信道带宽的利用效率。
3、波分复用波分复用技术(Wavelength Division Multiplexing, WDM)是应用于光纤通信系统中的一种复用技术。
它是将光纤通信线路分割成若干个波长,每个波长可以传输不同的信号,从而实现了多路数据传输的目的。
波分复用技术可以同时传输多路数据,具有带宽高、传输距离远、抗干扰能力强等优点,因此在光纤通信系统中得到了广泛应用。
时分复用频分复用简介数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。
举个例最简单的例子:从A地到B地坐公交2块。
打车要20块为什么坐公交便宜呢这里所讲的就是“多路复用”的原理。
频分复用(FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。
因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。
在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。
在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。
为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。
根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。
①前群,又称3路群。
它由3个话路经变频后组成。
各话路变频的载频分别为12,16,20千赫。
取上边带,得到频谱为12~24千赫的前群信号。
②基群,又称12路群。
它由4个前群经变频后组成。
各前群变频的载频分别为84,96,108,120千赫。
取下边带,得到频谱为 60~108千赫的基群信号。
信道复用技术信道复用技术广泛地应用于各个通信领域和各类通信线路上。
它是充分利用通信信道频带资源、提高通信效率、降低通信成本的有效手段。
本文对信道复用技术进行了介绍,需要的朋友进行学习。
信道复用技术主要分为平分复用FDM(Frequency Division Multiplexing)和时分复用TDM(Time Division Multiplexing)两大类。
1.频分复用(FDM,Frequency Division Multiplexing)传输介质的有效带宽超过被传输的信号带宽时,把多路信号调制在不同频率的载波上,实现同一传输介质上同时传输多路信号的技术,如xDSL。
频分复用中,用户分配到一定的频带后,在通信过程中自始至终都占用这个频带。
可见频分复用的所有用户在同样的时间占用不同的带宽资源。
调频广播和广电HFC网络电视信号是典型的频分复用信号,收音机/电视机依据载波频率的不同来区分频道。
使用频分多路复用的主要动机在于对高吞吐率的需求。
为了达到更高的吞吐率,底层的硬件使用电磁频谱中更大的一部分(即更高的带宽)。
用宽带技术(Broadband Technology)这一术语用来描述这些技术。
另一方面,任何只使用电磁频谱中很小的一部分,一次只在介质上发送一个信号的技术称为基带技术(Baseband Technology)。
可以通过傅里叶变换推导出频分多路复用的调制解调原理。
在使用频分复用时,若每一个用户占用的带宽不变,则当复用的用户数增加时,复用后的信道的总带宽就跟着变宽。
例如传统电话通信每一个标准话路的带宽是4kHz(即通信用的3.1kHz加上两边的保护频带),那么若有1000个用户进行频分复用,则复用后总带宽就是4MHz。
除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)。
正交频分复用是一种多载波数字调制技术。
数字电视信号传输设施中的时分复用与频分复用技术时分复用(TDM)与频分复用(FDM)是数字电视信号传输设施中常用的技术手段。
通过合理地利用频带资源,可以提高数字电视信号的传输效率和质量。
本文将分别介绍时分复用技术和频分复用技术在数字电视信号传输中的应用。
时分复用技术通过将多个数字电视信号按照时间顺序交错在一个通信信道上进行传输。
每个数字电视信号在一段时间内独占整个传输带宽资源,然后按照一定的时间间隔轮流传输。
在接收端,通过对传输数据进行恢复和复用,将多个数字电视信号按照原始顺序重新分离出来。
由于每个数字电视信号只占用很短的时间,所以当网络传输速率足够高时,可以同时传输多个数字电视信号。
时分复用技术的优点是可以提高传输效率,有效利用带宽资源。
同时,由于数字电视信号在时间上进行分离,因此不同信号之间不会相互干扰。
这样,即使出现某个数字电视信号传输异常,也不会影响其他信号的正常传输。
此外,时分复用技术还易于实现和管理,所需的硬件和软件资源相对较少。
频分复用技术则是将不同数字电视信号按照不同的频率进行分离和传输。
每个数字电视信号占用不同的频段,在传输过程中不会相互干扰。
在接收端,通过对传输数据进行频率解调和重组,将各个数字电视信号分离出来,并按照原始顺序重新组合。
频分复用技术的核心在于将不同信号的频率进行分离,因此需要较为精确的频率划分和控制。
频分复用技术在数字电视信号传输中具有较高的灵活性和可扩展性。
通过合理地划分频段和控制频率,可以同时传输多个数字电视信号。
频分复用在多路传输中可以提供较为稳定的传输质量,不容易受到环境和干扰的影响。
此外,频分复用技术还可以与其他传输技术相结合,如正交频分复用(OFDM)技术,进一步提高传输效率和穿透性。
在数字电视信号传输设施中,时分复用与频分复用技术可以根据具体的应用场景进行灵活组合和选择。
在资源充裕且对传输效率要求较高的情况下,可以考虑同时使用时分复用和频分复用技术,以提高传输带宽和效率。