快速成型的种类
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
四种常见快速成型技术FDM丝状材料选择性熔覆(Fus ed Dep osi tion Mod eling)快速原型工艺是一种不依*激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。
丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。
热塑性丝状材料(如直径为1.78m m的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。
一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。
这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。
这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。
但仍需对整个截面进行扫描涂覆,成型时间长。
适合于产品设计的概念建模以及产品的形状及功能测试。
由于甲基丙烯酸ABS(M AB S)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。
但成型精度相对较低,不适合于制作结构过分复杂的零件。
FD M快速原型技术的优点是:1、操作环境干净、安全可在办公室环境下进行。
2、工艺干净、简单、易于材作且不产生垃圾。
3、尺寸精度较高,表面质量较好,易于装配。
可快速构建瓶状或中空零件。
4、原材料以卷轴丝的形式提供,易于搬运和快速更换。
5、材料利用率高。
6、可选用多种材料,如可染色的A BS和医用A BS、PC、PP SF等。
FDM快速原型技术的缺点是:1、做小件或精细件时精度不如SLA,最高精度0.127mm。
2、速度较慢。
SL A敏树脂选择性固化是采用立体雕刻(Stereo litho gra phy)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。
在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。
一、实习目的通过本次工程训练实习,旨在使学生了解快速成型技术的原理、过程及其在工程领域的应用,提高学生的实际操作能力,培养创新意识和团队协作精神。
同时,通过实习,使学生更好地将理论知识与实践相结合,为今后从事相关工作奠定基础。
二、实习时间2023年X月X日至2023年X月X日三、实习地点XX快速成型实验室四、实习内容1. 快速成型技术简介快速成型技术(Rapid Prototyping,简称RP)是一种将数字模型快速转化为物理实体的技术,广泛应用于模具制造、产品开发、医疗、航空航天等领域。
本次实习主要涉及以下几种快速成型技术:(1)立体光固化成型(SLA)(2)选择性激光烧结(SLS)(3)熔融沉积成型(FDM)(4)三维喷印成型(3DP)2. 实验操作(1)SLA实验首先,实习老师介绍了SLA技术的原理和设备操作流程。
随后,我们分组进行实验操作,分别完成以下步骤:① 设计数字模型:使用CAD软件设计所需的模型,并将其导出为STL格式。
② 准备光敏树脂:将光敏树脂倒入容器中,搅拌均匀。
③ 激光扫描:将数字模型导入设备,设置扫描参数,进行激光扫描。
④ 固化成型:通过紫外激光照射,使光敏树脂固化,形成实体模型。
⑤ 清洗与干燥:将成型后的模型放入清洗液中清洗,去除多余的光敏树脂,然后进行干燥处理。
(2)SLS实验实习老师介绍了SLS技术的原理和设备操作流程。
随后,我们分组进行实验操作,分别完成以下步骤:① 设计数字模型:使用CAD软件设计所需的模型,并将其导出为STL格式。
② 准备粉末材料:将粉末材料放入设备中,搅拌均匀。
③ 激光烧结:将数字模型导入设备,设置扫描参数,进行激光烧结。
④ 喷涂粘结剂:在烧结完成后,使用粘结剂喷枪对模型进行喷涂,使粉末材料粘结在一起。
⑤ 清洗与干燥:将成型后的模型放入清洗液中清洗,去除多余的材料,然后进行干燥处理。
3. 实习总结通过本次实习,我们对快速成型技术有了更深入的了解,掌握了SLA和SLS两种技术的操作流程。
快速成型技术原理及应用快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
成型原理:基于离散-叠加原理而实现快速加工原型或零件特点:不需机加工设备或者模具即可快速制造形状极为复杂的工件简介:(Rapid Prototyping&Manufacturing, 缩写为RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术. 其特点是可以不需机加工设备或者模具即可快速制造形状极为复杂的工件, 从而在小批量产品生产或新产品试制时节省时间和初始投资.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用. 而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.快速成型技术(RP)的成型过程: 首先建立目标件的三维计算机辅助设计(CAD 3D)模型, 然后对该实体模型在计算机内进行模拟切片分层,沿同一方向(比如Z轴)将CAD 实体模型离散为一片片很薄的平行平面; 把这些薄平面的数据信息传输给快速成型系统中的工作执行部件,将控制成型系统所用的成型原材料有规律地一层层复现原来的薄平面, 并层层堆积形成实际的三维实体,最后经过处理成为实际零件.经过20多年的发展, 快速成型技术(RP)有较大发展, 应用非常广泛,尤其在汽车制造,航天航空,建筑,家电,卫生医疗及娱乐等领域有强大的应用.目前基于快速成型技术(RP)开发的工艺种类较多, 可以分别按所用材料划分, 成型方法划分等.1) 利用激光或其它光源的成型工艺的成型:---(SL)---(简称LOM)---(简称SLS)---形状层积技术(简称SDM);2) 利用原材料喷射工艺的成型:---(简称FDM)---三维印刷技术(简称3DP)其它类型工艺有:---树脂热固化成型 (LTP)---实体掩模成型 (SGC)---弹射颗粒成型 (BFM)---空间成型 (SF)---实体薄片成型 (SFP)应用:RPM技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计),造型设计,结构设计,基本功能评估,模拟样件试制这段开发过程。
1前言快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。
通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
2 快速成型的基本原理快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。
再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。
实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。
快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。
快速成型的基本原理图快速成型的工艺过程原理如下:(1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。
一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。
以简化CAD模型的数据格式。
便于后续的分层处理。
由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。
《逆向工程及快速成型原理》讲义12版——快速成形技术快速成形技术(Rapid Prototyping,简称RP)是一种通过逐层堆积材料的方式,快速制造物体的工艺。
它是逆向工程中重要的一环,可以将设计师或者用户的设计想法迅速转化为实体模型或者产品。
快速成形技术在工程设计、产品开发、医疗骨科等领域有着广泛的应用。
快速成形技术的种类有很多,其中应用最广泛的是激光固化成型技术(Stereolithography,简称SLA)、选择性激光烧结成型技术(Selective Laser Sintering,简称SLS)和3D打印技术(3D Printing)。
这三种技术都是通过逐层堆积材料的方式制造模型或者产品。
激光固化成型技术是最早开发的一种快速成形技术,它利用激光束将液态光敏树脂照射成固体。
具体而言,激光束扫描光敏树脂表面,使其由液态转化为固态。
这样一层一层地逐步凝固,最终形成一个完整的模型。
选择性激光烧结成型技术是另一种常用的快速成形技术,它利用激光束将粉末材料烧结成固体。
首先,在工作台上铺一层材料粉末,然后激光束扫描粉末层的截面,将被照射到的粉末烧结成固体。
接下来,工作台下降一定距离,再铺一层粉末,反复进行烧结过程,最终形成一个完整的模型。
3D打印技术与上述两种技术的原理略有不同,它一般采用熔融喷头将熔化的材料一层一层地喷射到工作台然后快速冷却固化成固体。
与激光固化成型技术和选择性激光烧结成型技术相比,3D打印技术可以处理更多的材料类型,如热塑性塑料、金属粉末等。
与传统的手工模型制作相比,快速成形技术具有以下优势。
首先,它可以快速、准确地制造复杂形状的模型或者产品,减少了设计和制造的周期,加快了产品开发的速度。
其次,快速成形技术可以直接根据设计数据制造模型,减少了传统模具制造的过程和成本。
最后,快速成形技术可以提供可视化的实体模型便设计师和用户直观地评估设计效果。
虽然快速成形技术在设计和制造领域有着广泛的应用,但也存在一些挑战和限制。
名词解释1 SLA光固化成型:又称为立体光刻成型技术,是利用激光束照射液态光敏树脂后,使之顺序凝固和顺序固化,逐层制作一个三维实体的快速成型技术。
2 SLS选择性激光烧结:又称为激光选区烧结或粉末材料选择性激光烧结,是利用激光照射粉末材料的烧结原理,在计算机控制下进行层层堆积,最终加工成所需的模型或产品。
3 齐聚物:是光固化成型材料的主体,一种含有不饱和官能团的基料,其末端有可能聚合的活性基团,可以继续聚合长大,而且聚合后,其相对分子质量上升的速度非常快,立刻就可成为固体。
4 弦高:指三角形的轮廓边与曲面之间的径向距离。
5 阶梯效应:在球体快速成型制件中,原型制件在进行RP加工完毕后,表面出现类似缩小了的梯形台阶。
6 逆向工程:是对已有实物模型或样件进行三维测量,得到实物的三维数据资料,经修改并重构出实物的三维CAD模型,最后根据三维数据模型进行实体构造的过程。
7 快速模具制造设备:以RP的原型制件为母模,实现金属模、硅胶模以及陶瓷模等模具的快速、低成本、小批量的制作研发。
填空题1.RP技术的种类:薄形材料切割型(LOM)、丝状材料熔融成型(FDM)、液态光固化成型(SLA)、粉末材料烧结成型(SLS)2.三维CAD模型的表达方法:构造型立体集合表达法、边界表达法、参量表达法、单元表达法。
3.STL格式:一般情况下,STL文件有ASCII码和二进制码两种输出形式。
二进制码输出形式所占有的文件空间比ASCII码输出形式的占有空间小得多,一般只是ASCII码的1/6,但是ASCII码输出形式的最大优点是可以阅读,并能进行直观的检查。
4.成型方向对工件的品质、材料消耗、模型的制作时间等方面都有很大的影响。
5.快速成型设备主要由扫面路径、RP运动机构、能源设备、材料供给和控制系统四大部分组成。
6.按RP加工制造原理分类:1)光固化成型2)分层实体制造3)熔融沉积制造4)选择性激光烧结5)三维打印7.SLA系统通常由激光器、X-Y运动装置或激光偏转扫描器、光敏性液态聚合物、聚合物容器、控制软件和升降工作台等部分组成。
快速成型技术的种类
快速成型技术是一种通过计算机辅助设计和制造的方法,可以快速制造出复杂的三维模型。
这种技术已经被广泛应用于各种领域,包括汽车、医疗、航空航天等。
本文将介绍几种常见的快速成型技术。
1. 光固化技术
光固化技术是一种通过紫外线或激光束将液态光敏树脂固化成固体的方法。
这种技术可以制造出非常精细的模型,适用于制造小型零件和精密零件。
光固化技术的优点是制造速度快,精度高,但成本较高。
2. 熔融沉积技术
熔融沉积技术是一种通过将熔融材料喷射到建模平台上,逐层堆积成三维模型的方法。
这种技术适用于制造大型零件和复杂零件。
熔融沉积技术的优点是制造速度快,成本低,但精度较低。
3. 熔融层压技术
熔融层压技术是一种通过将熔融材料喷射到建模平台上,然后用热压力将其压缩成固体的方法。
这种技术适用于制造大型零件和复杂零件。
熔融层压技术的优点是制造速度快,成本低,精度高。
4. 粉末烧结技术
粉末烧结技术是一种通过将金属或陶瓷粉末喷射到建模平台上,然后用激光束或电子束将其烧结成固体的方法。
这种技术适用于制造金属和陶瓷零件。
粉末烧结技术的优点是制造速度快,成本低,精度高。
快速成型技术已经成为现代制造业中不可或缺的一部分。
随着技术的不断发展,这些技术将会越来越成熟,应用范围也会越来越广泛。
几种常见快速成型工艺优缺点比较常见的快速成型工艺包括:激光烧结法(Selective Laser Sintering,SLS)、光固化法(Stereolithography,SLA)、喷墨打印法(Inkjet Printing)、电子束熔化法(Electron Beam Melting,EBM)、热熔沉积法(Fused Deposition Modeling,FDM)等。
下面将逐一比较这些方法的优缺点。
激光烧结法(SLS)是使用激光器将可塑性粉末烧结成所需形状的方法。
其优点包括:1.适用范围广:SLS可以用于各种材料,包括塑料、金属、陶瓷等。
因此,它适用于不同领域的应用,例如制造汽车零件、医疗器械等。
2.生产速度快:SLS可以在短时间内完成复杂形状的成型,节省了生产时间。
3.无需支撑结构:由于激光烧结的方式,SLS制造的零件不需要支撑结构,因此可以制造更为复杂的形状。
但SLS也存在一些缺点:1.成本较高:SLS设备的价格相对较高,且材料也相对较贵,导致成本较高。
2.表面质量较差:SLS制造的零件表面质量一般较差,需要进行后处理才能得到满意的结果。
光固化法(SLA)是使用紫外线激光器将液态光敏物质逐层固化成所需形状的方法。
其优点包括:1.高精度:SLA制造的零件具有较高的精度和细节展现能力。
2.可用材料多样:SLA可以使用不同种类的光敏物质进行成型,例如树脂、陶瓷等。
3.成本相对较低:SLA设备的价格相对较低,且材料成本也较低。
然而,SLA也存在一些缺点:1.制造速度较慢:由于光敏物质需要逐层固化,SLA制造的速度较慢。
2.零件强度较低:SLA制造的零件强度一般较低,不适用于承受大负荷的情况。
喷墨打印法(Inkjet Printing)是使用喷墨头将液态材料逐层喷射成所需形状的方法。
其优点包括:1.制造速度快:喷墨打印法可以较快地完成成型过程。
2.低成本:喷墨打印设备相对成本较低,材料成本也较低。
四大快速成型工艺和优缺点目前世界上的快速成型工艺主要有以下几种:一、FDM –熔融堆积工艺丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。
丝状材料选择性熔覆的原理是,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。
热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层薄片轮廓。
一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。
这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。
这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。
但仍需对整个截面进行扫描涂覆,成型时间长。
适合于产品设计的概念建模以及产品的形状及功能测试。
由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用伽马射线消毒,特别适用于医用。
但成型精度相对较低,不适合于制作结构过分复杂的零件。
FDM快速成型技术的优点是:1、制造系统可用于办公环境,没有毒气或化学物质的危险。
2、工艺干净、简单、易于材作且不产生垃圾。
3、可快速构建瓶状或中空零件。
4、原材料以卷轴丝的形式提供,易于搬运和快速更换。
5、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。
FDM快速原型技术的缺点是:1、精度较低,难以构建结构复杂的零件。
2、垂直方向强度小。
3、速度较慢,不适合构建大型零件。
二、SLA –树脂光固化工艺光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速成型技术。
快速成型的种类快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(LaserTechnology),例如:光固化成型(SLA)、分层实体制造(LOM)、选域激光粉末烧结(SLS)、形状沉积成型(SDM)等;基于喷射的成型技术(JettingTechnoloy),例如:熔融沉积成型(FDM)、三维印刷(3DP)、多相喷射沉积(MJD)。
下面对其中比较成熟的工艺作简单的介绍。
SLA技术是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
当一层扫描完成后.未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
SLA方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。
SLA工艺成型的零件精度较高,加工精度一般可达到0.1mm,原材料利用率近100%。
但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。
优点:(1)成型过程自动化程度高(2)尺寸精度高。
(3)表面质量优良。
(4)可以制作结构十分复杂的模型。
(5)可以直接制作面向熔模精密铸造的具有中空结构的消失型。
缺点:(1)成型过程中伴随着物理和化学变化,所以制件较易弯曲,需要支撑,(2)设备运转及维护成本较高。
(3)可使用的材料种类较少。
(4)液态树脂具有气味和毒性,并且需要避光保护,以防止提前发生聚合反应,选择时有局限性。
(5)需要二次固化。
(6)液态树脂同化后的性能尚不如常用的工业塑料,一般较脆、易断裂,不使进行机加工。
LOM(LaminatedObjectManufacturing,LOM)工艺LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的MichaelFeygin于1986年研制成功。
LOM工艺采用薄片材料,如纸、塑料薄膜等。
片材表面事先涂覆上一层热熔胶。
SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
当一层扫描完成后.未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
SLA方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。
SLA工艺成型的零件精度较高,加工精度一般可达到0.1mm,原材料利用率近100%。
但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。
优点:(1)成型过程自动化程度高(2)尺寸精度高。
(3)表面质量优良。
(4)可以制作结构十分复杂的模型。
(5)可以直接制作面向熔模精密铸造的具有中空结构的消失型。
缺点:(1)成型过程中伴随着物理和化学变化,所以制件较易弯曲,需要支撑,(2)设备运转及维护成本较高。
(3)可使用的材料种类较少。
(4)液态树脂具有气味和毒性,并且需要避光保护,以防止提前发生聚合反应,选择时有局限性。
(5)需要二次固化。
(6)液态树脂同化后的性能尚不如常用的工业塑料,一般较脆、易断裂,不使进行机加工。
LOM(LaminatedObjectManufacturing,LOM)工艺LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的MichaelFeygin于1986年研制成功。
LOM工艺采用薄片材料,如纸、塑料薄膜等。
片材表面事先涂覆上一层热熔胶。
加工时,热压辊热压片材,使之与下面已成型的工件粘接。
用CO2激光器在刚粘接的新层上切割出零件截面轮廓和工件外框,并在截面轮廓与外框之间多余的区域内切割出上下对齐的网格。
激光切割完成后,工作台带动已成型的工件下降,与带状片材分离。
供料机构转动收料轴和供料轴,带动料带移动,使新层移到加工区域。
工作合上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚。
再在新层上切割截面轮廓。
如此反复直至零件的所有截面粘接、切割完。
最后,去除切碎的多余部分,得到分层制造的实体零件。
LOM工艺只需在片材上切割出零件截面的轮廓,而不用扫描整个截面。
因此成型厚壁零件的速度较快,易于制造大型零件。
工艺过程中不存在材料相变,因此不易引起翘曲变形。
工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以LOM工艺无需加支撑。
缺点是材料浪费严重,表面质量差。
SLS(SelectiveLaserSintering)工艺SLS工艺称为选域激光烧结,由美国德克萨斯大学奥斯汀分校的C.R.Dechard于1989年研制成功。
SLS工艺是利用粉末状材料成型的。
其原理是将材料粉末铺洒在已成型零件的上表面,并刮平,用高强度的CO2激光器在刚铺的新层上扫描出零件截面,材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成型的部分连接。
当一层截面烧结完后,铺上新的一层材料粉末,有选择地烧结下层截面。
烧结完成后去掉多余的粉末,再进行打磨、烘干等处理得到零件。
优点:(1)精度高。
制件在X和y方向的精度可达±0.1~0.2mm,Z方向的精度可达±0.2~0.3mm。
(2)实体制造中无需设计和制作支撑,所以制作效率高、速度快、成本低。
缺点:(1)特别是薄壁件的抗拉强度和弹性不够好;(2)易吸湿膨胀,成型后应尽快进行表面防潮处理;(3)件表面有台阶纹,其高度等于材料的厚度(通常为0.1mm左右)SLS工艺的特点是材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件,特别是可以制造金属零件。
这使SLS工艺颇具吸引力。
SLS工艺无需加支撑,因为没有烧结的粉末起到了支撑的作用。
优点是(1)可采用多种材料。
(2)制造工艺比较简单。
(3)高精度。
依赖于使用的材料种类和粒径、产品的几何形状和复杂程度,该工艺一般能够达到工件整体范围内±(0.05~2.5)mm的公差。
当粉末粒径为0.1mm以下时,成型后的原型精度可达±l%。
(4)材料利用率高,价格便宜,成本低。
(5)无需支撑结构。
3DP(ThreeDimensionPrinting)工艺三维印刷工艺是美国麻省理工学院E-manualSachs等人研制的。
已被美国的Soligen公司以DSPC (DirectShellProductionCasting)名义商品化,用以制造铸造用的陶瓷壳体和型芯。
3DP工艺与SLS工艺类似,采用粉末材料成型,如陶瓷粉末、金属粉末。
所不同的是材料粉末不是通过烧结连结起来的,而是通过喷头用粘结剂(如硅胶)将零件的截面“印刷”在材料粉来上面。
3DP的原理如图所示,左面是储粉筒,材料被放置在快速成型过程的起始位置。
零件是由粉末和胶水组成的。
右面就是部件制作的地方。
在工作平台的里面是一个平整的金属盘,上面一层层微细的粉末由滚筒铺开,然后在制作过程中由打印头喷出粘着剂进行粘结.其优点:(1)速度快,(2)是和制造复杂形状的零件,(3)可用与制造复合材料或非均匀材料的零件,(4)可是和制造小批量零件,(5)无污染,是绿色化的办公室设计。
缺点:(1)零件精度差,表面粗糙度差(2)零件易变性甚至出现裂纹。
FDM(FusedDepostionModeling)工艺熔融沉积制造(FDM)工艺由美国学者ScottCrump于1988年研制成功。
FDM的材料一般是热塑性材料,如蜡、ABS、尼龙等。
以丝状供料。
材料在喷头内被加热熔化。
喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结。
FDM工艺原理如图所示。
与上述工艺不同,FDM不采用激光,成型材料为丝状的高分子聚合物;在开始成型之前,丝状材料需要先在液化管中被加热到略高于其软化点以将其熔化。
成型时,喷头在计算机控制下作x-y联动扫描,同时喷出半流动状的高分子聚合物,高分子聚合物在成型室中冷却成型,并与已经成型的下层牢固地粘结在一起。
FDM工艺的缺点是需要支撑,而且由于物态变化,成型后原型存在变形现象优点:(1)由于热融挤压头系统构造原理和操作简单,维护成本低,系统运行安全。
(2)成型速度快。
用熔融沉积方法生产出来的产品,不需要SLA中的刮板再加工这一道工序。
(3)用蜡成型的零件原型,可以直接用于熔模铸造。
(4)可以成型任意复杂程度的零件,常用于成型具有很复杂的内腔、孔等零件。
(5)原材料在成型过程中无化学变化,制件的翘曲变形小。
(6)原材料利用率高,且材料寿命长。
(7)支撑去除简单,无需化学清洗,分离容易。
缺点:(1)成型件的表面有较明显的条纹。
(2)沿成型轴垂直方向的强度比较弱。
(3)需要设计与制作支撑结构。
(4)需要对整个截面进行扫描涂覆,成型时间较长。
(5)原材料价格昂贵。