弗兰克赫兹实验_北大物院普物实验报告
- 格式:pdf
- 大小:555.99 KB
- 文档页数:8
弗兰克-赫兹实验【实验目的】(1) 了解弗兰克-赫兹实验用伏-安证明原子存在能级的原理和方法(2) 学习用伏-安法测量非线性器件(3) 学习微电流的测量【仪器用具】仪器名参数F-H-II 弗兰克赫兹实验仪∅F-H-II 弗兰克赫兹实验仪微电流放大器10−7档F-H-II 弗兰克赫兹实验仪电源组V F 0~5V2.5级V G1K 0~5V 2.5级V G2P 0~15V2.5级Victor VC9806+数字万用表200 mV档±(0.5%+4)【实验原理】(1)原子的受激辐射玻尔的氢原理理论指出,原子只能较长久地停留在一些稳定状态(称为定态)。
这些定态的能量(称为能级)是不连续分布的,其中能级最低的状态称为基态。
原子在两个定态之间发生跃迁时,要吸收或发射一定的能量,该能量等于两个定态之间的能量差ΔE mn=E m−E n原子在能级之间的跃迁可以通过有一定能量的电子与原子碰撞交换能量来实现。
初速度为零的电子经过电势差U0加速获得能量eU0,当这些电子与稀薄气体(例如汞)发生碰撞,就会发生能量交换。
当电子能量满足eU0=ΔE mn便会使得原子从E n被激发到E m,电子能量被吸收。
(2)弗兰克-赫兹实验图 1 弗兰克-赫兹装置示意图图1是弗兰克-赫兹实验装置示意图。
图中左侧为弗兰克-赫兹管(F-H管),它是一种密封的玻璃管,其中充有稀薄的原子量较大的汞或惰性气体原子。
在这里灯丝用来对阴极K加热,使其发射热电子。
灯丝电压U F越高,阴极K发射的电子流也就越大。
第一栅极G1的主要作用是消除空间电荷对阴极电子发射的影响。
第二栅极G2的作用是在G2和K之间形成对电子加速的静电场。
发射的电子穿过栅极G2达到极板P,形成板流I P。
板流I P的大小由微电流测试仪进行测量。
在板极P 和G2之间加有一反向电压,它对电子减速,使经过碰撞后动能非常低的电子折回。
由热阴极发射的电子初速度为零,受加速电场V G2K作用,V G2K较低时,电子能量小于原子的激发能,电子与汞原子只能发生弹性碰撞。
课程名称:大学物理实验(二)
实验名称:弗兰克-赫兹实验
图2.1 弗兰克-赫兹管原理图
设氩原子的基态能量为E1,第一激发态的能量为E2
E2−E1。
初速度为零的电子在电位差为U的加速电场作用下具有能量则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。
子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于从基态跃迁到第一激发态,而多余的部分仍留给电子。
位差为U0则
eU0=E2−E1
图3.1弗兰克-赫兹仪实物图
对应的V G2是内部的锯齿电压,作用是急速电压自动变化。
对应于示波器观测模
I P(×10-8A)
U G2(×
图6.1 加速电压与电流的关系图
可以发现电流随电子的能量呈现有规律的周期性变化,且两相邻谷点(或峰尖)即为氩原子的第一激发电位值。
同时,可以读出峰谷的横坐标值。
峰的横坐标值如下表:
表6.1 加速电压与电流的关系图的峰横坐标记录表
第二个峰X3第三个峰X5第四个峰X7第五个峰X9
2.90 4.08 5.25 6.46
表6.2 加速电压与电流的关系图的锋横坐标记录表
第二个谷X4第三个谷X6第四个谷X8第五个谷X10
3.52
4.66
5.84 7.04
算出氩原子的第一激发电位。
弗兰克赫兹实验实验报告一、数据处理1.汞管(1)实验数据如下:将数据作图如下:(2)根据实验数据,找到各个峰值对应的电压,并列表如下:由最小二乘法得到第一激发电位V,相关系数r=0.99978,由书上(7.13)式计算得到,故最终结果表示为V2.氩管(1)实验数据如下:(为了对进行控制,我调大了)将数据作图如下:(2) 根据实验数据,找到各个峰值对应的电压,并列表如下:由最小二乘法得到第一激发电位V,相关系数r=0.99964,由书上(7.13)式计算得到,故最终结果表示为V二、思考题利用汞管进行实验。
在第一部分中已列出了条件下的汞管的实验数据。
现将改变后的另两组实验数据列表如下,后两组数据只测了第5、第6两个峰。
(1)(2)将以上三种条件下的Hg管数据作图如下:当增大时,曲线高度下移,并且峰向右偏移。
原因分析:当增大时,电子需要更高的能量才能到达p极板,故此时能到达p极板的电子减少,则电路中电流减小,则曲线高度下移;曲线峰向右偏移的原因,我并不是十分清楚,我认为可能与电子的速率分布有关。
当加速电压刚达到第一激发电位时,只有一部分电子可以达到足以发生“非弹性碰撞”的速率,而另一部分电子速率还要更低一些,有的电子速率还不足以使其越过g2p的减速电场,加速电压继续增大时会将这部分电子继续加速使其可以达到p极板使电流增大,而达到足以发生“非弹性碰撞”的速率的电子也会增加,使电流减小,两种因素共同作用决定曲线的峰值。
当增大时,会使前一种作用的影响变得更大,而对后一种作用几乎没有影响,故峰会向右偏移。
三、分析与讨论1.各种曲线都具有周期性,而随着加速电压的增大,总的电流呈增大趋势,每个峰都比前一个峰更高,每个谷也比前一个更高。
呈现这种现象的原因:随着加速电压的增大,电子动能增加,能到达p极板的电子数增加,电流增大;当达到一定的动能时,电子会与管中气体发生“非弹性碰撞”,使其发生激发,则电子损失动能,不再能到达p极板,电流减小;这便是曲线呈周期性的原因。
一、实验名称:弗兰克-赫兹实验二、实验目的:(1)用实验的方法测定汞或氩原子的第一激发电位,从而证明原子分立态的存在; (2)练习使用微机控制的实验数据采集系统。
三、实验原理:根据波尔的原子模型理论,原子中一定轨道上的电子具有一定的能量.当原子吸收或放出电磁辐射时或当原子与其他粒子发生碰撞时,原子状态会发生改变。
改变过程中原子的能量变化不是任意的,而是受到波尔理论的两个基本假设的制约,即定态假设和频率定则。
由波尔理论可知,处于基态的原子发生状态改变时,其所需能量不能小于该原子从基态跃迁到第一受激态时所需的能量,这个能量称作临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞;若电子能量大于临界能量,则发生非弹性碰撞.这时,电子给予原子以临界能量,剩余能量仍由电子保留。
本仪器采用1只充氩气的四极管,其工作原理图如下:当灯丝(H)点燃后,阴极(K)被加热,阴极上的氧化层即有电子逾出(发射电子),为消除空间电荷对阴极散射电子的影响,要在第一栅极(G1)、阴极之间加上一电压U G1K(一栅、阴电压)。
如果此时在第二栅极(G2)、阴极间也加上一电压U G2K(二栅、阴电压),发射的电子在电场的作用下将被加速而取得越来越大的能量。
起始阶段,由于较低,电子的能量较小,即使在运动过程中与电子相碰撞(为弹性碰撞)只有微小的能量交换。
这样,穿过2栅的电子到达阳极(A)[也惯称板极]所形成的电流(I A)板流(习惯叫法,即阳极电流)将随2栅的电压U G2K的增加而增大,当U G2K达到氩原子的第一激发电位(11。
8V)时,电子在2栅附近与氩原子相碰撞(此时产生非弹性碰撞)。
电子把加速电场获得的全部能量传递给了氩原子,使氩原子从基态激发到第一激发态,而电子本身由于把全部能量传递给了氩原子,它即使穿过2栅极,也不能克服反向拒斥电场而被折回2栅极. 所以板极电流I A将显著减小,以后随着二栅电压U G2K的增加,电子的能量也随着增加,与氩原子相碰撞后还留下足够的能量。
实验名称:弗兰克—赫兹实验 实验原理:用加速到一定能量的电子轰击原子使原子发生跃迁,跃迁的同时电子失去能量而减速,碰撞后电子的速率分布发生变化,测量到达的高速电子的数量,就可以知道有多少电子因为是原子跃迁而失去能量,间接测出了原子吸收的能量的大小,就反应出了跃迁所需的能量。
实验中原子密度较大,故只有第一激发电位发生的概率较大,其余的激发可以忽略,则电子能量每到达一次原子第一激发态吸收的能量大小E ∆,就会出现一次吸收峰,通过测量相邻吸收峰时的E ∆,也就是测量相邻吸收峰时的加速电压,就可以知道原子的第一激发态时吸收的能量大小。
实验用的装置如右图,通过灯丝加热K 使其发射电子,G 1控制通过G 1的电子数目,G 2加速电子,G 1、G 2空间较大,提供足够的碰撞概率,A 接收电子,AG 2加一扼止电压,使失去动能的电子不能到达,形成电流。
用汞进行实验测得与右下图相似的曲线。
汞的第一激发电位为 4.9V,实验中电压每到 4.9V 的n 倍就多一次吸收,故出现一个吸收峰,实验内容:一、汞的F-H 实验 测汞的第一激发电位(测I P -V G2曲线,由曲线确定第一激发电位),测六到八个峰测量条曲线,V G2上升测一条,V G2下降测一条分别由峰间距求汞的第一激发电位。
二、氩的F-H 实验 示波器观察氩的I P -V G2曲线,手动测氩的I P -V G2曲线。
实验步骤:一、汞的F-H 实验1.先将温度调到设定值,打开温控开关加温指示灯on 亮(绿色),到设定温度off 指示灯亮(红色),红灯亮过一次即可开始实验。
2.了解接线,将V p ,V G1K ,V G1P ,V G2K ,调至最小,到设定温度时再打开两仪器电源,稳定5分钟,然后据炉上标签设定各电压值,用“手动”挡测曲线,电流过量程时更换电表量程。
3.先手动调节电压观察电流随电压的变化,选适当量程从某一电压起每隔0.5V记录一组I P -V G2数据,随V G2上升测一条至约六到八个峰,再随V G2下降记录数据。
弗兰克-赫兹实验【实验目的】(1)了解弗兰克-赫兹实验用伏-安特性曲线证明原子存在能级的原理和方法(2)学习用伏-安法测量非线性器件(3)学习微电流的测量【仪器用具】仪器名参数F-H-II 弗兰克赫兹实验仪∅F-H-II 弗兰克赫兹实验仪微电流放大器10−7档F-H-II 弗兰克赫兹实验仪电源组V F 0~5V2.5级V G1K 0~5V2.5级V G2P0~15V2.5级Victor VC9806+数字万用表200mV档±(0.5%+4)【实验原理】(1)原子的受激辐射玻尔的氢原理理论指出,原子只能较长久地停留在一些稳定状态(称为定态)。
这些定态的能量(称为能级)是不连续分布的,其中能级最低的状态称为基态。
原子在两个定态之间发生跃迁时,要吸收或发射一定的能量,该能量等于两个定态之间的能量差ΔE mn=E m−E n原子在能级之间的跃迁可以通过有一定能量的电子与原子碰撞交换能量来实现。
初速度为零的电子经过电势差U0加速获得能量eU0,当这些电子与稀薄气体(例如汞)发生碰撞,就会发生能量交换。
当电子能量满足eU0=ΔE mn便会使得原子从E n被激发到E m,电子能量被吸收。
(2)弗兰克-赫兹实验图1弗兰克-赫兹装置示意图图1是弗兰克-赫兹实验装置示意图。
图中左侧为弗兰克-赫兹管(F-H管),它是一种密封的玻璃管,其中充有稀薄的原子量较大的汞或惰性气体原子。
在这里灯丝用来对阴极K加热,使其发射热电子。
灯丝电压U F越高,阴极K发射的电子流也就越大。
第一栅极G1的主要作用是消除空间电荷对阴极电子发射的影响。
第二栅极G2的作用是在G2和K之间形成对电子加速的静电场。
发射的电子穿过栅极G2达到极板P,形成板流I P。
板流I P的大小由微电流测试仪进行测量。
在板极P 和G2之间加有一反向电压,它对电子减速,使经过碰撞后动能非常低的电子折回。
由热阴极发射的电子初速度为零,受加速电场V G2K作用,V G2K较低时,电子能量小于原子的激发能,电子与汞原子只能发生弹性碰撞。
弗兰克赫兹实验目的要求:(1)了解弗兰克赫兹用伏安法证明原子存在能级的原理和方法。
(2)学习用伏安法测量非线性元件。
(3)学习微电流的测量。
仪器用具:弗兰克赫兹管(充汞或氩),扫描电源和微电流放大器,电炉及控温仪,开关(用于连接微电流放大器和数字万用电表),数字万用电表,导线若干。
实验原理:1.弗兰克赫兹实验最初的实验装置如下图所示,采用的是三栅极式F H管,管内充汞,氩气体,阴极K通电后发射热电子。
栅极g与阴极K之间加一可调的正电压U Kg,阴极发射的电子在K之间被加速,增加了动能并与管内的气体碰撞,板极P与栅极g之间加一反向偏压U gp以阻止沿电场方向动能小于|eU gp|的电子到达极板。
弗兰克赫兹最初使用的是汞气,在适当的气压下U Kg和I P出现下图所示的关系,其伏安特性呈周期性变化,各极值之间的距离均为4.9V,即eV1=4.9V。
呈周期性变化的原因:源于电子和气体原子间的碰撞,但电压从零开始增加时,所发生的碰撞为弹性碰撞,并不改变电子的动能,电子不损失能量,所以随着电压的增加,电流增加。
而当电压超过4.9V时,电子和汞原子发生非弹性碰撞,电子使汞原子从基态跃迁到激发态,电子损失动能,所以导致电流减少。
当电压继续增加,发生非弹性碰撞后的电子动能继续增加,当到达|eU gp|时,就仍能够到达板极P,从而使电流上升,当达到2 4.9V时,再一次发生非弹性碰撞,电流再次下降,由此出现周期性的变化。
另外,其实事实上,汞原子有一个小于4.9V的能级差4.7,但由于其寿命很短,很快以自发辐射的方式退回到基态,并发出=253.7nm的紫外光。
所以在此次实验中是无法测量的。
2.微电流放大器。
如下图,采用集成运算放大器,利用其在线性区时“虚短”和“虚断”的特性,即,所以输出电压U0与I的关系为由此式可知,若R f取很大,则能够通过测量U0较为容易的测得电流I,并且能够通过改变R f改变电流计的量程。
3.实验装置:由三部分构成:(采用四栅式F-H管)(1)加热炉和控温仪(2)电源组,分别为供灯丝的电源U F,控制电子束强度的电源U Kg1,以及减速电压。
弗兰克赫兹实验报告一、实验目的本实验旨在通过研究汞原子的第一激发电位,加深对原子能级概念的理解,以及了解弗兰克赫兹实验的基本原理和实验方法。
二、实验原理1、原子能级根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态,这些状态称为能级。
原子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子,其能量等于两个能级的能量差。
2、弗兰克赫兹实验弗兰克赫兹实验是通过让电子与原子碰撞来研究原子能级的一种方法。
在实验中,电子在加速电场中获得能量,然后与气体原子发生碰撞。
如果电子的能量小于原子的第一激发能,那么电子与原子之间的碰撞是弹性碰撞,电子的能量几乎不变。
当电子的能量达到或超过原子的第一激发能时,就会发生非弹性碰撞,电子将一部分能量传递给原子,使其从基态跃迁到第一激发态,电子自身的能量则减少。
通过测量电子在不同加速电压下的电流,可以得到电子与原子碰撞的能量转移情况,从而确定原子的第一激发电位。
三、实验仪器弗兰克赫兹实验仪、示波器四、实验步骤1、连接实验仪器将弗兰克赫兹实验仪与示波器正确连接,确保线路连接稳定。
2、预热仪器打开实验仪器电源,进行预热,使仪器达到稳定工作状态。
3、调节参数设置加速电压的起始值、终止值和步长等参数。
4、进行测量逐步增加加速电压,同时观察示波器上显示的电流信号,记录相应的电压和电流值。
5、重复测量为了提高测量的准确性,进行多次重复测量。
五、实验数据及处理1、实验数据记录以下是一组典型的实验数据:|加速电压(V)|电流(μA)||||| 10 | 05 || 20 | 10 || 30 | 15 || 40 | 20 || 50 | 25 || 60 | 30 || 70 | 35 || 80 | 40 || 90 | 45 || 100 | 50 |2、数据处理以加速电压为横坐标,电流为纵坐标,绘制出电流电压曲线。
通过对曲线的分析,可以发现电流在某些电压值处出现明显的下降,这些下降点对应的电压值即为汞原子的第一激发电位。
成都信息工程学院 物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师: 【实验名称】 夫兰克-赫兹实验 【实验目的】1.掌握夫兰克-赫兹实验的原理和方法,理解该实验的物理构思和设计技巧。
2.测量氩原子的第一激发电位,证明原子能级的存在。
3.研究原子能级的量子特性,观察其特殊的伏安特性现象。
【实验仪器】1.夫兰克-赫兹实验仪 仪器型号 ZKY-HZ-2 资产编号 2.示波器 编号512 【实验原理】一、玻尔提出的原子理论指出:(1)原子只能较长久地停留在一些稳定状态(简称为定态),原子在这些状态时,不发射或吸收能量,各定态有一定的能量,其数值是彼此分隔的。
原子的能量无论通过什么方式发生改变,它只能使原子从一个定态跃迁到另一个定态。
(2)当电子从一个轨道跃迁到另一个轨道时,会产生能量的变化。
若原子吸收能量,则电子从低能级跃迁到高能级;而当电子从高能级跃迁到低能级时,要发射频率为ν的光子,且f i E E h -=ν (1)式中:普朗克常量秒)(焦尔⋅⋅⨯=-S J h 341063.6(3)电子的角动量满足 n mvr L==(量子化条件)。
原子从低能级向高能级的跃迁,可以通过具有一定能量的电子与原子相碰撞进行能量交换的办法来实现。
设初速度为零的电子在电位差为0U 的加速电场作用下,获得能量0eU 。
当具有0eU 能量的电子与稀薄气体的原子(本实验是氩原子)发生碰撞时,就会发生能量交换。
如果被碰撞原子获得从电子传递来的能量恰好为120E E eU -= (2)式中1E 为被碰撞原子的基态能量。
2E 为被碰撞原子的第一激发态的能量。
则被碰撞原子就会从基态跃迁到第一激发态,而相应的电位差0U 被称为原子的第一激发电位。
测出这个电位差0U ,就可以根据(2)式求出被碰撞原子的基态和第一激发态之间的能量差了。
一般情况下,原子在受激状态(如第一激发态)所处的时间不会太长,就自动回到基态,并以电磁辐射的形式放出以前所获得的能量,其辐射频率ν或波长λ由下式确定0eU h =ν (3)二、夫兰克-赫兹实验的原理在充氩的夫兰克-赫兹管中,电子由阴极K 发出,阴极K 和第一栅极1G 之间的加速电压K G V 1及与第二栅极2G 之间的加速电压K G V 2使电子加速。
弗兰克赫兹实验实验报告
一、数据处理
1.汞管
(1)实验数据如下:
U=1.5V U=2.0Vθ=175℃
将数据作图如下:
(2)根据实验数据,找到各个峰值对应的电压U,并列表如下:
由最小二乘法得到第一激发电位U1=4.96V,相关系数r=0.99978,由书上(7.13)式计=0.05V,故最终结果表示为U1=(4.96±0.05)V
算得到σu
1
2.氩管
(1)实验数据如下:
将数据作图如下:
由最小二乘法得到第一激发电位U1=12.2V,相关系数r=0.99964,由书上(7.13)式计=0.2V,故最终结果表示为U1=(12.2±0.2)V
算得到σu
1
二、思考题
利用汞管进行实验。
在第一部分中已列出了U kg1=1.5V U g2p=2.0Vθ=175℃条件下的汞管的实验数据。
现将改变U g2p后的另两组实验数据列表如下,后两组数据只测了第5、第6两个峰。
=1.5V U=1.08Vθ=175℃
将以上三种条件下的Hg管数据作图如下:
当U g2p增大时,曲线高度下移,并且峰向右偏移。
原因分析:当U g2p增大时,电子需要更高的能量才能到达p极板,故此时能到达p极板的电子减少,则电路中电流减小,则曲线高度下移;曲线峰向右偏移的原因,我并不是十分清楚,我认为可能与电子的速率分布有关。
当加速电压刚达到第一激发电位时,只有一部分电子可以达到足以发生“非弹性碰撞”的速率,而另一部分电子速率还要更低一些,有的电子速率还不足以使其越过g2p的减速电场,加速电压继续增大时会将这部分电子继续加速使其可以达到p极板使电流增大,而达到足以发生“非弹性碰撞”的速率的电子也会增加,使电流减小,两种因素共同作用决定曲线的峰值。
当U g2p增大时,会使前一种作用的影响变得更大,而对后一种作用几乎没有影响,故峰会向右偏移。
三、分析与讨论
1.各种曲线都具有周期性,而随着加速电压的增大,总的电流呈增大趋势,每个峰都比前一个峰更高,每个谷也比前一个更高。
呈现这种现象的原因:随着加速电压的增大,电子动能增加,能到达p极板的电子数增加,电流增大;当达到一定的动能时,电子会与管中气体发生“非弹性碰撞”,使其发生激发,则电子损失动能,不再能到达p极板,电流减小;这便是曲线呈周期性的原因。
至于电流随着加速电压增大成上升趋势,我认为可能的原因仍是和电子的速率分布有关。
当加速电压增大时,那些低速电子达到足以越过减速电极的速率的可能性增大,而电子与原子发生碰撞使原子激发的可能性基本不会受到影响。
故峰值会增高。
另外一个可能的影响因素是加速电压升高使得较多的电子被电离出来,使峰值电流变大。
2.测量时,产生误差的一个重要原因是由于时间限制来不及等到电表读数稳定就进行读数了,只是每次都是在改变加速电压2-3秒后进行读数。
而实际上电表读数随时间变化波动很大,即使认为每次都在改变电压后经相同时间后读数可以在平均意义上消去寻找峰值位置时的误差,每次改变电压后读数时也很难保证经过的时间相同。
另外,由于实验中要求尽量
单向测量,有时间隔取得较大,也无法再翻回去补救,这也导致寻找峰值时出现误差。
第三个产生误差的可能原因是发生了进入更高的激发能级的碰撞,使测量产生误差。
四、收获与感想
这次实验主要的收获是让我认识到了预实验的重要性。
如果没有预实验的话,在进行测量时就无法有针对性地决定取点的间隔,若间隔取得太小会使取点数目非常的多,若取得太大则容易错过峰值。
进行预实验,则可以避免盲目取点,加快实验速度,减少错过峰值的可能性。
另外进行读数时在扫描电压2-3秒后就进行读数的方法也是我之前没有遇到过的。
虽然数据达到稳定需要的时间很长,但是可以在未达到稳定时,每次都是经过一定的时间间隔后就读数,这样虽然测得的值并非稳定时的值,但在寻找峰的位置的时候,各点的相对关系却可以认为是与稳定时的值相同的。
这个处理方法非常巧妙。