蛋白质分离纯化的步骤
- 格式:doc
- 大小:51.00 KB
- 文档页数:8
蛋白的纯化工艺有哪些
蛋白的纯化工艺可以分为下列步骤:
1. 细胞破碎:将含有目标蛋白的细胞打碎,以释放目标蛋白。
2. 固体-液分离:通过离心等方法将细胞碎片和碎细胞液分离,从而获得目标蛋白的溶液。
3. 过滤:通过纤维过滤器或微孔过滤器去除悬浮颗粒和杂质,使蛋白溶液变得清澈。
4. 污染物去除:使用各种色谱技术,如亲和层析、凝胶层析、离子交换层析等去除杂质和其他相关蛋白。
5. 浓缩:通过逆渗透或超滤等方法,去除大量水分,提高目标蛋白的浓缩度。
6. 纯化:使用高效液相色谱等技术,进一步分离和纯化目标蛋白。
7. 质量评价:对纯化后的蛋白进行质量评价,如浓度、纯度、活性等的检测。
8. 保存和储存:将纯化后的蛋白进行冷冻或冷冻干燥保存,以便后续使用。
需要注意的是,不同的蛋白质可能需要采用不同的纯化工艺步骤,具体的纯化工艺要根据目标蛋白的特性和纯化目的进行选择和优化。
蛋白纯化步骤引言:蛋白质是生物体内重要的生物大分子,其结构和功能对于维持生命活动至关重要。
为了研究蛋白质的性质和功能,科学家们需要将蛋白质从复杂的混合物中纯化出来。
蛋白纯化是一项复杂而重要的实验步骤,本文将介绍常用的蛋白纯化步骤。
一、细胞裂解和收集蛋白纯化的第一步是将含有目标蛋白质的细胞裂解,并将目标蛋白质收集起来。
常用的细胞裂解方法包括机械破碎、超声波破碎和渗透破碎等。
裂解后,通过离心等方法将蛋白质从其他细胞组分中分离出来。
二、沉淀和上清液分离细胞裂解后蛋白质溶液中可能存在大量杂质,需要通过沉淀与上清液分离的方法去除。
常用的方法包括盐析法、有机溶剂沉淀法和凝胶渗析法等。
这些方法可以根据蛋白质的特性选择合适的杂质去除方法。
三、蛋白质分子量筛选蛋白质纯化过程中,通常需要对蛋白质进行分子量筛选。
这样可以去除低分子量的杂质和蛋白质降解产物。
常用的方法包括凝胶过滤法、凝胶电泳法和离子交换色谱法等。
四、亲和纯化亲和纯化是一种常用的蛋白纯化方法,该方法利用蛋白质与亲和基质之间的特异性相互作用进行纯化。
亲和基质可以是抗体、金属离子、亲和标签等。
通过将亲和基质与目标蛋白质结合,再通过洗脱等步骤将目标蛋白质从杂质中分离出来。
五、离子交换层析离子交换层析是一种基于蛋白质与离子交换基质之间的静电作用力进行纯化的方法。
根据蛋白质的电荷性质,可以选择合适的离子交换基质和缓冲液条件,使目标蛋白质与基质发生相互作用。
通过调整离子浓度和pH值,可以实现目标蛋白质与基质的分离。
六、凝胶过滤层析凝胶过滤层析是一种根据蛋白质的分子量进行纯化的方法。
通过选择合适的凝胶基质和孔径,可以使目标蛋白质从较大分子量的杂质中分离出来。
这种方法适用于蛋白质的富集和浓缩。
七、逆流层析逆流层析是一种根据蛋白质的亲和性进行纯化的方法。
该方法利用逆流层析柱中填充的亲和基质与目标蛋白质之间的特异性相互作用进行纯化。
通过调整流动相的条件,可以实现蛋白质的吸附和洗脱,从而分离目标蛋白质。
蛋白质的分离纯化方法蛋白质是细胞中的重要生物大分子,具有多样的结构和功能。
为了研究蛋白质的性质和功能,需要将蛋白质从混合样品中分离纯化出来。
蛋白质的分离纯化方法有很多种,主要包括离心法、电泳法、层析法和亲和纯化法等。
下面将逐一介绍这些方法及其原理。
1. 离心法离心法是利用离心机将混合物中的蛋白质分离出来。
首先将细胞裂解,得到细胞裂解液,然后进行离心,以将细胞器、胞外物质和亲粒子(如蛋白质颗粒)分离。
离心可以根据不同物质的相对密度和大小进行分层分离,快速旋转离心机可以很好地分离出不同密度的颗粒。
2. 电泳法电泳法是将带电的蛋白质沿着电场移动,根据蛋白质的带电性质和大小分离的方法。
蛋白质可以根据电荷性质分为阴离子蛋白和阳离子蛋白,也可以根据亲水性质分为亲水性蛋白和疏水性蛋白。
电泳法常用的有SDS-PAGE、等电聚焦电泳等。
其中,SDS-PAGE可以根据蛋白质的分子量进行分离。
3. 层析法层析法是通过蛋白质与载体之间的亲和性或者分离介质之间的亲和性进行分离的方法。
层析法主要分为凝胶层析、离子交换层析、亲合层析和大小排阻层析等。
凝胶层析法是利用凝胶的网格结构来分离蛋白质,如凝胶过滤层析、凝胶过渡层析等。
离子交换层析法是利用蛋白质对离子交换树脂的吸附性质进行分离。
亲合层析法是通过亲和柱中的配体与蛋白质的亲和作用进行分离。
大小排阻层析法是根据蛋白质的分子量和形状进行分离。
4. 亲和纯化法亲和纯化法是利用特定的亲合剂与目标蛋白质之间的特异性亲和性进行分离纯化的方法。
亲和纯化主要包括亲和柱层析法、浸没纯化法、亲和剂电泳法等。
亲和柱层析法是将具有亲和填料的柱子与样品接触,通过洗脱再生的操作,将目标蛋白质从其他组分中分离纯化出来。
浸没纯化法是将特定亲合剂浸泡在蛋白质混合物中,使其与目标蛋白质发生亲和结合,然后以特定条件洗脱目标蛋白质。
亲和剂电泳法是负载亲和剂的凝胶片上进行电泳,使蛋白质与亲和剂结合,再通过电泳将其分离纯化出来。
分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。
1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。
为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。
然后根据不同的情况,选择适当的方法,将组织和细胞破碎。
动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。
植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。
细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。
破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。
组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。
细胞碎片等不溶物用离心或过滤的方法除去。
如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法将它们分开,收集该细胞组分作为下步纯化的材料。
如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。
2. 粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。
一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。
这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。
有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。
3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。
进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。
蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。
所以要采用适当的方法将组织和细胞破碎。
常用的破碎组织细胞的方法有: 1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。
常用设备有,高速组织捣碎机、匀浆器、研钵等。
2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。
3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。
这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。
4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。
5. 酶法如用溶菌酶破坏微生物细胞等。
(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。
抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。
如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。
在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。
(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。
比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。
常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。
2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。
被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。
3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。
能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。
此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。
由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。
蛋白纯化面试知识问答什么是蛋白纯化?蛋白纯化是指从复杂的混合物中分离出目标蛋白质的过程。
蛋白纯化的目的是获得高纯度的目标蛋白质,以便于进一步的研究和应用。
为什么需要蛋白纯化?蛋白质在生物学和生物技术研究中起着重要的作用,但在生物体内存在大量其它分子,如其他蛋白质、核酸、小分子等。
为了研究和利用目标蛋白质,需要将其从复杂的混合物中分离出来,获得高纯度的样品。
蛋白纯化的步骤有哪些?蛋白纯化通常包括以下步骤:1.细胞破碎:将含有目标蛋白质的细胞破碎,释放蛋白质。
2.澄清:通过离心等方法去除细胞碎片、细胞核和细胞器等杂质。
3.分离:利用不同的分离技术,如层析、电泳等,将目标蛋白质与其他蛋白质分离。
4.纯化:通过进一步的分离步骤,获得高纯度的目标蛋白质。
5.洗脱:将目标蛋白质从分离介质中洗脱。
6.浓缩:将洗脱的目标蛋白质浓缩得到较小的体积。
常用的蛋白纯化技术有哪些?常用的蛋白纯化技术包括:1.柱层析:包括亲和层析、离子交换层析、凝胶过滤层析等。
根据目标蛋白质的性质选择不同的柱层析方法。
2.电泳技术:包括凝胶电泳、等电聚焦等。
通过蛋白质的电荷、大小和形状等特性进行分离。
3.过滤技术:包括超滤、微滤等。
根据蛋白质的大小选择合适的滤膜进行分离。
什么是亲和层析?亲和层析是一种利用目标蛋白质与特定配体之间的亲和力进行蛋白纯化的技术。
亲和层析常用于从复杂的混合物中高效选择性地纯化目标蛋白质。
亲和层析的原理是什么?亲和层析的原理是利用目标蛋白质与配体之间的特异性相互作用。
配体可以是金属离子、抗体、亲和标签等,通过与目标蛋白质结合,实现目标蛋白质的分离纯化。
亲和层析的步骤有哪些?亲和层析通常包括以下步骤:1.准备亲和树脂:将具有亲和配体的树脂填充到柱子中。
2.样品加载:将样品溶液加到亲和树脂柱上,使目标蛋白质与配体结合。
3.洗脱:通过改变洗脱缓冲液的条件,将目标蛋白质从亲和树脂上洗脱下来。
4.收集纯化的目标蛋白质溶液。
什么是凝胶过滤层析?凝胶过滤层析是一种基于蛋白质大小分离的蛋白纯化技术。
蛋白质分离纯化设计1. 简介蛋白质分离纯化是一项重要的实验技术,在生物医药、食品科学、农业等领域有着广泛的应用。
通过对蛋白质进行分离纯化,可以获得单一纯度的蛋白质用于后续研究及应用。
本文将详细介绍蛋白质分离纯化的设计方法和常用技术,包括样品准备、分离方法选择、纯化步骤设计等。
同时,我们还将讨论常见的挑战和解决方案,以及如何评估分离纯化效果。
2. 样品准备在进行蛋白质分离纯化前,首先需要准备好样品。
样品的选择和准备对于后续分离纯化过程非常重要。
2.1 选择合适的样品样品可以来自细胞、组织、体液、培养基等。
在选择样品时,需要考虑到蛋白质的种类、表达水平、目标纯化程度以及后续实验需要。
2.2 样品预处理样品在分离纯化前需要进行预处理,以去除可能干扰纯化过程的杂质。
常用的预处理方法包括细胞破碎、离心、除去非蛋白质成分等。
预处理方法的选择应根据样品类型和后续纯化方法进行优化。
3. 分离方法选择根据蛋白质分离的原理和样品特性,我们可以选择合适的分离方法。
常见的分离方法包括离子交换层析、凝胶过滤、透析、亲和层析等。
3.1 离子交换层析离子交换层析是一种基于蛋白质带电性质的分离方法。
可以根据蛋白质的以阴离子或阳离子带电来选择合适的离子交换树脂,实现不同蛋白质的分离纯化。
3.2 凝胶过滤凝胶过滤是一种基于蛋白质大小的分离方法。
通过选择适当的孔径大小的凝胶,可以分离不同分子大小的蛋白质。
3.3 透析透析是一种基于蛋白质分子量和溶液成分的分离方法。
通过选择适当的膜材料和透析缓冲溶液,可以实现蛋白质与小分子化合物的分离。
3.4 亲和层析亲和层析是一种基于蛋白质与配体之间的特异性结合来分离纯化的方法。
选择合适的亲和配体,可以选择性地结合目标蛋白质,从而实现其分离纯化。
4. 纯化步骤设计在选择合适的分离方法后,需要设计纯化步骤来实现目标蛋白质的分离和纯化。
纯化步骤的设计应根据分离方法的特点和目标蛋白质的性质进行优化。
4.1 样品加载将预处理的样品通过适当的装载方式加载到分离纯化柱中,如使用注射器将样品缓慢注入。
蛋白质分离纯化蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。
是当代生物产业当中的核心技术。
该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。
常用技术有:1、沉淀,2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。
根据支撑物不同,有薄膜电泳、凝胶电泳等。
3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。
4、层析:a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。
如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。
b.分子筛,又称凝胶过滤。
小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。
5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。
不同蛋白质其密度与形态各不相同而分开。
编辑本段蛋白质分离纯化技术蛋白质的分离纯化一、沉淀法沉淀法也称溶解度法。
其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。
1、盐析法盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。
2、有机溶剂沉淀法有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。
3、蛋白质沉淀剂蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。
4、聚乙二醇沉淀作用聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。
5、选择性沉淀法根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。
分离纯化蛋白质的方法
分离纯化蛋白质的方法有多种,常用的方法包括:亲和层析、凝胶过滤色谱、离子交换色谱、逆流层析、尺寸排除层析、亲和吸附等。
1. 亲和层析:利用目标蛋白与某种特定配体的特异性结合,将目标蛋白与其他非特异结合的蛋白质分离开。
2. 凝胶过滤色谱:通过选择性大小排除来分离蛋白质。
较大的蛋白质无法进入凝胶孔道,较小的蛋白质可以顺利通过凝胶,实现分离纯化。
3. 离子交换色谱:通过蛋白质与离子交换基质之间的电荷作用进行分离。
离子与蛋白质的电荷性质决定了它们在离子交换基质上的吸附和洗脱特性。
4. 逆流层析:利用生物化学吸附系数的差异分离纯化蛋白质,结合了某种特定的结合物质与逆流洗脱的过程。
5. 尺寸排除层析:根据蛋白质的大小或分子量差异进行分离纯化,较大的蛋白质会直接通过层析柱,较小的蛋白质则会在柱中留下并延时流出。
6. 亲和吸附:利用蛋白质与特定亲和配体之间的特异性结合进行分离纯化。
这种方法具有高选择性和高效率。
这些方法可以单独使用,也可以联合使用,根据目标蛋白质的特性和需求来选择合适的分离纯化方法。
蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。
所以要采用适当的方法将组织和细胞破碎。
常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。
常用设备有,高速组织捣碎机、匀浆器、研钵等。
2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。
3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。
这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。
4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。
5. 酶法如用溶菌酶破坏微生物细胞等。
(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。
抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。
如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。
在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。
(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。
比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。
常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。
2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。
被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。
3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。
能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。
此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。
由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。
(四)样品的进一步分离纯化用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。
常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析、亲和层析等等。
有时还需要这几种方法联合使用才能得到较高纯度的蛋白质样品。
卵清蛋白分离提取及纯化的具体试验步骤一、实验目的与原理鸡卵粘蛋白存在于鸡蛋清中,对胰蛋白酶有强烈的抑制作用,高纯度的鸡卵粘蛋白抑制胰蛋白酶的分子酶的分子比为1:1。
鸡卵粘蛋白在中性或酸性溶液中对热和高浓度的脲都是相当稳定的,而在碱性溶液中较不稳定。
由于鸡卵粘蛋白对胰蛋白酶有强烈的抑制作用,因此可以用鸡卵粘蛋白做亲和配基配制纯化胰酶的亲和材料。
二、材料与试剂:1.材料:新鲜鸡蛋2只2:仪器:抽滤瓶500-1000ml、烧结漏斗、移液器、磁力搅拌器3:试剂:10%TCA,用固体NaOH调调PH至1.05-1.10,需要50ml、5N HCL、5N NaOH、冷丙酮、胰蛋白酶液、BAEE-0.05M,PH8.0Tris-HCL缓冲液(每ml含0.34BAEE 和2.22mgCaCL2),50mlpH8.0,0.1M Tris-HCL缓冲液三、操作步骤1,取两只新鲜鸡蛋,得蛋清50ml,置于烧杯中,外用温水浴25℃-30℃,在不断搅拌条件下,缓慢加入等体积得三氯乙酸-丙酮(1:2V/V),立即出现大量白色絮状沉淀,加完后最终PH约3.5,再继续搅拌30min,然后在4℃冰箱中放置过夜。
2,次日用布氏漏斗抽滤,得黄绿色清液。
3,边搅拌边加入4℃预冷的丙酮200ml沉淀蛋白,在4℃放置2h之后将上清液小心倒入瓶中回收,下部沉淀部分于4000rpm离心5min,收集沉淀。
4,将沉淀溶于10ml无离子水中,对无离子水(50倍)透析4h,换水两次,再对碳酸钠缓冲液透析过夜,4000rpm离心10min ,去除不溶物。
抗菌蛋白分纯的步骤准备试剂:异丙醇含0.3M盐酸胍的95%乙醇无水乙醇1%SDS。
操作步骤:1.取沉淀DNA后剩余的上清,用异丙醇沉淀蛋白质。
每使用1ml TRIzol加1.5ml 异丙醇,室温放置10分钟,2~8℃12000×g离心10分钟弃上清。
2.用含0.3M盐酸胍的95%乙醇洗涤蛋白质沉淀。
每使用1mlTRIzol加2ml洗涤液,室温放置20分钟,2~8℃7500×g离心5分钟,弃上清,重复两次。
用2ml 无水乙醇同样方法再洗一次。
3.真空抽干蛋白质沉淀5~10分钟,用1%SDS溶解蛋白质,反复吸打,50℃温浴使其完全溶解,不溶物2~8℃10000×g离心10分钟除去。
分离得到的蛋白质样品可用于Western Blot或-5至-20℃保存备用。
注意事项:1.蛋白质沉淀可保存在含0.3M盐酸胍的95%乙醇或无水乙醇中2~8℃一个月以上或-5至-20℃一年以上。
2.用0.1% SDS在2~8℃透析三次,10000×g离心10分钟取上清即可用于Western Blot。
常见问题分析:得率低:A.样品裂解或匀浆处理不彻底。
B.最后得到的蛋白质沉淀未完全溶解。
蛋白质降解:组织取出后没有马上处理或冷冻。
电泳时条带变形:蛋白质沉淀洗涤不充分。
γ球蛋白分离,纯化,鉴定的方法(包括原理,步骤,预期结果,注意事项)[原理]血清中蛋白质按电泳法一般可分为五类:清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白含量约占16%,100ml血清中约含1.2g 左右。
首先利用清蛋白和球蛋白在高浓度中性盐溶液中(常用硫酸铵)溶解度的差异而进行沉淀分离,此为盐析法。
半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的粗制品。
用盐析法分离而得的蛋白质中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此首先必须去除。
常用的方法有透析法、凝胶层析法等。
本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异。
当溶液通过SephadexG--25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而可达到去盐的目的。
脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们等电点的不同可进行分离。
α-球蛋白、β-球蛋白的PI<6.0;γ-球蛋白的PI为7.2左右。
因此在PH6.3的缓冲溶液中,各类球蛋白所带电荷不同。
经DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析时,带负电荷的α-球蛋白和β-球蛋白能与DEAE 纤维素进行阴离子交换而被结合;带正电荷的γ-球蛋白则不能与DEAE纤维素进行交换结合而直接从层析柱流出。
因此随洗脱液流出的只有γ-球蛋白,从而使γ-球蛋白粗制品被纯化。
其反应式如下:用上述方法分离得到γ-球蛋白是否纯净,单一?可将纯化前后的γ-球蛋白进行电泳比较而鉴定之。
[操作](1)盐析――中性盐沉淀:取正常人血清2.0ml于小试管中,加0.9%氯化钠溶液2.0ml,边搅拌混匀边缓慢滴加饱和硫酸铵溶液乙4.0ml,混匀后于室温中放置10min,3000r/min离心10min。
小心倾去含有清蛋白的上清液,重复洗涤一次,于沉淀中加入0.0175mol/L磷酸盐缓冲液(pH6.3)0.5~1.Oml使之溶解。
此液即为粗提的γ-球蛋白溶液。
(2)脱盐――凝胶柱层析①装柱洗净的层析柱保持垂直位置,关闭出口,柱内留下约2.0ml洗脱液。
一次性将疑胶从塑料接口加入层析柱内,打开柱底部出口,调节流速0.3ml/min。
凝腔随柱内溶液慢慢流下而均匀沉降到层析柱底部,最后使凝胶床达20厘米高,床面上保持有洗脱液,操作过程中注意不能让凝胶床表面露出液面并防止层析床内出现“纹路”。
在凝胶表面可盖一园形滤纸,以免加入液体时冲起胶粒。
②上样与洗脱:可以在凝胶表面上加圆形尼龙滤布或滤纸使表面平整,小心控制凝胶柱下端活塞,使柱上的缓冲液面刚好下降至凝胶床表面,关紧下端出口,用长滴管吸取盐析球蛋白溶液,小心缓慢加到凝胶床表面。
打开下端出口,将流速控制在0.25ml/min使样品进入凝胶床内。
关闭出口,小心加入少量0.0175mol/L磷酸盐缓冲液(pH6.3)洗柱内壁。
打开下端出口,待缓冲液进入凝胶床后再加少量缓冲液。
如此重复三次,以洗净内壁上的样品溶液。
然后可加入适量缓冲液开始洗脱。
加样开始应立即收集洗脱液。
洗脱时接通蠕动泵,流速为0.5ml/min,用部分收集器收集,每管1ml。
③洗脱液中NH4+与蛋白质的检查:取比色板两个(其中一个为黑色背底),按洗脱液的顺序每管取一滴,分别滴入比色板中,前者加20%磺基水杨酸溶液2滴,出现白色混浊或沉淀即示有蛋白质析出,由此可估计蛋白质在洗脱各管中的分布及浓度;于另一比色板中,加人奈氏试剂应用液l滴,以观察NH4+出现的情况。
合并球蛋白含量高的各管,混匀。
除留少量作电泳鉴定外,其余用DEAE纤维素阴离子交换柱进一步纯化。
(3)纯化――DEAE纤维素阴离子交换层析:用DEAE纤维素装柱约8-10cm高度,并用0.0175mol/L磷酸盐缓冲液(pH6.3)平衡,然后将脱盐后的球蛋白溶液缓慢加于DEAE纤维素阴离子交换柱上,用同一缓冲液洗脱、分管收集。
用20%磺基水杨酸溶液检查蛋白质分布情况。
(装柱、上样、洗脱,收集及蛋白质检查等操作步骤同凝胶层析)。
(4)浓缩――经DEAE纤维素阴离于交换柱纯化的γ-球蛋白液往往浓度较低。
为便于鉴定,常需浓缩。
收集较浓的纯化的γ-球蛋白溶液2m1,按每ml加0.2~0.25gSephadex G一25干胶,摇动2~3min, 3000r/min 离心5min。
上清液即为浓缩的γ-球蛋白溶液。
(5)鉴定――乙酸纤维素薄膜电泳取乙酸纤维素薄膜2条,分别将血清、脱盐后的球蛋白、DEAE纤维素阴离子交换柱纯化的γ-球蛋白液等样品点上。
然后参阅实验二十四:乙酸纤维薄膜电泳法进行电泳分离、染色。
比较电泳结果。
[注意事项](1)凝胶及DEAE纤维处理期间,必须小心用倾泻法除去细小颗粒。
这样可使凝胶及纤维素颗粒大小均匀,流速稳定,分离效果好。
(2)装柱是层析操作中最重要的一步。
为使柱床装得均匀,务必做到凝胶悬液或DEAE纤维素混悬液不稀不厚,一般浓度为l:l,进样及洗脱时切勿使床面暴露在空气中,不然柱床会出现气泡或分层现象;加样时必须均匀,切勿搅动床面,否则均会影响分离效果。
(3)本法是利用γ-球蛋白的等电点与α-、β-球蛋白不同,用离子交换层析法进行分离的。
因此层析过程中用的缓冲液pH要求精确。
(4)电泳注意事项见实验二十四。
(5)凝胶贮存:凝胶使用后如短期不用,为防止凝胶发霉可加防腐剂如0.02%叠氮钠。