材料力学第5版(孙训方编)第八章
- 格式:ppt
- 大小:15.36 MB
- 文档页数:144
第七章应力状态和强度理论7-17-27-37-47-57-67-77-87-97-107-117-127-137-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。
由于实用的原因,图中的角限于范围内。
作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。
现设胶合缝的许用切应力为许用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。
为了使杆能承受最大的荷载F,试问角的值应取多大?解:按正应力强度条件求得的荷载以表示:按切应力强度条件求得的荷载以表示,则即:当时,,,时,,,时,,时,,由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。
若按胶合缝的达到的同时,亦达到的条件计算则即:,则故此时杆件承受的荷载,并不是杆能承受的最大荷载。
返回7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。
解:=由应力圆得返回7-3(7-8)各单元体面上的应力如图所示。
试利用应力圆的几何关系求:(1)指定截面上的应力;(2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,,(b),,,,(c), , ,(d),,,,,返回7-4(7-9) 各单元体如图所示。
试利用应力圆的几何关系求:(1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,(b),,,(c),,,(d),,,返回7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。
试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的夹角值。
解:由已知按比例作图中A,B两点,作AB的垂直平分线交轴于点C,以C 为圆心,CA或CB为半径作圆,得(或由得半径)(1)主应力(2)主方向角(3)两截面间夹角:返回7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。
材料力学第五版(I )孙训方版课后习题答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
材料力学 高等教育出版社 孙训方[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdxl d =∆ ,⎰⎰==∆l lx A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
第二章 轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:;; (b )解:;;(c )解: ; 。
(d) 解: 。
2-2 一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx ²(k 为常数),试作木桩的轴力图。
解:由题意可得:⎰0lFdx=F,有1/3kl ³=F,k=3F/l ³F N (x 1)=⎰1x 3Fx ²/l ³dx=F(x 1 /l) ³2-3 石砌桥墩的墩身高l=10m ,其横截面面尺寸如图所示。
荷载F=1000KN ,材料的密度ρ=2.35×10³kg/m ³,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1) 求内力 取I-I 分离体得(拉)取节点E 为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
孙训⽅材料⼒学第五版课后的习题答案第⼆章轴向拉伸和压缩2-1 试求图⽰各杆1-1和2-2横截⾯上的轴⼒,并作轴⼒图。
(a )解:;;(b )解:;;(c )解:;。
(d) 解:。
[习题2-3] ⽯砌桥墩的墩⾝⾼m l 10=,其横截⾯⾯尺⼨如图所⽰。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩⾝底部横截⾯上的压应⼒。
解:墩⾝底⾯的轴⼒为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=+?--=墩⾝底⾯积:)(14.9)114.323(22m A =?+?=因为墩为轴向压缩构件,所以其底⾯上的正应⼒均匀分布。
MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图⽰⼀混合屋架结构的计算简图。
屋架的上弦⽤钢筋混凝⼟制成。
下⾯的拉杆和中间竖向撑杆⽤⾓钢构成,其截⾯均为两个75mm ×8mm 的等边⾓钢。
已知屋⾯承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截⾯上的应⼒。
解:=1)求内⼒取I-I 分离体得(拉)取节点E 为分离体,故(拉)2)求应⼒75×8等边⾓钢的⾯积 A =11.5 cm 2(拉)(拉)2-5图⽰拉杆承受轴向拉⼒,杆的横截⾯⾯积。
如以表⽰斜截⾯与横截⾯的夹⾓,试求当,30,45,60,90时各斜截⾯上的正应⼒和切应⼒,并⽤图表⽰其⽅向。
解:2-6 ⼀⽊桩柱受⼒如图所⽰。
柱的横截⾯为边长200mm的正⽅形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的⾃重,试求:(1)作轴⼒图;(2)各段柱横截⾯上的应⼒;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)[习题2-7] 图⽰圆锥形杆受轴向拉⼒作⽤,试求杆的伸长。
解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =? ,??==?l l x A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+?-=, 2211222)(u d x ld d x A ?=??? ??+-=ππ,dx l d d du d x l d d d 2)22(12112 -==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -?-=?-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l--===?πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2??+--=???-=ππ-+--=21221)(2111221d d l l d d d d E Fl π2-10 受轴向拉⼒F 作⽤的箱形薄壁杆如图所⽰。
[习题2-2]一打入基地内的木桩如以下图,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如以下图。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向紧缩构件,因此其底面上的正应力均匀散布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ [习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体〔微元体〕。
那么微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如以下图。
=(向下)(向下)为保证,点A移至,由图中几何关系知;返回第三章扭转3-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。
试作轴的扭矩图。
解:kNkNkNkN返回3-2(3-3)圆轴的直径,转速为。
若该轴横截面上的最大切应力等于,试问所传递的功率为多大?解:故即又故返回3-3(3-5)实心圆轴的直径mm,长m,其两端所受外力偶矩,材料的切变模量。
试求:(1)最大切应力及两端截面间的相对扭转角;(2)图示截面上A,B,C三点处切应力的数值及方向;(3)C点处的切应变。
解:=返回3-4(3-6)图示一等直圆杆,已知,,,。
试求:(1)最大切应力;(2)截面A相对于截面C的扭转角。
解:(1)由已知得扭矩图(a)(2)返回3-5(3-12)长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。
实心轴直径为d;空心轴外径为D,内径为,且。
试求当空心轴与实心轴的最大切应力均达到材料的许用切应力),扭矩T相等时的重量比和刚度比。
解:重量比=因为即故故刚度比==返回3-6(3-15) 图示等直圆杆,已知外力偶矩,,许用切应力,许可单位长度扭转角,切变模量。
试确定该轴的直径d。
解:扭矩图如图(a)(1)考虑强度,最大扭矩在BC段,且(1)(2)考虑变形(2)比较式(1)、(2),取返回3-7(3-16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。
外力偶矩,,。
已知:,,。
试校核该轴的强度和刚度。
解:扭矩图如图(a)(1)强度=,BC段强度基本满足=故强度满足。
(2)刚度BC段:BC段刚度基本满足。
AE段:AE段刚度满足,显然EB段刚度也满足。
返回3-8(3-17) 习题3-1中所示的轴,材料为钢,其许用切应力,切变模量,许可单位长度扭转角。
材料力学I第五版孙训方版课后习题答案2-2 解由题意可得2-3 解墩身底面的轴力为2-3图墩身底面积因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
2-7图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解取长度为截离体(微元体)。
则微元体的伸长量为,,,,,因此,2-10 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该材料的弹性常数为,试求C与D两点间的距离改变量。
解式中,,故,,2-11 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量,已知,,,。
试求C点的水平位移和铅垂位移。
变形协调图受力图2-11图解(1)求各杆的轴力以AB杆为研究对象,其受力图如图所示。
因为AB平衡,所以,,由对称性可知,,(2)求C 点的水平位移与铅垂位移。
A点的铅垂位移B点的铅垂位移1、2、3杆的变形协(谐)调的情况如图所示。
由1、2、3杆的变形协(谐)调条件,并且考虑到AB为刚性杆,可以得到C点的水平位移C点的铅垂位移2-12 图示实心圆杆AB和AC在A点以铰相连接,在A点作用有铅垂向下的力。
已知杆AB和AC的直径分别为和,钢的弹性模量。
试求A点在铅垂方向的位移。
解(1)求AB、AC杆的轴力以节点A为研究对象,其受力图如图所示。
由平衡条件得出 a b a b联立解得;(2)由变形能原理求A点的铅垂方向的位移式中,;;故2-13 图示A 和B两点之间原有水平方向的一根直径的钢丝,在钢丝的中点C加一竖向荷载F。
已知钢丝产生的线应变为,其材料的弹性模量,钢丝的自重不计。
试求(1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2)钢丝在C点下降的距离;(3)荷载F的值。
解(1)求钢丝横截面上的应力(2)求钢丝在C点下降的距离。
其中,AC和BC各。
(3)求荷载F的值以C结点为研究对象,由其平稀衡条件可得2-15水平刚性杆AB由三根BC,BD和ED支撑,如图,在杆的A端承受铅垂荷载F20KN,三根钢杆的横截面积分别为A112平方毫米,A26平方毫米,A,39平方毫米,杆的弹性模量E210Gpa,求(1)端点A的水平和铅垂位移。