机械原理课程设计牛头刨床-牛逼版
- 格式:doc
- 大小:673.50 KB
- 文档页数:25
牛头刨床机械原理课程设计1点题目:牛头刨床机械原理课程设计一、设计背景和目的牛头刨床是一种常见的金属切削机床,广泛应用于制造业、机械维修等领域。
牛头刨床的机械原理涉及到运动学、力学、材料学等多个学科的知识,通过本次课程设计,旨在帮助学生深入理解牛头刨床的工作原理、设计和制造过程,提高机械设计的能力和综合素质。
二、设计任务和要求本次课程设计的主要任务是设计一款能够加工直线、平面和曲线的牛头刨床。
具体要求如下:设计一台能够进行直线、平面和曲线加工的牛头刨床,要求具备高精度、高效率和高稳定性。
设计过程中,需要考虑到机械结构、传动系统、进给系统、润滑系统等多个方面,确保整机的性能达到预期要求。
设计方案需要包括机械结构图、零件图、装配图等,并编写相应的设计说明书。
三、设计步骤和方法确定设计方案需要确定牛头刨床的整体结构和布局。
考虑到直线、平面和曲线加工的需求,可以选择采用卧式或立式布局。
同时,还需要确定传动系统和进给系统的设计方案,包括电机、减速器、丝杠等关键部件的选择和布置。
机械结构设计在进行机械结构设计时,需要考虑到以下几个方面的因素:(1)工作台:工作台是牛头刨床的主要工作部件,需要具备高刚性和稳定性。
设计时可以考虑采用整体式结构或分体式结构,根据需求选择合适的尺寸和材料。
(2)传动系统:传动系统是牛头刨床的重要组成部分,需要考虑电机的选择、减速器的配置以及丝杠的设计。
电机需要根据实际需求选择功率和转速合适的型号;减速器则需要根据电机的输出转速和丝杠的转速要求进行匹配;丝杠的选择则需要根据工作台的进给速度和负载要求来确定。
(3)进给系统:进给系统包括导轨、丝杠、滑块等部件,需要确保高精度和平稳运行。
导轨需要选择合适的型号和尺寸,确保工作台在直线运动中保持稳定;丝杠则需要根据工作台的进给速度和负载要求进行选型;滑块则需要与丝杠配合使用,确保运动精度和稳定性。
(4)润滑系统:润滑系统是牛头刨床的重要辅助系统,能够减小摩擦、降低温度、减少磨损。
牛头刨床设计一、工作原理牛头刨床是一种靠刀具的往复直线运动及工作台的间歇运动来完成工件的平面切削加工的机床。
图1为其参考示意。
电动机经过减速传动装置(带和齿轮传动)带动执行机构(导杆机构和凸轮机构),完成刨刀的往复运动和间歇移动。
刨床工作时,刨头6由曲柄2带动右行,刨刀进行切削,称为工作行程。
在切削行程H中,前、后各有一段0.05H的空刀距离,工作阻力F为常数;刨刀左行时,即为空回行程,此行程无工作阻力。
在刨刀空回行程时,凸轮8通过四杆机构带动棘轮机构,棘轮机构带动螺旋机构使工作台连同工件在垂直纸面方向上做一次进给运动,以便刨刀继续切削。
图1 牛头刨床二、设计要求电动机轴与曲柄轴2平行,刨刀刀刃点E与铰链点C的垂直距离为50mm,使用寿命10年,每日一班制工作,载荷有轻微冲击。
允许曲柄2转速偏差为土5%。
要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件9的升、回程运动规律均为等加速、等减速运动。
执行构件的传动效率按0.95计算,系统有过载保护。
按小批量生产规模设计。
三、设计数据表1 设计数据四、设计内容及工作量(1)根据牛头刨床的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。
(2)根据给定的数据确定机构的运动尺寸。
要求用图解法设计,并将设计结果和步骤写在设计说明书中。
(3)导杆机构的运动分析。
将导杆机构放在直角坐标系下,建立数学模型。
(4)凸轮机构设计。
根据给定的已知参数,确定凸轮的基本尺寸(基圆半径r o、机架l o2o9和滚子半径r r)和实际轮廓,并将运算结果写在说明书中(可选)。
(5)编写设计计算说明书。
机械原理课程设计题目:牛头刨床作者:***机械原理设计数据 (2)1、概述1.1 牛头刨床简介 (4)1.2 运动方案分析与选择 (5)2、导杆机构的运动分析2.1 位置2的速度分析 (6)2.4 位置2的加速度分析 (7)2.3 位置4的速度分析 (10)2.4 位置4的加速度分析 (11)3、导杆机构的动态静力分析3.1 位置2的惯性力计算 (12)3.2 杆组5,6的动态静力分析 (12)3.3 杆组3.4的动态静力分析 (13)3.4 平衡力矩的计算 (14)概述一、机构机械原理课程设计的目的:机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。
其基本目的在于:(1)进一步加深学生所学的理论知识,培养学生独立解决有关本课程实际问题的能力。
(2)使学生对于机械运动学和动力学的分析设计有一较完整的概念。
(3)使学生得到拟定运动方案的训练,并具有初步设计选型与组合以及确定传动方案的能力。
(4)通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。
二、机械原理课程设计的任务:机械原理课程设计的任务是对机械的主体机构(连杆机构、凸轮机构、齿轮机构以及其他机构)进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮、齿轮;或对各机构进行运动分析。
要求学生根据设计任务,绘制必要的图纸,编写说明书。
三、械原理课程设计的方法:机械原理课程设计的方法大致可分为图解法和解析法两种。
图解法几何概念较清晰、直观;解析法精度较高。
根据教学大纲的要求,本设计主要应用图解法进行设计。
牛头刨床的简介一.机构简介:机构简图如下所示:牛头刨床是一种用于平面切削加工的机床,主要由齿轮机构,导杆机构和凸轮机构等组成,如图所示。
电动机经过减速装置(图中只画出了齿轮z1,z2)使曲柄2转动,再通过导杆机构2-3-4-5-6带动刨头6和刨刀作往复切削运动。
牛头刨床机械原理课程设计一、介绍1.1 课程介绍牛头刨床机械原理课程主要介绍机械刨床的工作原理,如行程的结构和部件:主轴、刀盘、切屑装置、调节装置、进出料装置、机床架等。
并着重介绍不同种类刨床的变形变换原理、羽边切削原理、切槽刨削原理、车削工艺原理、刨削调节量计算等。
2.2 课程内容a.讲解牛头刨床的结构和工作原理;b.讨论各种刨床的变形变换原理;c.研究刀具的受力特性;d.介绍刀具的拆装、保养和维护;e.解释切割工艺的润滑原理;f.介绍切削的控制方式;g.理解切削的热学和动力学原理;h.正确管理节能;i.利用CAD/CAM软件进行加工编程;j.论述国家对机械刨床产品的质量要求。
二、教学方法1.理论教学方法:以教授机械刨床的基本原理和实践要求为主,以知识的介绍、把握与应用为辅,依据牛头刨床的行程、结构和性能特点,系统的讲解机械刨床的切削原理,机械刨床的刀具、切削参数等。
2.实践教学方法:将所学理论与实际生产活动紧密结合,带领学生熟悉牛头刨床各部位结构及其操作。
由浅入深,示范操作,培养学生在实际操作中发现问题,分析解决问题的能力。
三、教学内容1.牛头刨床结构介绍:对牛头刨床的结构特点、设计参数,设备控制参数,运动参数等进行分析及介绍,使学生熟悉牛头刨床的操作参数;2.切削工艺原理:讲解机械刨床的加工理论,如接触角、切削力、切削壁曲率等,以及机械刨床加工中细分技术,如羽边、刀具折角、切槽等切削技术;3.CAD/CAM技术:介绍机械刨床存储设计的技术,让学生了解如何利用CAD/CAM技术设计机械刨床的加工工艺。
四、实践教学1.牛头刨床操作:实操实验,操作介绍牛头刨床的操作技能,操作设备,检查调节机械刨床加工的参数;2.牛头刨床加工:进行牛头刨床的切削加工,熟悉加工过程中的直线、圆弧、曲线加工,学习牛头刨床加工过程中应注意事项;3.设计实践:运用CAD/CAM软件,设计出机械零件的加工工序,并编程控制牛头机械刨床实施加工,克服加工中可能遇到的问题。
机械原理课程设计牛头刨床设计机械原理课程设计牛头刨床设计随着科技不断的发展,机械英才的培养已受到各界的高度重视。
机械原理作为机械类专业的重点课程之一,对于学生的综合素质和能力的培养有着至关重要的作用。
为了提高学生的实践能力和专业技能,我在接受机械原理课程设计任务时,选择了一项具有挑战性和实用性的牛头刨床设计任务。
一、课程设计目标通过本次课程设计,主要目标如下:1.让学生了解牛头刨床的基本工作原理及其结构特点;2.提高学生的机械设计和制造能力;3.培养学生的合作精神和创新能力;4.促进学生的动手操作和实验能力的提高。
二、课程设计步骤1.课程设计前期准备在进行具体设计之前,我对牛头刨床的相关资料进行了大量的研究和归纳,学生们也需要认真学习刨床的相关知识。
同时,我还组织了互动的讲座和课堂讨论,以便于学生能够更加深入地理解牛头刨床的工作原理和结构特点。
2.机械设计在机械设计过程中,我们采取的是课堂授课和实际组装相结合的方法,进一步提高了学生的实践能力和设计能力。
课堂授课的内容主要包括刨床的设计思路、工作原理、传动方式等内容,通过实际操作和模拟实验,让学生从多个角度全面了解牛头刨床的结构和特点。
同时,我们还根据实际情况,对课程内容进行了针对性的调整和完善。
3.装配测试在机械设计完成后,我们对刨床进行了装配测试。
通过实际的组装和测试,提高了学生的实验能力和操作技能。
在测试过程中,我们严格按照安全操作规程进行操作,避免了误操作和安全事故的发生。
4.实践操作在实践操作中,我们对刨床的使用方法进行了详细的讲解和演示,让学生可以熟练地操作和使用刨床。
同时,我们组织了一些实践操作题目,让学生能够更好地理解和应用所学的知识。
三、收获通过本次课程设计,学生们都获得了很大的收获。
首先,他们对机械设计的基本原理和方法有了更深入的了解,同时也提高了他们的实践能力和实验能力。
其次,在团队协作方面,学生们也得到了很好的锻炼,提高了他们的合作精神和创新能力。
设计题目:牛头刨床附图1:导杆机构的运动分析与动态静力分析附图2:齿轮机构的设计目录一.设计题目…………………………….……………………. .4二. 牛头刨床机构简介……………………………….………. .4三.机构简介与设计数据……………………………………. .. .5四. 设计内容…………….………………………….…………. .6五. 体会心得 (14)一、设计题目:牛头刨床1.)为了提高工作效率,在空回程时刨刀快速退回,即要有急回运动,行程速比系数在1.4左右。
2.)为了提高刨刀的使用寿命和工件的表面加工质量,在工作行程时,刨刀要速度平稳,切削阶段刨刀应近似匀速运动。
3.)曲柄转速在64r/min,刨刀的行程H在300mm左右为好,切削阻力约为9000N,其变化规律如图所示。
二、牛头刨床机构简介牛头刨床是一种用于平面切削加工的机床,如图4-1。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约5H的空刀距离,见图4-1,b),而空回行程中则没有切削阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。
三、机构简介与设计数据3.1机构简介牛头刨床是一种用于平面切削加工的机床。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
机械原理课程设计说明书牛头刨床一、设计题目牛头刨床的机械原理设计二、设计目的本次课程设计的目的是通过对牛头刨床的设计,深入理解机械原理中机构的运动和动力传递,掌握机械设计的基本方法和步骤,提高分析和解决实际工程问题的能力。
三、原始数据及设计要求1、刨削行程长度:____mm2、刨削速度:____m/min3、行程速比系数:____4、刨刀工作行程时的平均切削力:____N5、刨刀空行程时的平均阻力:____N设计要求:1、绘制机构运动简图。
2、对机构进行运动分析和动力分析。
3、确定电动机的功率和转速。
4、设计主要零部件的结构尺寸。
四、机构的选择和工作原理牛头刨床通常采用曲柄摇杆机构来实现刨刀的往复直线运动。
其工作原理是:电动机通过皮带传动将动力传递给飞轮,飞轮带动曲柄旋转,曲柄通过连杆带动摇杆摆动,摇杆与滑枕相连,从而使滑枕带动刨刀作往复直线运动。
五、运动分析1、位移分析设曲柄长度为 r,连杆长度为 l,摇杆长度为 a,偏距为 e。
以曲柄转角φ 为自变量,根据几何关系可以得到摇杆的摆角θ 和滑枕的位移 s 的表达式。
2、速度分析对位移方程求导,可以得到摇杆的角速度ω 和滑枕的速度 v 的表达式。
3、加速度分析对速度方程求导,可以得到摇杆的角加速度ε 和滑枕的加速度 a 的表达式。
六、动力分析1、工作阻力分析根据刨削工艺要求,确定刨刀在工作行程和空行程中的阻力变化规律。
2、惯性力分析计算各构件的质量和转动惯量,根据加速度分析结果计算惯性力。
3、平衡分析考虑惯性力和工作阻力,对机构进行平衡分析,以减小振动和冲击。
七、电动机的选择1、计算工作功率根据刨削力和刨削速度,计算刨削工作所需的功率。
2、考虑传动效率考虑皮带传动、齿轮传动等的效率,计算电动机所需的输出功率。
3、选择电动机根据所需功率和转速,选择合适的电动机型号。
八、主要零部件的设计1、曲柄和连杆的设计根据受力情况和运动要求,确定曲柄和连杆的材料、尺寸和结构形式。
牛头刨床机械原理课程设计方案二7和11方案二7:牛头刨床机械原理课程设计方案设计目标:设计一个牛头刨床机械,能够实现材料的刨削加工,并且具备稳定且精确的刨床运动。
设计方案:1. 机械结构设计:- 选取适当的材料和尺寸,设计机械的底座、支撑架和刨床刀架等部件。
- 结构采用刚性的焊接连接,确保整体的稳定性和刚度。
2. 刨床刀具设计:- 选用适当的刨床刀具,如硬质合金刨刀或钢刨刀。
- 优化刀具的刀片形状和角度,以提高切削效率和表面质量。
3. 传动系统设计:- 使用驱动电机提供动力,通过齿轮传动或皮带传动将动力传递到刨床机械上。
- 选用合适的传动比例,以确保刨床运动的稳定性和精确度。
4. 控制系统设计:- 使用数控系统或微控制器来控制机械的运动。
- 设计合适的运动控制算法和界面,以实现刨削过程的自动化控制。
5. 安全设计:- 设计适当的安全措施,如防护装置和急停按钮,以保证操作人员的安全。
方案二11:牛头刨床机械原理课程设计方案设计目标:设计一个牛头刨床机械的自动上下料系统,能够实现材料的自动上下料和刨削加工,并具备稳定而高效的运行。
设计方案:1. 机械结构设计:- 在牛头刨床机械的基础上增加一个自动上下料系统,包括上料装置和下料装置。
- 上料装置采用输送带或机械臂等方式将材料送入刨床机械,下料装置将刨削好的材料自动取出。
2. 上料系统设计:- 设计一个自动上料装置,可以将材料从待加工区域送入刨床机械。
- 上料装置可以根据需要进行自动化控制,通过传感器感知材料的位置和状态,实现自动上料操作。
3. 下料系统设计:- 设计一个自动下料装置,可以将刨削好的材料自动取出。
- 下料装置可以根据需要进行自动化控制,通过传感器感知刨削完成的材料,实现自动下料操作。
4. 传动系统设计:- 保持原有牛头刨床机械的传动系统,确保刨床机械的稳定性和精确度。
- 上下料系统的传动部分可以采用电机驱动和传送带等方式,以实现材料的自动送入和取出。
机械原理牛头刨床课程设计牛头刨床课程设计本课程的目的是使学生理解牛头刨床的原理,掌握正确的操作方法,安全而且高效的操作机床,为以后的实验、制作做准备。
一、总述牛头刨床,是用来进行切铣或者刨削加工的机床,主要用于打凹槽、打丁、刨槽、切断、挤出、切透等工作。
由于它精度高,准确性好,可以用来在机械加工行业中制作同样形状的零件,因此十分流行。
二、物理原理牛头刨床是一种摩擦式加工机床,其工作原理是将工件把其用牛头刨刃进行切削,产生摩擦动力发生滑动现象,从而实现对工件的加工加工非常有效率。
它特点体现在机床的构造,通常由一个垂直的刨花杆,一个活动的刨刃和一个垂直的工件夹紧装置组成。
三、机床结构牛头刨床,基本包括:主轴系统,分度齿轮系统,臂节系统,工件夹紧系统,床身系统和润滑系统等结构。
主轴系统由主轴、轴夹等组成,分度齿轮系统由主齿轮、主动齿轮、位移齿轮和分度齿轮组成,臂节系统由夹紧臂、轨道臂、杠杆调整臂、弹簧臂和臂轮组成,工件夹紧系统由夹紧框、夹紧杆、紧固螺栓及液压夹紧装置组成,润滑系统由油箱、油泵和油管组成。
四、机床操作1、在夹紧上就好紧固螺丝杆调整压力,根据工艺要求选择合适锥度的刨刃,按照顺序从大到小的刨;2、翻转夹件夹紧装置夹紧工件,使其与机床的定位位置一致;3、调整切削深度,即调整刨刃夹紧臂的位置,当刨刃完全进入工件时,开机进行加工;4、加工中要注意机床及工件的热量,使其保持在一定范围内;5、加工完成后,去除刨刃,清理刨花,进行刀具检查,并更换新的刀具。
五、课程内容1、讲解物理原理及机床结构;2、讨论加工工艺;3、实操演示加工技术;4、实验室测试本课程学习的技能;5、指导并完成机床制作机械部件的实际操作。
六、学习成果1、理解牛头刨床的原理,掌握机床的结构及各部件;2、熟悉牛头刨床内所有工艺加工流程及其步骤;3、掌握各种加工技术,能够正确熟练地操作机床;4、能够正确配置工艺,以满足加工的要求。
(完整版)机械原理课程设计说明书牛头刨床机械原理课程设计说明书牛头刨床一、设计背景随着工业化的发展,对于木材加工的需求越来越大。
牛头刨床作为一种常用的机械设备,用于将木材刨平、刨直,从而得到平整的木材表面。
本课程设计旨在设计一台具有稳定性、高效性和安全性的牛头刨床。
二、设计要求1. 刨床的工作台面积不小于500mm×300mm,且能承受一定的负荷;2. 刨床刨削深度可调节,最大刨削深度不小于8mm;3. 刨床的工作速度可调节,最大工作速度不小于8m/min;4. 刨床的刨刀具具有良好的刨削效果,并可更换;5. 刨床具有必要的保护装置,以确保操作者的安全;6. 刨床的整体结构紧凑、操作简便,外观美观。
三、设计思路1. 结构设计:(1) 床身结构:采用铸铁材质,以确保刨床的稳定性和刚性;(2) 工作台设计:采用铝合金材质,具有较好的耐磨性和导热性;(3) 刨刀具设计:采用高速钢材质,设计成可更换式,以提高使用寿命和刨削效果;(4) 传动系统设计:采用电动驱动方式,通过变频器调节工作速度和刨削深度。
2. 控制系统设计:(1) 刨床配备触摸屏控制面板,方便操作者实时监控工作状态;(2) 刨床配备紧急停止按钮和安全防护装置,以确保操作者的安全;(3) 刨床具备自动换刀功能,提高操作效率;(4) 刨床配备故障自诊断系统,能够快速判断故障并进行维修。
四、技术参数1. 工作台面积:600mm×400mm;2. 最大刨削深度:10mm;3. 最大工作速度:12m/min;4. 刨刀具材质:高速钢;5. 电源:交流220V,50Hz;6. 功率:2.2kW。
五、安全措施1. 刨床配备紧急停止按钮,操作者在发生紧急情况时,可以立即停止刨床的工作;2. 刨床工作过程中,操作者必须戴上防护手套和护目镜,以避免刨削过程中的飞溅伤害;3. 刨床的开关箱设有防护罩,以防止误碰开关引发事故;4. 刨床配备故障自诊断系统,能够及时发现故障并进行维修。
牛头刨床0.机构简介与设计数据 0.1牛头刨床简介牛头刨床是一种用平面切削加工的机床,如下图所示。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由曲柄机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较底并且均匀,以减少电动机的容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构,使工作台连同工作件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的工作阻力(在切削的前后个有一段约0.5H 的空刀距离,见图)而空回行程中则没有切削阻力。
因此刨头在整个运动循环中受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。
— —装订线— —牛头刨床机构简图及其阻力曲线0.2设计数据运动分析数据导杆机构的动态静力分析数据凸轮机构设计数据飞轮转动惯量确定数据1.导杆机构的运动分析已知曲柄每分钟的转数n2,各构件的尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上(见图) .要求做出机构的运动简图,用解析法和图解法求出方案Ⅰ中1′+10°和9位置的速度、加速度,并对结果进行误差分析。
1.1矢量方程图解法用CAD按一定的比例绘制机构位置机构简图及相应的速度和加速度多边形图,并量出个对应其中l2=l AO2, l4=l BO4,l5=l BC,v B=v B4=v B5, a B= a B4=a B5(1)速度(2)加速度1.2矩阵法建立直角坐标系,标出各杆矢量及方位角。
其中共有四个未知量θ4,θ5,s4,s C.建立两个封闭矢量方程,为此需用两个封闭图形O2AO4及O4BCEO4,由此可得l6+l2=s4, l4+l5=l6′+s C写成投影方程为S4cosθ4=l2cosθ2S4sinθ4=l6+l2sinθ2l4cosθ4+l5cosθ5-s E=0l4sinθ4+l5sinθ5= l′6以上个式即可求得θ4、θ5、s4及s E四个运动变量。
机械原理课程设计---牛头刨床设计1.设计目的本设计旨在设计一台能够切削各种金属材料的牛头刨床。
该牛头刨床应具备高效率、高稳定性、切削精度高的特点,便于操作和维护。
2.设计原理牛头刨床是一种高速旋转的加工设备。
其主要原理是通过旋转锯齿式的切削工具,将工件表面上的金属材料逐渐削除,使得工件表面变得更加平整,并且加工出所需的形状和尺寸。
牛头刨床是一种中等负荷,高精度的机床。
牛头刨床通常由牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。
牛头刨床的加工过程是由电机驱动削刀旋转,刀架在滑轨的带动下来回作直线摆动,使牛头刨床作工件表面直线切削运动,从而切出工件所需的形状和尺寸。
3.设计要求3.1工件加工精度应达到5μm。
3.2牛头刨床的加工速度应达到1000mm/min。
3.3牛头刨床的集成度要高,结构紧凑,使用方便,易于维护。
3.4牛头刨床应能满足加工各种金属材料的需求。
3.5牛头刨床应具有高稳定性,能够保证工件加工的精度和表面质量。
4.设计方案4.1结构设计根据以上的设计要求,本设计方案选择使用牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。
牛头床身是整个牛头刨床的主要支撑结构,可以承受切削力和副作用力,保持机床的稳定性。
床身导轨主要用于支撑剪刀架和平台,保证刀架的平直移动。
剪刀手柄和剪刀架负责牛头刨床的切削过程,加工刀具可根据需要更换。
4.2电气控制设计本设计方案使用单片机控制系统,实现对牛头刨床的控制。
单片机通过输入脉冲信号,控制螺旋传动装置,从而改变刀具的进给量,达到精确控制切削深度和速度的目的。
4.3软件设计本设计方案采用Unigraphics NX软件进行电脑辅助设计。
对机床各零件进行三维建模,并进行机床的装配和结构分析。
5.结论通过本次牛头刨床的设计,可以使得产生出一款结构紧凑、使用便捷、高效率和高精度的机床。
在未来的制造业中,牛头刨床的应用前景非常广阔。
牛头刨床机械原理课程设计牛头刨床是一种机械设备,用于加工木材、塑料、金属等材料。
其工作原理是通过刀具在物体表面上上下移动,达到切削的目的。
其中涉及到的原理主要包括:1. 刨床工作原理刨床是一种重型机械工具,由主驱动机构、横移机构、上下升降机构、切削机构、进给机构等组成。
切削机构包括刀架、刀柄和刀具。
当工件在夹具上夹紧稳固后,驱动机构带动横移机构和上下升降机构保持平衡,使得刀具与工件接触,并在横向和上下方向移动,实现对工件的切削。
2. 刨床刀具原理刨床刀具主要包括刨刀、电磁刨刀和金刚石刨刀。
刨刀是最常见的一种刀具,其切削面呈V型或直径尖角,用于刨削较大的平面表面。
电磁刨刀是利用磁场通过电流改变切削面积的大小,实现对工件的切削。
金刚石刨刀则是利用其硬度高、耐磨性强的特性,用于加工硬度较高的材料。
3. 刨床进给机构原理刨床进给机构主要通过变速器和变步进电机驱动筒齿轮,再通过传动带牵引杠杆调整进刀量。
刨床的进给速度和进给量应根据工件的材料性质、大小和工件表面的要求等因素进行合理的调整。
4. 刨床的冷却原理在刨床加工过程中,由于切削摩擦会使工件表面温度升高,容易导致切削工具变形或失去切削性能。
因此在刨床加工中需要进行冷却处理。
使用冷却液进行冷却可以有效减少摩擦热量,并清洗切削面,保证加工质量。
常用的冷却液有水、油、溶液等。
基于以上原理,我们可以开展牛头刨床机械原理课程设计,并考虑以下几个方面:1. 设计刨床的操作界面通过自主设计刨床的操作界面,可以使得操作更加方便和快捷。
操作界面应设置开机按钮、急停按钮、刨床刀具的进给速度和进给量调节、冷却液的喷洒控制等。
2. 模拟刨床工作的过程通过建立数学模型,模拟刨床的加工过程,可以让学生更好地理解和熟悉刨床的工作原理和加工过程。
模型可以分成驱动机构、横移机构、上下升降机构、切削机构、进给机构和冷却液系统等模块,通过计算机程序实现模拟加工。
3. 实验设计设计刨床加工实验,让学生实际操作刨床进行加工,从而更深入了解刨床的工作原理和加工过程。
机械原理课程设计说明书-牛头刨床的运动分析与设计一、设计目标本机械原理课程设计的目标是对牛头刨床进行运动分析与设计,通过分析刨床的运动原理和结构特点,设计出合理的刨床结构,确保刨床的运动稳定性和工作效率。
二、刨床的运动分析1. 刨床的基本运动牛头刨床的基本运动包括主轴转动、工作台进给运动和刀架进给运动。
主轴转动通过电动机驱动刨刀进行旋转,实现刨削工作。
工作台进给运动使工件在水平平面上进行进给运动,供刀架进行刨削。
刀架进给运动使刀架在垂直于工作台的方向上进行进给,并在工件刨削时左右平移,调整刨削的位置。
2. 刨床的运动传动刨床的运动传动主要通过齿轮传动和导轨传动实现。
主轴转动通过电动机通过齿轮传动带动主轴实现。
工作台进给运动通过齿轮和导轨的组合实现,工作台在导轨上进行水平移动。
刀架进给运动通过螺杆和导轨的组合实现,螺杆带动刀架进行垂直平移,并在导轨上进行水平移动。
三、刨床结构设计基于上述运动分析,对牛头刨床进行结构设计如下:1. 主轴结构:主轴采用直径大、刚度高的优质轴承,保证刨床的稳定性和工作效率。
主轴和电动机通过齿轮传动连接,确保刨床主轴的转动平稳。
2. 工作台结构:工作台采用结实的铸铁材料,设计为可拆卸结构,方便工件的放置和取出。
工作台通过导轨和齿轮传动实现水平进给运动,导轨和齿轮选用耐磨材料,减小运动阻力。
3. 刀架结构:刀架采用铸铁材料,设计为可调节结构,方便调整刨削位置。
刀架通过螺杆和导轨的组合实现垂直进给运动和水平进给运动,确保刀具与工件的接触面平整。
四、设计流程1. 进行刨床的运动分析,确定刨床的基本运动和运动传动方式。
2. 根据运动分析结果,进行刨床的结构设计,包括主轴结构、工作台结构和刀架结构。
3. 设计刨床各部件的尺寸和连接方式,确保结构的牢固性和可拆卸性。
4. 进行刨床的总体装配和调试,确保刨床的运动平稳和工作效率。
5. 测试刨床的性能和稳定性,进行必要的调整和改进。
五、安全注意事项1. 在使用刨床时,应仔细阅读操作指南,并按照操作规程进行操作。
机械原理牛头刨床课程设计机械原理牛头刨床课程设计一、课程背景与目的牛头刨床作为机械加工中的一种重要设备,广泛应用于金属切削加工领域。
本课程旨在通过深入学习机械原理和牛头刨床的结构、工作原理,掌握其使用方法,并能够进行实际操作和维护,提高学生对机械加工的实际应用能力和技能。
二、课程内容1. 机械原理基础知识(1)力学基础概念、力的分类、作用力分解(2)切削力、主动力和被动力等概念(3)动力学基础概念,运动学方程和动力学方程。
2. 牛头刨床结构与工作原理(1)牛头刨床的组成结构、各部件的作用、工作原理(2)用牛头刨床加工零件时操作规范3. 牛头刨床操作技能(1)机床的操作和维护(2)手动装夹、机动装夹的区别和操作方法(3)牛头刨床的各种加工方法和工艺流程。
4. 牛头刨床的检修与维护(1)机床加工时常见的故障处理方法(2)机床的日常保养和定期维护(3)了解机床维修保养中的一些常见问题及解决办法。
三、实验内容1. 牛头刨床操作实验(1)牛头刨床各种加工方法的实操(2)手动/机动装夹的实操及技巧(3)机床加工时常见问题的解决方案的实操。
2. 牛头刨床检修实验(1)机床日常保养和检修实操(2)机床常见故障的排除实操(3)机床维修保养常见问题的解决实操。
四、课程设计要点1. 确定课程基础并引导学生逐步理解机械原理。
2. 着重讲解牛头刨床的组成结构、工作原理,并教授牛头刨床操作技能。
3. 将理论和实践紧密结合,让学生更好的理解和掌握知识。
4. 提倡学生自主思考和创新实践,培养其独立解决问题的能力。
五、课程评估方式1. 考试评估(1)理论知识考试(2)机床操作技能考试(3)检修实操和故障排除考试。
2. 实验评估(1)机床操作考核实验(2)机床检修实验。
3. 课堂表现评估(1)课堂参与度(2)课程作业、报告的完成情况。
综合以上评估方式,通过平时和期末综合评估计算出学生的总评成绩。
机械原理课程设计说明书牛头刨床机构设计一、课程设计题目机械原理课程设计说明书牛头刨床机构设计二、设计目的通过本次机构设计,加深学生对于机械原理的理解和掌握;培养学生具备独立解决机械问题的能力;通过模拟实现,让学生深刻理解牛头刨床的结构和工作原理。
三、设计要求(1)设计要求结构简单可靠,工作平稳,制造易于加工和装配。
(2)设计要求工作台长宽比要合理,工作台面平整度略小于加工零件的平面度。
(3)设计要求工作台移植要平稳,能适应各种行程要求。
(4)设计要求床身刚性好,工作平台在工作时不得发生变形。
(5)设计要求走刀架结构刚性好,刀架在工作时不得发生晃动。
四、设计内容(1)牛头刨床的结构和工作原理分析。
(2)牛头刨床机构的设计选择。
(3)牛头刨床机构的构造设计。
(4)牛头刨床机构的运动仿真。
(5)设计说明书的撰写。
五、设计步骤一、牛头刨床的结构和工作原理分析。
通过对牛头刨床的结构和工作原理的了解,明确机床的工作条件和要求,为机构的设计提供依据。
二、牛头刨床机构的设计选择。
根据机床的工作要求,选择适合的机构方案,包括床身、工作台、走刀架、传动机构、电气控制等方面的设计。
三、牛头刨床机构的构造设计。
对选定的机构方案进行具体的构造设计,包括各构件的选材、尺寸、结构形式、加工工艺等方面的设计。
四、牛头刨床机构的运动仿真。
选用CAD等软件对设计完成的机构进行运动仿真,检验机构的合理性、正确性和有效性。
五、设计说明书的撰写。
撰写设计说明书,包括机床的工作原理、构造设计、工艺要求、加工及调试方法等方面的内容。
六、设计成果(1)设计完成的牛头刨床机构模型。
(2)牛头刨床的结构和工作原理分析报告。
(3)牛头刨床机构的设计方案报告。
(4)牛头刨床机构的构造设计报告。
(5)牛头刨床机构的运动仿真报告。
(6)设计说明书。
七、注意事项(1)本次课程设计需要大量运用机械原理知识,对于机械原理的理解和掌握是非常重要的。
(2)在设计过程中需要注意结构的合理性、稳定性、可靠性和经济性。
!牛头刨床0.机构简介与设计数据 牛头刨床简介牛头刨床是一种用平面切削加工的机床,如下图所示。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由曲柄机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较底并且均匀,以减少电动机的容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构,使工作台连同工作件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的工作阻力(在切削的前后个有一段约的空刀距离,见图)而空回行程中则没有切削阻力。
因此刨头在整个运动循环中受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。
— — 装 订 线— —牛头刨床机构简图及其阻力曲线设计数据运动分析数据导杆机构的运动分析n 2lo2o4lo2Alo4BlBC{lo4s4xs6ys6r/minmm方案Ⅰ$60380110540 l o4B l o4B24050—导杆机构的动态静力分析数据导杆机构的动态静力分析凸轮机构设计数据飞轮转动惯量确定数据&…1.导杆机构的运动分析已知曲柄每分钟的转数n2,各构件的尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上(见图) .要求做出机构的运动简图,用解析法和图解法求出方案Ⅰ中1′+10°和9位置的速度、加速度,并对结果进行误差分析。
矢量方程图解法用CAD按一定的比例绘制机构位置机构简图及相应的速度和加速度多边形图,并量出个对应量进行对矢量方程的所求得的结果分析误差。
矢量方程图解法:(其中l2=l AO2, l4=l BO4,l5=l BC,v B=v B4=v B5, a B= a B4=a B5(1)速度·立两个封闭矢量方程,为此需用两个封闭图形O2AO4及O4BCEO4,由此可得l+l2=s4, l4+l5=l6′+s C6写成投影方程为!S4cosθ4=l2cosθ2S4sinθ4=l6+l2sinθ2l4cosθ4+l5cosθ5-s E=0l4sinθ4+l5sinθ5= l′6以上个式即可求得θ4、θ5、s4及s E四个运动变量。
其中l4、l5、l2、l6为已知量以上矢量方程式未知量代数式如下:θ4=arctan[(l2 sinθ2+ l6)/ cosθ2l2]l'6= [l24-(l2l4/ l6)2]1/2 /2。
θ5=arcsin[(sinθ4* l4- l'6)/ l5 ]SE=l 4 cosθ4 + l 5 cosθ5S 4=cosθ2l2/cosθ4将上面投影式子分别对t求导,得S'4cosθ4+ S4(-sinθ4)ω4= -l2 sinθ2ω2S'4sinθ4+ S4cosθ4ω4= -l2sinθ2ω2其中,S'4、ω4、为未知量,且由题目已知条件ω2=nπ/30=60π/30=2π= s将余下的式子对t求导,得,- l4sinθ4ω4- l5sinθ5ω5= 0l4cosθ4ω4 +l5cosθ5ω5 =0其中,ω5 为未知量。
把其写成矩阵形式,运用MATLAB运算。
最后运动切削点C的速度v c、S'4、ω5、ω4均可以得到。
把上面各式再对时间t二次求导,得到加速度列式:S''4cosθ4-S'4 sinθ4ω4-S'4 sinθ4ω4 -S4 (cosθ4ω24+ sinθ4a4)=-l2 (cosθ2ω22– sinθ2a 2 )S ''4 sin θ4+S '4 cos θ4ω4+S '4 sin θ4ω4 + S 4 (-sin θ4ω24+ cos θ4 a 4)=-l 2 (sin θ2ω22 +cos θ2a 2 )- l 4(ω24 cos θ4+sin θ4 a 4)- l 5(ω25cos θ5+sin θ5a 5)= a c(- l 4(-ω24 sin θ4+cos θ4 a 4)+l 5(-ω25sin θ5+cos θ5a 5) =0并写成矩阵形式,即得以下速度和加速度方程式:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----•00cos sin 0cos cos 01sin sin 000cos sin 00sin cos 222225455345544444444θθθθθθθθθθωνωωl l l l l l s s c s ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----••a s c l l l l s s ξξθθθθθθθθ544553455444444440cos cos 01sin sin 000cos sin 00sin cos = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--------•••00sin cos 0sin sin 00cos cos 000sin cos cos 00cos sin sin 222222254455544455544444444334444444θωθωωωωθωθωθωθωθωθθωθωθθωl l v s l l l l s s s s C2.导杆机构的动态静力分析已知 各构件的重量G (曲柄2、滑块3和连杆5的重量都可忽略不计),导杆4绕重心的转动惯量J s4及切削力P 的变化规律(图1),及在导杆机构设计和运动分析中得出的机构尺寸,速度和加速度。
$要求 求方案Ⅰ第二位置各运动副中反作用力及曲柄上所需要的平均力矩。
先用图解法,再用虚位移验证所得结果。
图解法:杆组5-65-6组示力体|已知G6 ,P,F I6=(G6/g)m C,l I6为R16对C的力臂,杆组3-4由以上求得R45,杆5是二力杆,所以R54=R45,杆4的角加速度α4= a t A4/l A4O4, 惯性力偶矩M I4=JS4α4, 惯性力F I4=(G/g) a B4/2,总惯性力F′I4(= F I4) 偏离质心S4的距离为h′4=M I4/ F I4(其对S4的方向为逆时针),h4为G4对O4的力臂,h I4为F′I4对O4的力臂,h54为R54对O4的力臂,h23为R 23对O4的力臂,杆组1-232R32虚位移原理所有外力的功率和为0,N P+N I6+N G4+N I4+N M=0,N=|P||v C|cos180°,PN=|F I6||v C|cos180°,I6N=|G4||v B|cos103.°,G4,N=|F I4||v I4|cos171.°,I4N=M bω2 ,M把数据代入上式,得平衡力矩M b=,3.飞轮设计已知机器运转的速度不均匀系数δ,平衡力矩M b,飞轮安装在曲柄轴上,驱动力矩M ed为常数。
要求:求方案Ⅰ飞轮转动惯量J F。
等效阻力矩,公式M er=∑FVcosθ=|P||v c||cos180o|+|G|cos4`, 其中在1,1/,,2,3,4,5,6,7,7',8'位置,4α=4θ,在8,9,10,11,12位置,4α=180-4θ。
在8,8′,9,10,11,12,1位置P =0。
15个位置的等效阻力矩:)\方案Ⅰ: n O2=60r/min n o ’=1440r/min 则传动比为:i=n o ’/n O2=1440/60=24, ω20=(1500/24)*2*60=s…ωm =ω10=2*pi= rad/s [δ]=ωmax =ωm (1+[δ]/2)=2*pi*(1+= s ωmin =ωm (1-[δ])/2=2*pi*= s等效驱动力矩由上面等效阻力矩作图(见附图),在同一个周期内,驱动力矩做功应等于阻力矩做功。
⎰π20(M ed-M er)d φ =0— — 装 订 线— —φM μφ=(π/90rad)/mm-用近似面积计算:等效阻力矩线围成面积= ,可求得等效驱动力矩:2π•M ed= **π/90,M ed= *=, 求最大盈亏功 最大盈亏功△W max =⎰min max(M ed -M er )d φ=斜线以上部分的总面积,=用CAD 量得斜线以上部分的总面积=,根据比例尺,有△W max =*4*π/90= (J )*原机构的等效转动惯量J e =J o2+J o1·(n o 1/n 2)2+J o ”(n o ” /n 2)2+J o ’(n o ’/n 2)2又n O2/n O ′=60/1440,n O ′/n O ″=d O ″/d O ′=300/100,n O ″/n O1=z 1′/z O ″=10/20, 将以上各值带入(4-4)中: J e = kg ·m 2 求飞轮的转动惯量J FJ F =△Wmax·900/n2·π2 [δ] -eJ=*900/602/π2/415.7067587308556kg*m2结果…4.凸轮机构设计推杆运动规律已知摆杆9为等加速等减速运动规律,其推程运动角φ,远休止角φs,,回程运动角φ,,摆杆长度l o9D,最大摆角Φmax,许用压力角[α]凸轮与曲柄共轴。
要求确定方案Ⅰ凸轮的基本尺寸,选定滚子的半径,画出凸轮的实际廓线。
步骤: 1)根据从动件的运动规律,按照下列公式计算推程和回程的各个角位移φ。
:等加速推程: φ=2φmax δ2/δo 2φ,= /d dt φ= 4φmax δ2w /δo 2 ∴ φ“=4φmax δ/δo 2 (0~/2)o δδ=等减速推程: φ=φmax -2φmax (δo -δ) 2/ δo 2φ,= /d dt φ= 4φmax (δo -δ) 2w /δo 2∴ φ“ =-4φmax (δo -δ)/δo 2 (/2~)o o δδδ=把推程角6等分,并列出对应的摆角:表;等加速回程: φ=φmax -2φmax δ2/δ,o 2φ,= /d dt φ= -4φmaxδ2w / δ,o2-w sinθ -Ssinθ-S w cosθ 0 0w cosθ S cosθ-S w sinθ 0 0 0 -L w cosθ -L w cosθ 0 0 -L w sinθ -L w sinθ 0-L w cosθL w sinθ 0 0+w S w w v∴ φ“ =-4φmax δ/δo 2 '(0~/2)o δδ=等减速回程: φ=2φmax (δ,o -δ) 2/ δ,o 2φ,= /d dt φ= -4φmax (δ,o -δ) 2w / δ,o 2∴ φ“ =-4φmax (δo -δ)/ δo 2 ''0(/2~)o δδδ=— — 装 订 线— —凸轮基本尺寸设计-w4sinθ4 -Ssinθ-w4cosθ4 S4cosθ4-S0 -L4w4co0 -L4w4si-w4sinθ4 -S4inθ4-S4w4cosθ4 0 0w4cosθ4 S4cosθ4-S4w4sinθ4 0 00 -L4w4cosθ4 -L5w5cosθ5 00 -L4w4sinθ4 -L5w5sinθ5 0用Auto CAD2004作图确定基圆的半径和中心距。