发电厂电气部分课程设计主接线设计
- 格式:docx
- 大小:392.54 KB
- 文档页数:7
火力发电厂电气主接线课程设计报告前言电气主接线代表了发电厂和变压所高电压、大电流的电气部分的主体结构,是电力系统网络结构的重要组成部分。
它直接影响电力生产运行的可靠性、灵活性。
对电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。
本火电厂电气主接线主要从可靠性、灵活性、经济性三方面综合考虑并设计。
可靠性包括:发电厂和变电所在电力系统中的地位;负荷性质和类别;设备的制造水平;长期运行实际经验。
灵活性包括:操作的方便性;调度的方便性;扩建的方便性。
经济性包括:节省投资;降低损耗等。
综合以上三方面的考虑展开火电厂电气主接线的设计,并对设计进行可行性分析,得出结论:本设计适合实际应用。
1对原始资料的分析火力发电厂共有两台50MW的供热式机组,两台300MW的凝汽式机组。
所以Pmax=700MW;机组年利用小时Tmax=6500h。
设计电厂容量:2*50+2*300=700MW;占系统总容量700/(3500+700)*100%=16.7%;超过系统检修备用容量8%-15%和事故备用容量10%的限额。
说明该厂在系统中的作用和地位至关重要。
由于年利用小时数为6500h>5000h,远大于电力系统发电机组的平均最大负荷利用小时数。
该电厂在电力系统中将主要承担基荷,从而在设计电气主接线时务必侧重考虑可能性。
10.5KV电压级:地方负荷容量最大为25.35MW,共有10回电缆馈线,与50MW发电机端电压相等,宜采用直馈线。
220KV电压级:出线回路为5回,为保证检修出线断路器不致对该回路停电,宜采用带旁路母线接线方式。
500KV电压级:与系统有4回馈线,最大可能输送的电力为700-15-200-700*6%=443MW。
500KV电压级的界限可靠性要求相当高。
2 主接线方案的拟定2.1 10.5kV电压级根据设计规程规定:当每段母线超过24MW时应采用双母线分段式接线方式。
发电厂电气部分课程设计设计题目火力发电厂电气主接线设计指导教师院(系、部)专业班级学号姓名日期发电厂电气部分课程设计任务书一、设计题目火力发电厂电气主接线设计二、设计任务根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务:1. 对原始资料的分析2. 主接线方案的拟定(至少两个方案)3. 变压器台数和容量的选择4. 所选方案的经济比较5. 主接线最终方案的确定三、设计计划本课程设计时间为一周,具体安排如下:第1天:查阅相关材料,熟悉设计任务第2 ~ 3天:分析原始资料,拟定主接线方案第4天:选择主变压器的台数和容量,对方案进行经济比较第5 ~ 6天:绘制主接线方案图,整理设计说明书第7天:答辩四、设计要求1. 按照设计计划按时完成2. 设计成果包括:设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张指导教师:教研室主任:时间:摘要发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。
在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。
发电厂一次接线,即发电厂电气主接线。
其代表了发电厂高电压、大电流的电气部分主体结构,是电力系统网络结构的重要组成部分。
它直接影响电力生产运行的可靠性与灵活性,同时对电气设备选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面有决定性的关系。
本设计是对配有2 ⨯ 50MW供热式机组, 2 ⨯ 600MW凝汽式机组的的大型火力发电厂电气主接线的设计,包括对原始资料的分析、主接线方案的拟定、变压器台数和容量的选择、方案的经济比较、主接线最终方案的确定。
关键词:火力发电厂;电气主接线目录1 前言 (5)2 原始资料分析 (6)2.1 工程情况 (6)2.2 电力系统情况 (6)3 主接线方案的拟定 (8)3.1 10.5kV电压级 (8)3.2 220kV电压级 (8)3.3 500kV电压级 (8)4 变压器的选择 (10)4.1 主变压器 (10)4.2 联络变压器 (10)5 方案的经济比较 (12)5.1 一次投资计算 (12)5.2 年运行费计算 (12)5.3 年费用计算 (12)6 主接线最终方案的确定 (13)7 结论 (14)8 参考文献 (15)1 前言电能是一种清洁的二次能源。
目录1 设计任务 (1)1.1 初始资料 (1)1.2 电力系统与本站连接情况 (1)1.3负荷情况 (1)2 变电站主接线设计 (1)2.1 主接线设计依据 (1)2.2主接线中设备配置 (2)2.3 设计步骤 (3)2.4 主接线方框图 (3)2.5 主接线方案的确定 (4)3 短路电流的计算 (5)3.1 概述 (5)3.2 短路计算的目的 (6)3.3 短路计算方法 (6)4 电气设备的选择 (7)4.1变压器的选择 (7)4.2断路器的选择与校验 (8)4.3隔离开关的选择 (9)4.4母线的选择 (10)5 设计结果 (10)5.1 设计图纸 (10)5.2 设计说明书 (11)1 设计任务1.1 初始资料(1)设计变电所在城市郊外,主要向市区及变电所附近农村和工厂供电(2)确定本变电所的电压等级为35kV/10kV,35kV是本变电所的电源电压,10kV是二次电压(3)出线向用户供电在35KV侧有2回出线,出线回路数在10KV侧有8回1.2 电力系统与本站连接情况电力系统通过35KV主接线,母线与本站直接连接1.3负荷情况该电站在5-10年建设扩建中10KV负荷为10MW。
其中1,2级负荷供电占75%,最小负荷为700MW,功率因数:cosφ=0.9,最大负荷年利用率:Tmax=4000h2 变电站主接线设计2.1 主接线设计依据(1)变电所在电力系统中的地位和作用:一般变电所的多为终端或分支变电所,电压一般为35kV。
(2)变电所的分期和最终建设规模:变电所建设规模根据电力系统5—10年发展计划进行设计,一般装设两台主变压器。
(3)负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证全部一级负荷不间断供电,对于二级负荷一般也要两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电,对于三级负荷一般只需一个独立电源供电。
(4)系统备用容量的大小:装有两台及以上主变电器的变电所,当其中一台事故断开时其余主变压器的容量应保证该变电所70%的全部负荷,在计及过负荷能力后的允许时间内,应保证用户的一、二级负荷供电。
长沙理工大学城南学院教师批阅发电厂电气主系统课程设计(论文)任务书城南学院(系)电气工程及其自动化专业1104 班题目3×200MW大型火电厂电气主接线设计任务起止日期;2014 年06月16 日~2013年06 月27 日教师批阅一绪论电能是经济发展最重要的一种能源,可以方便、高效地转换成其他能源形式。
提供电能的形式有水利发电,火力发电,风力发电,随着人类社会跨进高科技时代又出现了太阳能发电,磁流体发电等。
但对于大多数发展中国家来说,火力发电仍是今后很长一段时期内的必行之路。
火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电技术必须不断提高发展,才能适应和谐社会的要求。
“十五”期间我国火电建设项目发展迅猛。
2001年至2005年8月,经国家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8月份,审批项目213个,装机容量168546MW,同比增长420%。
如果这些火电项目全部投产,届时我国火电装机容量将达5.82亿千瓦,比2000年增长145%。
2006年12月,全国火电发电量继续保持快速增长,但增速有所回落。
当月全国共完成火电发电量2266亿千瓦时,同比增长15.5%,增速同比回落1个百分点,环比回落3.3个百分点;随着冬季取暖用电的增长,火电发电量环比增长较快,12月份与上月相比火电发电量增加223亿千瓦时,环比增长10.9%。
2006年全年,全国累计完成火电发电量23186亿千瓦时,同比增长15.8%,增速高于2005年同期3.3个百分点。
随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加大力度调整火力发电行业的结构。
2×25MW+2×50MW 火电厂主接线设计本次设计是火电厂主接线设计。
该水电站的总装机容量为 2 ×25MW+2 ×50MW =150 MW。
高压侧为 110Kv,四回出线与系统相连,发电机电压级有10 条电缆出线,其最大输送功率为 150MW,该电厂的厂用电率为 10%。
根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案发展可靠性、经济性和灵便性比拟后,保存一种较合理的方案,最后通过定量的技术经济比拟确定最终的电气主接线方案。
在对系统各种可能发生的短路故障分析计算的根抵上,进展了电气设备和导体的选择校验设计。
在对发电厂一次系统分析的根抵上,对发电厂的配电装置布置、防雷保护做了初步简单的设计。
此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,稳固和加深对本专业的理解,建立了工程设计的根本观念,提升了自身设计能力。
电气主接线,短路电流计算,设备选型,配电装置布置,防雷保护。
一、原始资料:某新建地方热电厂,发机电组 2 × 25MW+2 × 50MW ,cosΘ = 0.8 ,U=6.3KV,发电机电压级有10 条电缆出线,其最大综合负荷30MW,最小负荷 20MW,厂用电率 10%,高压侧为 110KV,有 4 条回路与电力系统相连,中压侧 35KV,最大综合负荷 20MW,最小负荷 15MW。
发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。
系统容量 2000MW,电抗值 0.8 〔归算到 100KVA〕。
二、设计容:a) 设计发电厂的主接线〔两份选一〕,选择主变的型号;b) 选择短路点计算三相对称短路电流和不对称短路电流并汇总成表;c) 选择各电压等级的电气设备〔断路器、隔离开关、母线、支柱绝缘子、穿墙套管、电抗器、电流互感器、电压互感器〕并汇总成表;三、设计成果:设计说明计算书一份; 1 号图纸一。
1 需求分析
1.1主接线设计依据
1.1.1变电所在系统中的地位
变电所在电力系统中的地位和作用是决定电气主接线的主要因素。
变电所有枢纽变电所(电压等级为330~500kv)、地区变电所(电压等级为220~330kv)、一般(终端)变电所(电压等级为100kv)三类,由于它们在电力系统中的地位和作用不同,对其电气主接线的可靠性、灵活性和经济性的要求也不同。
由原始设计参数知本设计变电所为110kv一般性变电所。
1.1.2变电所近远期发展规模
变电所电气主接线的设计,应根据5-10年电力发展规划进行。
根据负荷的
大小、分布、增长速度,根据地区网络情况和潮流分布,分析各种可能的运行方式,来确定电气主接线的形式以及连接电源数和出线回数。
一般装设两台主变压器。
1.1.3 负荷大小和重要性
对一级负荷,必须有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电;对二级负荷,一般要有两个电源供电,且当一个电源失去后,应保证大部分二级负荷供电;三级负荷一般只需要一个电源供电。
由原始设计参数知本设计110kv变电所一二级负荷占50%以上,所以主接线必须保证一二类负荷的可靠性。
1.1.4系统备用容量
装有2台(组)及以上主变压器的变电所,其中一台(组)主变压器事断开,其余主变压器的容量应保证70%的全部负荷,在计及过负荷能力后的允许时间内,应保证一二级用户负荷。
1.2主接线基本要求
根据有关规定:变电站电气主接线应根据变电站在电力系统的地位,变电站的规划容量,负荷性质线路变压器的连接、元件总数等条件确定。
并应综合考虑供电可靠性、运行灵活、操作检修方便、投资节约和便于过度或扩建等要求。
1.2.1 供电可靠性
供电可靠性是电力生产和分配的首要要求,主接线能可靠的工作,以保证对用户不间断供电。
评价电气主接线可靠性的标志是:
①断路器检修时,不宜影响对系统的供电;
②线路或母线发生故障时应尽量减少线路的停运回路数和主变的停运台数,尽量保证对重要用户的供电;
③尽量避免变电站全部停运的可能性。
1.2.2 运行检修的灵活性
主接线的灵活性有以下几方面的要求:
①调度灵活,操作方便。
可灵活的投入和切除变压器、线路,调配电源和负荷;能够满足系统在正常、事故、检修及特殊运行方式下的调度要求。
②检修安全。
可方便的停运断路器、母线及其继电器保护设备,进行安全检修,且不影响对用户的供电。
③扩建方便。
随着电力事业的发展,往往需要对已经投运的变电站进行扩建,从变压器直至馈线均有扩建的可能。
所以,在设计主接线时,应留有余地,应能容易地从初期过度到终期接线,使在扩建时,无论一次和二次设备改造量最小。
1.2.3 经济性
主接线在满足可靠性、灵活性要求分析,并且进行的前提下,要求做到经济合理:
①投资省。
即变电站的建筑工程费、设备购置费、安装工程费和其他费用应节省,采用不同的接线方式,其投资具有明显的不同;
②占地面积小。
主接线设计要为配电装置创造条件,采用不同的接线方式,配电装置占地面积有很大的区别;
③能量损失小。
1.3 高压配电装置接线选择
1.3.1 110kv配电母线接线方式
因本变电所为一般变电所,即该变电所建在工业企业城镇周围,且由原始材料知110kv侧有2回进线,经综合分析可采用单母分段接线及内桥形接线。
①单母线分段接线
Q10
Q14
CB8
图1-1单母线分段接线
优点:
(1)用断路器把母线分段后,对重要用户可以从不同段引出两条回路,有两个电源供电;
(2)当一段母线发生故障,分段断路器会自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
缺点:
(1)当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电;
(2)当出线为双回路时,常使架空线路出现交叉跨越; (3)扩建时需向两个方向均衡扩建。
适用范围:
(1)
10KV 配电装置出线回路数为6回及以上时;
(2) 110配电装置出线回路数为3~4回或进线2回时。
②桥形接线 a . 内桥接线
图1-2 内桥接线
优点:
高压断路器数量少,四个回路只需三台断路器。
缺点:
(1)变压器的切除和投入较复杂,需动作两台断路器,影响一回线路的暂时停运。
(2)桥连断路器检修时,两个回路需解列运行。
(3)出线断路器检修时,线路需较长时期停运。
为避免此缺点,可加装正常断开运行的跨接线路为了轮流停电检修任何一组隔离开关,在跨接线路上须加装两组隔离开关。
桥连断路器检修时也可利用此跨接线路。
适用范围:适用于较小容量的发电厂、变电所,并且变压器不经常切换或线路较长,故障率较高情况。
1.3.2 10kv配电母线接线选择
①双母线分段带专用旁路断路器的旁路母线接线
图1-3双母线分段带专用旁路断路器的旁路母线接线
优点:
皆具双母线分段接线优点,且比双母线分段接线可靠性高。
缺点:
增加了旁路母线及旁路断路器投资。
②单母线分段带专用旁路断路器的旁路母线接线
图1-4单母线分段带专用旁路断路器的旁路母线接线
优点:
皆具单母线分段接线优点,且极大提高了供电可靠性。
缺点:
增加了一台旁路断路器的投资。
1.3.3 方案选择
由1.2分析可得一下两种方案:
方案一:110kv采用单母线分段接线,10kv采用双母线分段带专用旁路断路器的旁路母线接线;
方案二:110kv采用桥形接线,10kv单母线分段带专用旁路断路器的旁路母线接线。
各方案接线如下:
图1-5 方案一
图1-6 方案2
a.技术比较
对于110kv侧,单母接线不仅方便扩建且建设简单,而桥形接线内部器件关联性强要求系统故障率低;对10kv侧,由于电压等级低,各种主接线建造技术都相对较低。
b.经济比较
对整个方案分析,在配电装置的综合投资上,如控制设备,电缆,母线及土建费用上,虽然方案1投资相对高,但是由于负荷中一二类负荷比重高,所以综合考虑选择方案一。
1.4 主变压器型号选择
1.4.1选择原则
①为保证投入可靠性,变电所中需要投设两台主变压器;
②为同时满足运行的灵敏性和可靠性,对有重要负荷的变电所,应选择两台三绕组变压器,因为三绕组变压器占地面积小,运行及维护工作量少,价格低于四台双绕组变压器,因此三绕组变压器的选择优于双绕组变压器;
③装有两台及以上主变压器的变电所,其中一台故障后其余主变压器的容量应保证该所全部负荷的70%以上,并保证用户的一二级全部负荷的供电,过负载时也应满足大部分重要负荷。
1.4.2 主变压器型号和结构确定
由原始参数确定本设计变电所主变压器型号为SF11-16000/110,该主变压器参数为:额定电压(高压):121±2×2.5%kv,额定低压11kv,联结组号YNd11,空载损耗12.5kw,负载损耗59.9kw,空载电流(%)0.72,短路阻抗(%)10.5。