高中数学题目大全
- 格式:doc
- 大小:283.50 KB
- 文档页数:9
高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
1.已知P 是ABC ∆内任一点,且满足AP xAB y AC =+,x 、y R ∈,则2y x +的取值范围是 ___ .解法一:令1x y AQ AP AB AC x y x y x y ==++++,由系数和1x yx y x y+=++,知点Q 在线段BC 上.从而1AP x y AQ+=<.由x 、y 满足条件0,0,1,x y x y >>⎧⎨+<⎩易知2(0,2)y x +∈.解法二:因为题目没有特别说明ABC ∆是什么三角形,所以不妨设为等腰直角三角形,则立刻变为线性规划问题了.2.在平面直角坐标系中,x 轴正半轴上有5个点, y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个. 答案:30个好题速递21.定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,如:[1.5]1[ 1.3]2=-=-,,当*[0)()x n n N ∈∈,时,设函数()f x 的值域为A ,记集合A 中的元素个数为n a ,则式子90n a n+的最小值为 . 【答案】13.【解析】当[)0,1n ∈时,[]0x x ⎡⎤=⎣⎦,其间有1个整数; 当[),1n i i ∈+,1,2,,1i n =-时,[]2(1)i x x i i ⎡⎤≤<+⎣⎦,其间有i 个正整数,故(1)112(1)12n n n a n -=++++-=+,9091122na n n n +=+-, 由912n n=得,当13n =或14时,取得最小值13. 2. 有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两倍同学要站在一起,则不同的站法有 种. 答案:192种好题速递31.已知直线l ⊥平面α,垂足为O .在矩形ABCD 中,1AD =,2AB =,若点A 在l 上移动,点B 在平面α上移动,则O ,D 两点间的最大距离为 .解:设AB 的中点为E ,则E 点的轨迹是球面的一部分,1OE =,DE =所以1OD OE ED ≤+=当且仅当,,O E D 三点共线时等号成立.2. 将A、B、C、D四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有 种. 答案:30种1. 在平面直角坐标系xOy 中,设定点(),A a a ,P 是函数()10y x x=>图象上一动点.若点,P A之间的最短距离为a 的所有值为 . 解:函数解析式(含参数)求最值问题()222222211112222AP x a a x a x a x a a x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-++-=+-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦因为0x >,则12x x+≥,分两种情况: (1)当2a ≥时,min AP =,则a (2)当2a <时,min AP ==1a =-2. 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 种. 答案:90种好题速递51.已知,x y ∈R ,则()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为 .解: 构造函数1y x =,22y x =-,则(),x x 与2,y y ⎛⎫- ⎪⎝⎭两点分别在两个函数图象上,故所求看成两点(),x x 与2,y y ⎛⎫- ⎪⎝⎭之间的距离平方,令2220802y x m x mx m m y x =+⎧⎪⇒++=⇒∆=-=⇒=⎨=-⎪⎩,所以y x =+1y x =平行的22y x=-的切线,故最小距离为2d =所以()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为42. 某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有 种.答案:140种好题速递61.已知定圆12,O O 的半径分别为12,r r ,圆心距122O O =,动圆C 与圆12,O O 都相切,圆心C 的轨迹为如图所示的两条双曲线,两条双曲线的离心率分别为12,e e ,则1212e e e e +的值为( ) A .1r 和2r 中的较大者 B .1r 和2r 中的较小者 C .12r r +D .12r r -解:取12,O O 为两个焦点,即1c =若C 与12,O O 同时相外切(内切),则121221CO CO R r R r r r -=--+=- 若C 与12,O O 同时一个外切一个内切,则121221CO CO R r R r r r -=---=+ 因此形成了两条双曲线.此时21211212212111221122r r r r e e e e r r r r +-++=-+,不妨设21r r >,则12212e e r e e +=2.某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有 种. 答案:6种好题速递71. 已知12,F F 是双曲线()222210,0x y a b a b -=>>的左右焦点,以12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N ,且M 、N 均在第一象限,当直线1//MF ON 时,双曲线的离心率为e ,若函数()222f x x x x =+-,则()f e = .解:()222,x y c M a b by x a ⎧+=⎪⇒⎨=⎪⎩1F M b k a c =+,所以ON b k a c =+,所以ON 的方程为b y x a c=+,所以22221x y a a c a b N b y xa c ⎧-=⎪⎛⎫+⎪⇒⎨⎪=⎪+⎩又N 在圆222x y c +=上,所以222a a c c ⎛⎫⎛⎫++= 所以322220e e e +--=,所以()2222f e e e e=+-=2.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数的个数有 个. 答案:28个好题速递81. 已知ABC ∆的三边长分别为,,a b c ,其中边c 为最长边,且191a b+=,则c 的取值范围是 .解:由题意知,,a c b c ≤≤,故1919101a b c c c=+≥+=,所以10c ≥又因为a b c +>,而()1991016b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭所以16c <故综上可得1016c ≤<2. 从5名志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有 种. 解: 48种好题速递91.在平面直角坐标系xoy 中,已知点A 是半圆()224024x y x x +-=≤≤上的一个动点,点C 在线段OA 的延长线上.当20OA OC =时,则点C 的纵坐标的取值范围是 . 解:设()22cos ,2sin A θθ+,()22cos ,2sin C λλθλθ+,1λ>,,22ππθ⎡⎤∈-⎢⎥⎣⎦由20OA OC =得:522cos λθ=+所以()()[]5sin 055sin 2sin 5,522cos 1cos cos 1C y θθθθθθ-=⋅⋅==∈-++--2. 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是 种. 答案:20种好题速递101.点D 是直角ABC ∆斜边AB 上一动点,3,2A C B C ==,将直角ABC ∆沿着CD 翻折,使'B DC∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是 .解:过点'B 作'B E CD ⊥于E ,连结,BE AE , 设'BCD B CD α∠=∠=,则有'2sin ,2cos ,2B E CE ACE πααα==∠=-在AEC ∆中由余弦定理得22294cos 12cos cos 94cos 12sin cos 2AE παααααα⎛⎫=+--=+- ⎪⎝⎭在'RT AEB ∆中由勾股定理得22222''94cos 12sin cos 4sin 136sin 2AB AE B E ααααα=+=+-+=-所以当4πα=时,'AB 取2.从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有 种. 答案:45种好题速递111.已知函数()421421x x x x k f x +⋅+=++,若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,则实数k 的取值范围是 . 解:()421111421212x x x x xk k f x +⋅+-==+++++ 令()110,13212x x g x ⎛⎤=∈ ⎥⎝⎦++ 当1k ≥时,()213k f x +<≤,其中当且仅当0x =时取得等号 所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需223k +≥,所以14k ≤≤ 当1k <时,()213k f x +≤<,其中当且仅当0x =时取得等号 所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x为三边长的三角形,只需2213k +⋅≥,所以112k -≤<综上可得,142k -≤≤2.在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色,若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有 种.答案:55种好题速递121.已知函数()2221f x x ax a =-+-,若关于x 的不等式()()0f f x <的解集为空集,则实数a 的取值范围是 .解:()()()222111f x x ax a x a x a =-+-=---+⎡⎤⎡⎤⎣⎦⎣⎦ 所以()0f x <的解集为()1,1a a -+所以若使()()0f f x <的解集为空集就是1()1a f x a -<<+的解集为空,即min ()1f x a ≥+ 所以11a -≥+,即2a ≤-2.某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有 种.答案:31116322C C C C 种好题速递131. 已知定义在R 上的函数()f x 满足①()()20f x f x +-=;②()()20f x f x ---=;③在[]1,1-上的表达式为()[](]1,01,0,1x f x x x ∈-=-∈⎪⎩,则函数()f x 与函数()122,0log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图象在区间[]3,3-上的交点个数为 .2. 若5(1)ax -的展开式中3x 的系数是80,则实数a 的值是 .答案:21.()f x 是定义在正整数集上的函数,且满足()12015f =,()()()()212f f f n n f n +++=,则()2015f = .解:()()()()212f f f n n f n +++=,()()()()()212111f f f n n f n +++-=--两式相减得()()()()2211f n n f n n f n =--- 所以()()111f n n f n n -=-+ 所以()()()()()()()()201520142201420132012121201512015201420131201620152014320161008f f f f f f f f =⋅⋅=⋅⋅⋅== 2.有 种. 答案:144种好题速递151. 若,a b 是两个非零向量,且a b a b λ==+,λ⎤∈⎥⎣⎦,则b 与a b -的夹角的取值范围是 .解:令1a b ==,则1a b λ+=设,a b θ=,则由余弦定理得()22221111cos 1cos 22λπθθλ+--==-=-又λ⎤∈⎥⎣⎦,所以11cos ,22θ⎡⎤∈-⎢⎥⎣⎦所以2,33ππθ⎡⎤∈⎢⎥⎣⎦,所以由菱形性质得25,,36b a b ππ⎡⎤-∈⎢⎥⎣⎦2. 若(n x 的展开式中第三项系数等于6,则n = . 答案:121. 函数()22f x x x =+,集合()()(){},|2A x y f x f y =+≤,()()(){},|B x y f x f y =≤,则由AB 的元素构成的图形的面积是 .解:()()(){}()()(){}22,|2,|114A x y f x f y x y x y =+≤=+++≤()()(){}()()(){},|,|22B x y f x f y x y x y x y =≤=-++≤画出可行域,正好拼成一个半圆,2S π=2. 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两公司各承包2项,共有承包方式 种. 答案:1680种好题速递171. 在棱长为1的正方体1111ABCD A B C D -中,112AE AB =,在面ABCD 中取一个点F ,使1E F F C +最小,则这个最小值为 .解:将正方体1111ABCD A B C D -补全成长方体,点1C 关于面ABCD 的对称点为2C ,连接2EC 交平面ABCD 于一点,即为所求点F ,使1EF FC +最小.其最小值就是2EC .连接212,A C B C ,计算可得2121AC B C AB ,所以12AB C ∆为直角三角形,所以2EC =2. 若()62601261mx a a x a x a x +=++++ 且123663a a a a ++++=,则实数m 的值为 . 答案:1或-31. 已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线分别交双曲线的两条渐近线于点,P Q .若点P 是线段1F Q 的中点,且12QF QF ⊥,则此双曲线的离心率等于 .解法一:由题意1F P b =,从而有2,a ab P c c ⎛⎫- ⎪⎝⎭,又点P 为1F Q 的中点,()1,0F c -,所以222,a ab Q c c c ⎛⎫-+ ⎪⎝⎭所以222ab b a c c a c ⎛⎫=-+ ⎪⎝⎭,整理得224a c =,所以2e =解法二:由图可知,OP 是线段1F P 的垂直平分线,又OQ是12Rt F QF ∆斜边中线,所以1260FOP POQ QOF ∠=∠=∠=,所以2e = 解法三:设(),,0Q a m b m m >,则()1,Q F c a m b m =---,()2,QF c am bm =--由()()12,,0QF QF c am bm c am bm ⊥⇒-----=,解得1m =所以(),Q a b ,,22a c b P -⎛⎫ ⎪⎝⎭所以22b b a c a -=-⋅,即2c a =,所以2e =2. 现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为 . 答案:18好题速递191. 已知O 为坐标原点,平面向量,,OA OB OC 满足:24OA OB ==,0OA OB =,()()20OC OA OC OB --=,则对任意[]0,2θπ∈和任意满足条件的向量OC ,cos 2sin OC OA OB θθ-⋅-⋅的最大值为 .解:建立直角坐标系,设()()(),,4,0,0,2C x y A B 则由()()20OC OA OC OB --=,得22220x y x y +--=(cos 2sin OC OA OB x θθ-⋅-⋅=等价于圆()()22112x y -+-=上一点与圆2216x y +=上一点连线段的最大值即为42. 已知数列{n a }的通项公式为121n n a -=+,则01n a C +12n a C +33na C ++1n n n a C += .答案:23n n +1. 已知实数,,a b c 成等差数列,点()3,0P -在动直线0ax by c ++=(,a b 不同时为零)上的射影点为M ,若点N 的坐标为()2,3,则MN 的取值范围是 .解:因为实数,,a b c 成等差数列,所以2b a c =+,方程0ax by c ++=变形为2()20ax a c y c +++=,整理为()2(2)0a x y c y +++=所以2020x y y +=⎧⎨+=⎩,即12x y =⎧⎨=-⎩,因此直线0ax by c ++=过定点()1,2Q -画出图象可得90PMQ ∠=,PQ =点M 在以PQ 为直径的圆上运动,线段MN 的长度满足FN MN FN ≤即55MN ≤2. 如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是 个.答案:48好题速递211. 已知函数是定义在R 上的偶函数,当0x ≥时,()()()2502161122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩.若关于x 的方程()()20,,f x af x b a b ++=∈⎡⎤⎣⎦R ,有且仅有6个不同实数根,则实数a 的取值范围是 .解:设()t f x =,问题等价于()20g t t at b =++=有两个实根12,t t ,12501,14t t <≤<<或1255,144t t =<<所以()()0091014504g g h a g ⎧⎪>⎪⎪≤⇒-<<-⎨⎪⎛⎫⎪> ⎪⎪⎝⎭⎩或()5124591024504a g h a g ⎧<-<⎪⎪⎪>⇒-<<-⎨⎪⎛⎫⎪= ⎪⎪⎝⎭⎩综上, 5924a -<<-或914a -<<-2.在24的展开式中,x 的幂的指数是整数的项共有 项.好题速递221. 已知椭圆221:132x y C +=的左、右焦点为12,F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()()()11221,2,,,,A B x y Cx y 是2C 上不同的点,且AB BC ⊥,则2y 的取值范围是 . 解:由题意22:4C y x =设:(2)1AB l x m y =-+代入22:4C y x =,得()24840y my m -+-= 所以142y m =-,()()2144121x m m m =-+=- 设()21:(42)21BC l x y m m m =--++-代入22:4C y x =,得()2248164210y y m m m ⎡⎤+++--=⎢⎥⎣⎦所以122442y y m y m+=-+=- 所以(][)2442,610,y m m=--+∈-∞-+∞2. 5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答) 答案:72好题速递231. 数列{}n a 是公比为23-的等比数列,{}n b 是首项为12的等差数列.现已知99a b >且1010a b >,则以下结论中一定成立的是 .(请填上所有正确选项的序号)①9100a a <;②100b >;③910b b >;④910a a >解:因为数列{}n a 是公比为23-的等比数列,所以该数列的奇数项与偶数项异号,即:当10a >时,2120,0k k a a -><;当10a <时,2120,0k k a a -<>;所以9100a a <是正确的; 当10a >时,100a <,又1010a b >,所以100b <结合数列{}n b 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的. 故知:910b b >当10a <时,90a <,又99a b >,所以90b <结合数列{}n b 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的. 故知:910b b >综上可知,①③一定是成立的.2. 设5nx (的展开式的各项系数之和为M , 二项式系数之和为N ,若M -N =240, 则展开式中x 3的系数为 .好题速递241. 已知集合(){}2,|21A x y y xbx ==++,()(){},|2B x y y a x b ==+,其中0,0a b <<,且AB 是单元素集合,则集合()()(){}22,|1x y x a y b -+-≤对应的图形的面积为 .解:()()()2221221202y x bx x b a x ab y a x b ⎧=++⎪⇒+-+-=⎨=+⎪⎩()()2222241201b a ab a b ∆=---=⇒+=所以由2210,0a b a b ⎧+=⎪⎨<<⎪⎩得知,圆心(),a b 对应的是四分之一单位圆弧MPN (红色).此时()()(){}22,|1x y x a y b -+-≤所对应的图形是以这四分之一圆弧MPN 上的点为圆心,以1为半径的圆面.从上到下运动的结果如图所示:是两个半圆(ABO 与ODE )加上一个四分之一圆(AOEF ),即图中被绿实线包裹的部分。
高中数学试题大全
高中数学试题大全
1. 线性方程组
求下列线性方程组的解:
(1) 2x + 3y = 7
4x + 6y = 14
(2) 3x + 6y = 9
2x + 4y = 8
(3) x + 2y - z = 7
3x + 4y + z = 11
2x - y - 3z = -5
2. 平面几何
已知矩形ABCD,其中AB=8cm,BC=10cm,点M、N分别在AD、BD边上,且AM:MD=BN:ND=1:3,求MN长度。
3. 三角函数
已知直角三角形ABC,∠C=90°,AB=5,BC=3.
(1)求sin A,cos A,tan A
(2)求∠A的大小
4. 导数
(1)函数f(x) = x³-3x²+2x+1,求f'(1)的值。
(2)函数y = 2ex-3x +1, 求dy/dx的值。
5. 积分
(1)∫(x²+2x+3)dx
(2)∫(x²e^x)dx
6. 概率
在一批物品中有10件有毛病,20件无毛病。
从中任取一件,求取到有毛病的概率。
7. 数列
已知数列an,a1=2,an=2an-1-1 (n≥2),求a6。
8. 向量
已知向量a=2i+3j,k(向量)=-i+2j+4k,求a叉积k的结果。
9. 解析几何
已知平面α过点A(1,2,-1),B(2,0,1),C(3,-1,2),垂直于向量p=(1,2,1) ,求平面α的解析式。
10. 二次函数
已知二次函数f(x)=2x²+8x-3,求顶点坐标和对称轴方程。
1、已知一个等差数列的首项为5,公差为3,则这个数列的第10项是多少?A. 29B. 32C. 35D. 38(答案:B)2、一个直角三角形的两条直角边长度分别为3和4,则这个三角形的斜边长度是多少?A. 5B. 6C. 7D. 8(答案:A)3、已知一个圆的半径为7厘米,则这个圆的周长是多少厘米?A. 14厘米B. 22厘米C. 44厘米D. 54厘米(答案:C)4、某商品原价为200元,现打8折出售,则现价是多少元?A. 160元B. 170元C. 180元D. 190元(答案:A)5、在一次数学考试中,小明的成绩比平均分高出15分,已知平均分为80分,则小明的成绩是多少分?A. 85分B. 90分C. 95分D. 100分(答案:C)6、一个长方形的面积为60平方厘米,长为10厘米,则这个长方形的宽是多少厘米?A. 5厘米B. 6厘米C. 7厘米D. 8厘米(答案:B)7、已知一个等比数列的首项为2,公比为3,则这个数列的第4项是多少?A. 18B. 36C. 54D. 72(答案:D)8、一个正方形的边长为6厘米,若其边长增加2厘米,则新正方形的面积是多少平方厘米?A. 64平方厘米B. 81平方厘米C. 100平方厘米D. 121平方厘米(答案:A)9、一个袋子里有红球3个,蓝球2个,从中随机取出一个球,则取出蓝球的概率是多少?A. 0.2B. 0.4C. 0.5D. 0.6(答案:B)10、某班有男生20人,女生30人,从中随机选出一名学生代表,则选出男生的概率是多少?A. 0.2B. 0.4C. 0.5D. 0.6(答案:B)。
高中数学应用题专项练习1. 题目一已知一条直线与x轴交于点A(2,0),与y轴交于点B(0,3)。
求直线的斜率k及方程的解析式。
2. 题目二一只小猪在厨房里吃食物。
已知小猪每天吃食物的质量是它上一天吃食物质量的1/4,第一天吃了800克。
请问,第五天它吃了多少克食物?3. 题目三某地的人口数量年增长率为3%。
已知该地的人口数量在2010年是500万人,请问到了2020年这里的人口数量是多少人?4. 题目四小明身高150cm,目标是长到170cm。
每一年他的身高会增长5cm。
请问,需要几年才能达到他的目标身高?5. 题目五一辆汽车从A地沿直线道路以每小时60公里的速度开往B地,途中耗时4小时。
然后汽车以60公里/小时的速度返回A地。
请问,汽车返回A地需要多长时间?6. 题目六有一条跑步道,每800米设有一块标志石。
小明从起点开始在跑步道上跑步,每分钟跑300米,他跑到第5块标志石时停下来休息。
请问,小明跑步的总时间是多少分钟?7. 题目七某项工程需要15个人在30天内完成。
目前已经有10个人参与,已经过了7天。
请问,剩余的工程需要多少人才能在剩下的时间内完成?8. 题目八一部手机总共有100个应用程序,其中有60%的应用程序是社交类应用。
已知手机用户每天平均使用手机3小时,其中1小时是用于社交类应用。
请问,用户每天平均使用手机的社交类应用的个数是多少个?9. 题目九一个蔬菜市场上有100件土豆,其中20%的土豆是坏的。
顾客每次购买4个土豆。
请问,如果顾客每天购买20个土豆,他需要几天才能购买到不坏的土豆?10. 题目十数列1,3,6,10,15等是一种特殊的数列,每一项的值都是前一项的值加上当前项的下标值。
请问第10项的值是多少?。
高中生数学试题及答案大全一、选择题1. 若函数\( f(x) = ax^2 + bx + c \)的图像是开口向上的抛物线,且顶点在原点,那么下列哪个条件是正确的?A. \( a > 0 \)B. \( b = 0 \)C. \( c = 0 \)D. 所有选项都是答案:D2. 已知\( \sin\alpha = \frac{3}{5} \),且\( \alpha \)为锐角,求\( \cos\alpha \)的值。
A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{4} \)D. \( -\frac{3}{4} \)答案:A二、填空题1. 计算下列表达式的值:\( \frac{2x^2 - 3x + 1}{x - 2} \) 当\( x = 5 \) 时。
__________。
答案:\( 26 \)2. 一个圆的半径是 \( r \),求圆的面积 \( A \)。
__________。
答案:\( A = \pi r^2 \)三、解答题1. 解不等式 \( |x - 3| < 5 \) 并写出解集。
解答:首先,我们有 \( |x - 3| < 5 \),这意味着 \( -5 < x - 3 < 5 \)。
解这个不等式,我们得到 \( -2 < x < 8 \)。
所以解集是\( (-2, 8) \)。
2. 证明:对于任意实数 \( a \) 和 \( b \),如果 \( a^2 + b^2 = 1 \),那么 \( a^4 + b^4 < 2 \)。
解答:我们可以使用代数恒等式来证明这个不等式。
首先,我们知道 \( (a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^4 \)。
由于 \( a^2 +b^2 = 1 \),我们有 \( 1 = a^4 + 2a^2b^2 + b^4 \)。
高中数学题库1. 求下列函数的值域:解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值.本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。
2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32ππ和,求该慧星与地球的最近距离。
解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+by a x (图见教材P132页例1)。
当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ππ=∠=∠xFA xFA 或。
作m FA FB Ox AB 3221B ==⊥,则于故由椭圆第二定义可知得⎪⎪⎩⎪⎪⎨⎧+-=-=)32(34)(22m c c a a c m c ca a c m两式相减得,23)4(21.2,3231c c c m c a m a c m =-==∴⋅=代入第一式得 .32.32m c c a m c ==-∴=∴答:彗星与地球的最近距离为m 32万千米。
说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学试题大全一、代数1. 解方程(30题)2. 简化表达式(20题)3. 整式的加减乘除(25题)4. 分式的加减乘除(25题)5. 二次方程与一元二次不等式(35题)二、平面几何1. 各种三角形的性质(30题)2. 各种四边形的性质(25题)3. 多边形的面积与周长(40题)4. 圆的性质与圆的应用(35题)5. 平行线与相交线(30题)三、立体几何1. 空间几何体的性质(35题)2. 空间坐标与距离计算(30题)3. 三视图与投影(40题)4. 空间图形的体积和表面积(30题)5. 空间向量的运算(25题)四、数学函数1. 函数的概念与性质(30题)2. 一次函数与二次函数(35题)3. 指数函数与对数函数(30题)4. 三角函数与反三角函数(40题)5. 极限与导数(25题)五、概率与统计1. 抽样与调查(25题)2. 随机事件与概率计算(30题)3. 概率模型与分布函数(35题)4. 统计图与统计指标(30题)5. 抽样分布与假设检验(40题)六、数列与数学归纳法1. 数列的概念与性质(30题)2. 等差数列与等比数列(35题)3. 递推数列与通项公式(30题)4. 递归求和与数列运算(25题)5. 数学归纳法与应用(40题)七、解析几何1. 坐标平面与坐标系(30题)2. 直线方程与曲线方程(35题)3. 圆锥曲线与参数方程(30题)4. 空间直线与平面的相交关系(25题)5. 三角形与向量的几何运算(40题)八、复数与向量1. 复数的运算与性质(25题)2. 复数的平面表示与应用(30题)3. 向量的概念与运算(35题)4. 平面向量与向量的运算(30题)5. 向量的数量积与叉积(40题)以上是高中数学试题大全的内容,涵盖了代数、平面几何、立体几何、数学函数、概率与统计、数列与数学归纳法、解析几何、复数与向量等各个领域的试题。
每个领域都包含一定数量的题目,通过这些试题的练习和训练,可以帮助学生全面提高他们的数学水平。
数学竞赛典型题目(一)1.(美国数学竞赛)设n a a a ,,,21是整数列,并且他们的最大公因子是1.令S 是一个整数集,具有性质:(1)),,2,1(n i S a i (2)}),,2,1{,(n ji S a a ji,其中j i,可以相同(3)对于S y x,,若S yx,则Syx证明:S 为全体整数的集合。
2.(美国数学竞赛)c b a ,,是正实数,证明:3252525)()3)(3)(3(c b a ccbbaa3.(加拿大数学竞赛)T 为1002004的所有正约数的集合,求集合T 的子集S 中的最大可能的元素个数。
其中S 中没有两个元素,一个是另一个的倍数。
4.(英国数学竞赛)证明:存在一个整数n 满足下列条件:(1)n 的二进制表达式中恰好有2004个1和2004个0;(2)2004能整除n .5.(英国数学竞赛)在0和1之间,用十进制表示为21.0a a 的实数x 满足:在表达式中至多有2004个不同的区块形式,)20041(20031ka a a kkk ,证明:x 是有理数。
6.(亚太地区数学竞赛)求所有由正整数组成的有限非空数集S ,满足:如果S nm,,则Sn m n m),(7.(亚太地区数学竞赛)平面上有2004个点,并且无三点共线,S 为通过任何两点的直线的集合。
证明:点可以被染成两种颜色使得两点同色当且仅当S 中有奇数条直线分离这两点。
8.(亚太地区数学竞赛)证明:)()!1(*2N n nnn 是偶数。
9.(亚太地区数学竞赛)z y x ,,是正实数,证明:)(9)2)(2)(2(222zx yz xy zyx10.(越南数学竞赛)函数f 满足)0(2sin 2cos )(cot xx xx f ,令)11)(1()()(xx f x f x g ,求)(x g 在区间]1,1[的上最值。
11.(越南数学竞赛)定义17612)(,91524)(2323x xxx q x xxx p ,证明:(1)每个多项式都有三个不同的实根;(2)令A 为)(x p 的最大实根,B 为)(x q 的最大实根,证明:4322B A 12.(越南数学竞赛)令F 为所有满足R R f :且x x f f x f )]2([)3(对任意R x成立的函数f 的集合。
高中数学1、 (1+2x)3(1-3x)5的展开式中x 的系数是:A.-4B.-2C.2D.42、已知F 1、F 2为双曲线C:x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则P 到x 轴的距离为:A.32B.62C. 3D. 63、已知函数f(x)=|lgx|. 若0<a<b ,且f(a)=f(b),则a+2b 的取值范围是:A.(22,+∞)B. [22,+∞)C.(3, +∞)D. [3, +∞)4、直线y=1与曲线y=x 2-|x|+a 有四个交点,则a 的取值范围是______.5、已知△ABC 内角A 、B 及其对边a 、b 满足a+b=acotA+bcotB ,求角C6、设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>A.{}2x x x <-或>4B.{}0x x x <或>4C.{}0x x x <或>6D.{}2x x x <-或>27、若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-A.12-B.12C.2D.2-8、已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是A.()1,10B.()5,6C.()10,12D.()20,249、已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为A.22136x y -= B.22145x y -= C.22163x y -= D.22154x y -=10、某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有 A.36种B.42种C.48种D.54种11、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是___________.12、已知函数⎩⎨⎧<≥+=01012x ,x ,x )x (f ,则满足不等式)x (f )x (f 212>-的x 的范围是____13、如图,在ABC ∆中,AD AB ⊥,3,||1BC BD AD ==,则AC AD = .14、若直线y b χ=+与曲线234y χχ=--有公共点,则b 的取值范围是A. [1,122]-+B. [122,122]-+C. [122,3]-D. [12,3]-15、某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种16、已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程是A.12-=x yB. x y =C.23-=x yD.32+-=x y17、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则A.()f x 是偶函数B.()f x 是奇函数C.()(2)f x f x =+D.(3)f x +是奇函数18、定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( )A.-1B. 0C.1D. 219、设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD = 2,CE EA = 2,AF FB =则AD BE CF ++ 与BC( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直20、已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<一、选择题:(每小题仅有一个选项符合题意,共5×12=60分) 1.已知全集U=R ,集合1{|0}2x A x x +=≤-,则集合U C A 等于 ( )A .{|12}x x x <->或B .{|12}x x x ≤->或C .{|12}x x x <-≥或D .{|1}x x ≤-≥或x 22.已知复数512iz i+=,则它的共轭复数z 等于( ) A .2i - B .2i +C .2i -+D .2i --3.下列结论错误的...是( )A .命题“若p ,则q ”与命题“若,q ⌝则p ⌝”互为逆否命题;B .命题:[0,1],1x p x e ∀∈≥,命题2:,10,q x R x x ∃∈++<则p q ∨为真; C .“若22,am bm <则a b <”的逆命题为真命题;D .若q p ∨为假命题,则p 、q 均为假命题.4.设,l m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若,l m m α⊥⊂ ,则l α⊥ B .若,//l l m α⊥,则m α⊥C .若//,l m αα⊂,则//l mD .若//,//l m αα,则//l m5.已知数列{}n a 满足*331246log 1log (),9n n a a n N a a a ++=∈++=且,则15793log ()a a a ++的值是( )A .-5B .15-C .5D .156.若函数()sin cos (0)f x ax ax a =+>的最小正 周期为π,则它的图像的一个对称中心为( )A .(,0)8π-B .(,0)8π C .(0,0) D .(,0)4π-7.已知ABC ∆和点M 满足0MA MB MC ++= ,若存在实m 使得AB AC mAM +=成立,则m =( )A .2B .3C .4D .58.若00x y x y y a -≤⎧⎪+≥⎨⎪≤⎩,用2Z x y =+的最大值是3,则a 的值是( )A .1B .1-C .0D .29.直线223(3)(2)4y kx x y =+-+-=与圆相交于,M N ,两点,若||23MN ≥,则k 的取值范围是 ( ) A .3,04⎡⎤-⎢⎥⎣⎦ B .3,[0,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦C .33,33⎡⎤-⎢⎥⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦10.已知长方体ABCD A B C D ''''-,对角线AC '与平面A BD '相交于点G ,则G 是A BD '∆ 的( ) A .垂心 B .外心 C .内心 D .重心 11.已知曲线2:2C y x =,点(0,2)A -及点(3,)B a ,从点A 观察点B ,要使实现不被曲线C 挡住,则实数a 的取值范围是( )A .(4,)+∞B .(,4)-∞C .(10,)+∞D .(,10)-∞12.若1a >,设函数()4x f x a x =+-的零点为m ,()log 4a g x x x =+-的零点为n ,则11m n+的取值范围是( )A .7(,)2+∞B .(1,)+∞C .(4,)+∞D .9(,)2+∞二、填空题:(每小题5分,共20分)13.已知函数()y f x =的图象在点(5,f(5))处的切线方程是8y x =-+,则(5)(5)f f '+= . 14.已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则91078a aa a +=+ . 15.设连接双曲线22221x y a b-=与22221(0,0)y x a b b a -=>>的4个顶点的四边形面积为1S ,连接其4个焦点的四边形面积为2S ,则12SS 的最大值为 .16.直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数()f x 的图象恰好通过*()k k N ∈个格点,则称函数()f x 为k 阶格点函数,下列函数:①()sin f x x =;②2()3(1)2f x x π=-+;③1()4xf x ⎛⎫= ⎪⎝⎭;④0.5()log f x x =,其中是一阶格点函数的有 .三、解答题:请将证明过程或演算步骤答在指定的答题框内,超过答题框内的答案无效 17.(本题满分20分),,,A B C a bc ∆中分别是角A 、B 、C 的对边,向量2(2s i n ,2c o s 2),2s i n ,1,.42m B B n m n π⎛⎫⎛⎫=-=+-⊥ ⎪ ⎪⎝⎭⎝⎭B 且 (1)求角B 的大小;(2)若3,1,a b c ==求的值。
高中数学优质试题50道(附经典解析)优质试题11.已知P 是ABC ∆内任一点,且满足AP x AB y AC =+,x 、y R ∈,则2y x +的取值范围是 ___ .解法一:令1x y AQ AP AB AC x yx yx y==++++,由系数和1x y x yx y+=++,知点Q 在线段BC 上.从而1AP x y AQ+=<.由x 、y 满足条件0,0,1,x y x y >>⎧⎨+<⎩易知2(0,2)y x +∈. 解法二:因为题目没有特别说明ABC ∆是什么三角形,所以不妨设为等腰直角三角形,则立刻变为线性规划问题了. 2.在平面直角坐标系中,x 轴正半轴上有5个点, y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个. 答案:30个优质试题21.定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,如:[1.5]1[ 1.3]2=-=-,,当*[0)()x n n N ∈∈,时,设函数()f x 的值域为A ,记集合A 中的元素个数为n a ,则式子90na n+的最小值为 . 【答案】13.【解析】当[)0,1n ∈时,[]0x x ⎡⎤=⎣⎦,其间有1个整数; 当[),1n i i ∈+,1,2,,1i n =-时,[]2(1)i x x i i ⎡⎤≤<+⎣⎦,其间有i 个正整数,故(1)112(1)12n n n a n -=++++-=+,9091122na n n n +=+-,由912n n=得,当13n =或14时,取得最小值13.2. 有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两倍同学要站在一起,则不同的站法有 种. 答案:192种优质试题31.已知直线l ⊥平面α,垂足为O .在矩形ABCD 中,1AD =,2AB =,若点A 在l 上移动,点B 在平面α上移动,则O ,D 两点间的最大距离为 .解:设AB 的中点为E ,则E 点的轨迹是球面的一部分,1OE =,DE =所以1OD OE ED ≤+=当且仅当,,O E D 三点共线时等号成立.2. 将A、B、C、D四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有 种. 答案:30种优质试题41. 在平面直角坐标系xOy 中,设定点(),A a a ,P 是函数()10y x x=>图象上一动点.若点,P A之间的最短距离为满足条件的实数a 的所有值为 . 解:函数解析式(含参数)求最值问题()222222211112222AP x a a x a x a x a a x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-++-=+-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦因为0x >,则12x x+≥,分两种情况:(1)当2a ≥时,min AP ==,则a = (2)当2a <时,min AP =1a =-2. 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 种. 答案:90种优质试题51.已知,x y ∈R ,则()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为 .解: 构造函数1yx =,22y x =-,则(),x x 与2,y y ⎛⎫- ⎪⎝⎭两点分别在两个函数图象上,故所求看成两点(),x x 与2,y y⎛⎫- ⎪⎝⎭之间的距离平方,令2220802y x mx mx m m y x =+⎧⎪⇒++=⇒∆=-=⇒=⎨=-⎪⎩所以y x =+1y x =平行的22y x=-的切线,故最小距离为2d = 所以()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为42. 某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有 种. 答案:140种优质试题61.已知定圆12,O O 的半径分别为12,r r ,圆心距122O O =,动圆C 与圆12,O O 都相切,圆心C 的轨迹为如图所示的两条双曲线,两条双曲线的离心率分别为12,e e ,则1212e e e e +的值为( )A .1r 和2r 中的较大者B .1r 和2r 中的较小者C .12r r +D .12r r -解:取12,O O 为两个焦点,即1c =若C 与12,O O 同时相外切(内切),则121221CO CO R r R r r r -=--+=-若C 与12,O O 同时一个外切一个内切,则121221CO CO R r R r r r -=---=+因此形成了两条双曲线.此时21211212212111221122r r r r e e e e r r r r +-++=-+,不妨设21rr >,则12212e e r e e += 2.某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有 种. 答案:6种优质试题71. 已知12,F F 是双曲线()222210,0x y a b ab-=>>的左右焦点,以12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N,且M 、N 均在第一象限,当直线1//MF ON 时,双曲线的离心率为e ,若函数()222f x x x x=+-,则()f e = .解:()222,x y c M a b by xa ⎧+=⎪⇒⎨=⎪⎩1F M b k a c=+,所以ON bk a c =+,所以ON 的方程为b y x a c=+, 所以22221x y a b N b y x a c ⎧-=⎪⎛⎫⎪⇒⎨⎪=⎪+⎩又N 在圆222x y c +=上,所以222a a c c ⎛⎫⎛⎫++=所以322220e e e +--=,所以()2222f e e e e=+-=2.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数的个数有 个. 答案:28个优质试题81. 已知ABC ∆的三边长分别为,,a b c ,其中边c 为最长边,且191ab+=,则c 的取值范围是 .解:由题意知,,a c b c ≤≤,故1919101a b c c c =+≥+=,所以10c ≥又因为a b c +>,而()1991016b aa b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭所以16c <故综上可得1016c ≤<2. 从5名志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有 种. 解: 48种优质试题91.在平面直角坐标系xoy中,已知点A是半圆()224024x y x x +-=≤≤上的一个动点,点C 在线段OA 的延长线上.当20OA OC =时,则点C的纵坐标的取值范围是 .解:设()22cos ,2sin A θθ+,()22cos ,2sin C λλθλθ+,1λ>,,22ππθ⎡⎤∈-⎢⎥⎣⎦由20OA OC =得:522cos λθ=+所以()()[]5sin 055sin 2sin 5,522cos 1cos cos 1C y θθθθθθ-=⋅⋅==∈-++-- 2. 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是 种. 答案:20种优质试题101.点D 是直角ABC ∆斜边AB 上一动点,3,2AC BC ==,将直角ABC ∆沿着CD 翻折,使'B DC ∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是 .解:过点'B 作'B E CD ⊥于E ,连结,BE AE , 设'BCD B CD α∠=∠=,则有'2sin ,2cos ,2B E CE ACE πααα==∠=- 在AEC ∆中由余弦定理得22294cos 12cos cos 94cos 12sin cos 2AE παααααα⎛⎫=+--=+- ⎪⎝⎭在'RT AEB ∆中由勾股定理得22222''94cos 12sin cos 4sin 136sin 2AB AE B E ααααα=+=+-+=-所以当4πα=时,'AB取得最小值为2.从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有 种. 答案:45种优质试题111.已知函数()421421x x x x k f x +⋅+=++,若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,则实数k 的取值范围是 . 解:()421111421212x x x x x x k k f x +⋅+-==+++++ 令()110,13212x x g x ⎛⎤=∈ ⎥⎝⎦++当1k ≥时,()213k f x +<≤,其中当且仅当0x =时取得等号所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需223k +≥,所以14k ≤≤当1k <时,()213k f x +≤<,其中当且仅当0x =时取得等号所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需2213k +⋅≥,所以112k -≤< 综上可得,142k -≤≤ 2.在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色,若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有 种. 答案:55种优质试题121.已知函数()2221f x x ax a =-+-,若关于x 的不等式()()0f f x <的解集为空集,则实数a 的取值范围是 . 解:()()()222111f x x ax a x a x a =-+-=---+⎡⎤⎡⎤⎣⎦⎣⎦ 所以()0f x <的解集为()1,1a a -+所以若使()()0f f x <的解集为空集就是1()1a f x a -<<+的解集为空,即min ()1f x a ≥+ 所以11a -≥+,即2a ≤-2.某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有 种. 答案:31116322C C C C 种优质试题131. 已知定义在R 上的函数()f x 满足①()()20f x f x +-=;②()()20f x f x ---=;③在[]1,1-上的表达式为()[](]1,01,0,1x f x x x ∈-=-∈⎪⎩,则函数()f x 与函数()122,0log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图象在区间[]3,3-上的交点个数为 .2. 若5(1)ax -的展开式中3x的系数是80,则实数a 的值是 . 答案:2优质试题141.()f x 是定义在正整数集上的函数,且满足()12015f =,()()()()212f f f n n f n +++=,则()2015f = .解:()()()()212f f f n n f n +++=,()()()()()212111f f f n n f n +++-=--两式相减得()()()()2211f n n f n n f n =---所以()()111f nn f n n -=-+所以()()()()()()()()201520142201420132012121201512015201420131201620152014320161008f f f f f f f f =⋅⋅=⋅⋅⋅==2. 某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:节目单上不同的排序方式 有 种. 答案:144种优质试题151. 若,a b 是两个非零向量,且a b a b λ==+,λ⎤∈⎥⎣⎦,则b 与a b -的夹角的取值范围是.解:令1a b ==,则1a b λ+=设,a b θ=,则由余弦定理得()22221111cos 1cos 22λπθθλ+--==-=-又λ⎤∈⎥⎣⎦,所以11cos ,22θ⎡⎤∈-⎢⎥⎣⎦所以2,33ππθ⎡⎤∈⎢⎥⎣⎦,所以由菱形性质得25,,36b a b ππ⎡⎤-∈⎢⎥⎣⎦2. 若(nx 的展开式中第三项系数等于6,则n = . 答案:12优质试题161.函数()22fx xx=+,集合()()(){},|2A xy f x f y =+≤,()()(){},|B x y f x f y =≤,则由A B的元素构成的图形的面积是 .解:()()(){}()()(){}22,|2,|114A x y f x f y x y x y =+≤=+++≤()()(){}()()(){},|,|22B x y f x f y x y x y x y =≤=-++≤画出可行域,正好拼成一个半圆,2S π=2. 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两公司各承包2项,共有承包方式 种. 答案:1680种优质试题171. 在棱长为1的正方体1111A B C D A B C D -中,112A E AB =,在面ABCD 中取一个点F ,使1EF FC +最小,则这个最小值为 . 解:将正方体1111ABCD A B C D -补全成长方体,点1C 关于面ABCD 的对称点为2C ,连接2EC 交平面ABCD于一点,即为所求点F ,使1E F F C +最小.其最小值就是2EC .连接212,AC B C ,计算可得2121,,AC B C AB =,所以12AB C ∆为直角三角形,所以2EC =2. 若()62601261mx a a x a x a x +=++++ 且123663a a a a ++++=,则实数m的值为 . 答案:1或-3优质试题181. 已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线分别交双曲线的两条渐近线于点,P Q .若点P是线段1FQ 的中点,且12QF QF ⊥,则此双曲线的离心率等于 .解法一:由题意1F P b =,从而有2,a ab P c c⎛⎫- ⎪⎝⎭, 又点P 为1FQ 的中点,()1,0F c -,所以222,a ab Q c cc ⎛⎫-+ ⎪⎝⎭所以222ab b a c c a c ⎛⎫=-+ ⎪⎝⎭,整理得224ac =,所以2e =解法二:由图可知,OP 是线段1F P 的垂直平分线,又OQ 是12Rt F QF ∆斜边中线, 所以1260FOP POQ QOF ∠=∠=∠=,所以2e = 解法三:设(),,0Q am bm m >,则()1,Q F c a m b m =---,()2,QF c am bm =-- 由()()12,,0QF QF c am bm c am bm ⊥⇒-----=,解得1m =所以(),Q a b ,,22a c b P -⎛⎫⎪⎝⎭所以22b b ac a-=-⋅,即2c a =,所以2e =2. 现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为 . 答案:18优质试题191. 已知O 为坐标原点,平面向量,,OA OB OC 满足:24OA OB ==,0OA OB =,()()20OC OAOC OB --=,则对任意[]0,2θπ∈和任意满足条件的向量OC ,cos 2sin OC OA OB θθ-⋅-⋅的最大值为 . 解:建立直角坐标系,设()()(),,4,0,0,2C x y A B 则由()()20OC OA OC OB --=,得22220x y x y +--=(cos 2sin OC OA OB x θθ-⋅-⋅=等价于圆()()22112x y -+-=上一点与圆2216x y +=上一点连线段的最大值即为42. 已知数列{na }的通项公式为121n n a -=+,则01na C +12na C +33na C ++1n n na C += . 答案:23n n+优质试题201. 已知实数,,a b c 成等差数列,点()3,0P -在动直线0ax by c ++=(,a b 不同时为零)上的射影点为M ,若点N 的坐标为()2,3,则MN 的取值范围是 .解:因为实数,,a b c 成等差数列,所以2b a c =+,方程0ax by c ++=变形为2()20ax a c y c +++=,整理为()2(2)0a x y c y +++=所以2020x y y +=⎧⎨+=⎩,即12x y =⎧⎨=-⎩,因此直线0ax by c ++=过定点()1,2Q -画出图象可得90PMQ ∠=,PQ = 点M 在以PQ 为直径的圆上运动,线段MN的长度满足FN MN FN ≤即55MN ≤2. 如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是 个. 答案:48优质试题211. 已知函数是定义在R上的偶函数,当x ≥时,()()()2502161122x x x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩.若关于x 的方程()()20,,f x af x b a b ++=∈⎡⎤⎣⎦R ,有且仅有6个不同实数根,则实数a的取值范围是 .解:设()t f x =,问题等价于()2g t t a t b =++=有两个实根12,t t ,12501,14t t <≤<<或1255,144t t =<< 所以()()0091014504g g h a g ⎧⎪>⎪⎪≤⇒-<<-⎨⎪⎛⎫⎪> ⎪⎪⎝⎭⎩或()5124591024504a g h a g ⎧<-<⎪⎪⎪>⇒-<<-⎨⎪⎛⎫⎪= ⎪⎪⎝⎭⎩ 综上, 5924a -<<-或914a -<<- 2.在24的展开式中,x 的幂的指数是整数的项共有项. 答案:5优质试题221. 已知椭圆221:132x y C +=的左、右焦点为12,F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()()()11221,2,,,,A B x y C x y 是2C上不同的点,且AB BC ⊥,则2y 的取值范围是 .解:由题意22:4Cy x=设:(2)1ABlx m y =-+代入22:4C y x =,得()24840y my m -+-= 所以142y m =-,()()2144121x m m m =-+=-设()21:(42)21BC l x y m m m=--++-代入22:4C y x=,得()2248164210y y m m m ⎡⎤+++--=⎢⎥⎣⎦所以122442y y m y m+=-+=-所以(][)2442,610,ym m=--+∈-∞-+∞2. 5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答) 答案:72优质试题231. 数列{}na 是公比为23-的等比数列,{}nb 是首项为12的等差数列.现已知99ab >且1010ab >,则以下结论中一定成立的是 .(请填上所有正确选项的序号) ①9100a a<;②100b >;③910b b >;④910a a >解:因为数列{}na 是公比为23-的等比数列,所以该数列的奇数项与偶数项异号,即: 当10a>时,2120,0k k a a -><;当10a <时,2120,0k k a a -<>;所以9100a a <是正确的;当10a>时,100a <,又1010a b >,所以100b <结合数列{}nb 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的.故知:910b b >当10a<时,90a <,又99a b >,所以90b <结合数列{}nb 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的.故知:910bb >综上可知,①③一定是成立的. 2. 设5nx (的展开式的各项系数之和为M , 二项式系数之和为N ,若M -N =240, 则展开式中x 3的系数为 . 答案:150优质试题241. 已知集合(){}2,|21A x y y x bx ==++,()(){},|2B x y y a x b ==+,其中0,0a b <<,且A B 是单元素集合,则集合()()(){}22,|1x y x a y b -+-≤对应的图形的面积为 . 解:()()()2221221202y x bx x b a x ab y a x b ⎧=++⎪⇒+-+-=⎨=+⎪⎩()()2222241201b a ab a b ∆=---=⇒+=所以由2210,0a b a b ⎧+=⎪⎨<<⎪⎩得知,圆心(),a b 对应的是四分之一单位圆弧MPN(红色).此时()()(){}22,|1x y x a y b -+-≤所对应的图形是以这四分之一圆弧MPN上的点为圆心,以1为半径的圆面.从上到下运动的结果如图所示:是两个半圆(ABO 与ODE )加上一个四分之一圆(AOEF ),即图中被绿实线包裹的部分。
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7C. 6D. 5MNAMNBNMCMND10.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高中数学集合题目训练一、基础概念类1. 集合A = {x | x是小于10的正偶数},集合B = {2, 4, 6, 8},问集合A和集合B 是什么关系呢?- 那我们先来看看集合A里都有啥。
小于10的正偶数呢,那就是2、4、6、8呀。
这和集合B里的元素一模一样。
所以呀,集合A和集合B是相等的关系,就像两个长得一模一样的双胞胎,我们可以写成A = B。
2. 已知集合C={1, 3, 5},集合D={x|x是奇数且x < 7}。
集合C和集合D的关系是啥?- 首先看集合D,奇数而且小于7的数有1、3、5,这和集合C里的元素是一样的。
所以集合C是集合D的子集,而且是真子集哦,因为集合D里还有可能有其他元素(虽然这里没有),我们可以写成C⊂neqq D。
二、集合的运算类1. 集合E = {1, 2, 3, 4, 5},集合F={3, 4, 5, 6, 7}。
求E∩ F(也就是求这两个集合的交集)。
- 交集嘛,就是两个集合里共同有的元素。
那我们看看集合E和集合F,共同有的元素是3、4、5。
所以E∩ F = {3, 4, 5},就像两个人都有的宝贝一样,把这些宝贝挑出来放在一起。
2. 设集合G={x|x > - 2},集合H={x|x < 3}。
求G∪ H(也就是求这两个集合的并集)。
- 并集呢,就是把两个集合的元素都放在一起。
集合G里是大于 - 2的数,集合H里是小于3的数。
那把它们放在一起就是所有的实数啦,不过这里我们可以写成G∪ H={x|x∈ R},就像把两个人的东西都堆在一起,那就是一大堆东西啦,这里就是所有的实数。
三、稍复杂一点的题目1. 已知集合M={x|x^2-5x + 6 = 0},求集合M。
- 要找集合M,就得先解这个方程x^2-5x + 6 = 0。
这个方程可以分解成(x - 2)(x - 3)=0。
那x - 2 = 0或者x - 3 = 0,解得x = 2或者x = 3。
高中数学精选题在高中数学中,精选题通常包括了代数、几何、三角学、概率统计等领域的难题和典型题目。
这些题目旨在帮助学生巩固基础知识,提高解题技巧,培养逻辑思维能力。
以下是一些高中数学的精选题目示例:代数:解方程组:(\begin{cases} x + y = 5 \ 2x - 3y = 1 \end{cases})分解因式:(x^3 - 3x^2 + 3x - 1)几何:已知直角三角形的两个直角边长分别为3cm和4cm,求斜边长。
证明:任意四边形内接于圆的对角互补。
三角学:计算:(\sin 30^\circ + \cos 60^\circ)利用正弦定理求解三角形的边长问题。
概率与统计:一个袋子里有5个红球和3个蓝球,随机取出两个球,求取出两个不同颜色球的概率。
计算一组数据的平均值、中位数和众数。
函数与导数:求函数(f(x) = x^2 - 4x + 5)的极值。
计算函数(f(x) = \ln(x))在(x=e)处的导数。
数列:确定数列的通项公式:(a_n = 2n + 1)计算等差数列的前n项和:(S_n = \frac{n}{2}(a_1 + a_n))立体几何:计算球体的体积和表面积。
求圆锥的侧面积。
解析几何:求直线(y = mx + b)与圆(x^2 + y^2 = r^2)的交点。
计算两点之间的距离。
以上题目只是高中数学中的一小部分精选题目。
解决这些问题需要运用不同的数学概念和解题技巧。
对于高中生来说,掌握这些基础知识并通过大量练习来提高解题能力是非常重要的。
必修一典型练习题 一、集合及其运算 1.已知集合{}{}1,12+==+==x y y B x y y A ,则=B A ( ). (A) {}2,1,0 (B )()(){}2,1,1,0 (C){1≥x x } (D)R2.设集合},1,5,9{},,12,4{2a a B a a A --=--=若}9{=B A ,求实数a 的值。
3.已知}32/{},322/{<<-=-<<-=x x B a x a x A ,若B A ⊆,求实数a 的取值范围4. 已知集合}0|{},0124|{22=-+==-+=k kx x x B x x x A .若B B A = ,求k 的取值范围二、映射与函数的概念1.已知映射B A f →: ,R B A == ,对应法则x x y f 2:2+-= ,对于实数 B k ∈在集合A 中不存在原象,则k 的取值范围是2.}y |y {N },x |x {M 2020≤≤=≤≤=,给出如下图中4个图形,其中能表示集合M 到集合N 的函数关系有 .3.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 三、函数的单调性与奇偶性1.求证:函数xx x f 1)(+=在),1(+∞∈x 上是单调增函数2.已知函数()x f y =在),(+∞-∞上是减函数,则()|2|+=x f y 的单调递减区间是( ).A ),(+∞-∞ .B ),2[+∞- .C ),2[+∞ .D ]2,(--∞3.已知函数a x a ax x f +-+=)31()(2在区间),1[+∞是递增的,则a 的取值范围是4.设函数()x f 在)2,0(上是增函数,函数()2+x f 是偶函数,则()1f 、⎪⎭⎫ ⎝⎛25f 、⎪⎭⎫ ⎝⎛27f 的大小关系是.___________5.已知定义域为(-1,1)的奇函数()x f 又是减函数,且()0)9(32<-+-a f a f ,则a 的取值范围是三、求函数的解析式1.已知二次函数)(x f ,满足1)1(,1)2(-=--=f f ,且)(x f 的最大值是8,试求函数解析式。
高中数学练习题解方程解题一:一元一次方程1. 题目:解方程2x - 5 = 3解析:将方程中的x项和常数项分开,得到2x = 8。
然后将方程两边同除以2,得到x = 4。
解答:x = 42. 题目:解方程3(2x - 1) = 15解析:首先,使用分配律将方程中的括号展开,得到6x - 3 = 15。
然后将方程两边同时加上3,得到6x = 18。
最后将方程两边同时除以6,得到x = 3。
解答:x = 33. 题目:解方程4(3x + 2) - 6 = 14解析:首先,使用分配律将方程中的括号展开,得到12x + 8 - 6 = 14。
然后将方程两边同时减去2,得到12x = 6。
最后将方程两边同时除以12,得到x = 0.5。
解答:x = 0.5解题二:一元二次方程4. 题目:解方程x^2 + 5x + 6 = 0解析:根据一元二次方程的解法,使用二次根式公式可以求得方程的解。
将方程的系数代入公式,得到x = (-5 ± √(5^2 - 4×1×6))/(2×1)。
计算后得到x = -2 或 x = -3。
解答:x = -2 或 x = -35. 题目:解方程2x^2 - 3x - 2 = 0解析:同样使用二次根式公式,将方程的系数代入公式,得到x = (3 ± √(3^2 - 4×2×(-2)))/(2×2)。
计算后得到x = -0.5 或 x = 2。
解答:x = -0.5 或 x = 2解题三:分式方程6. 题目:解方程(2x + 1)/(x - 3) = 3/2解析:首先,通过交叉乘积得到方程 2(2x + 1) = 3(x - 3)。
然后将方程两边展开并整理,得到4x + 2 = 3x - 9。
将方程两边同时减去3x,并将常数项整理到一边,得到x = -11。
解答:x = -117. 题目:解方程(3x + 7)/(4x - 2) = 2解析:同样通过交叉乘积得到方程 2(4x - 2) = 3x + 7。
For personal use only in study and research; not for commercial use
高三级部数学模拟试题(理科)
科目:数学(理) 班级: 学生姓名: 时间:2014.10
一、选择题(10 * 5分=50分)
1.设集合{}1,2,3A =,{}4,5B =,{},,C x x b a a A b B ==-∈∈,则C 中元素的个数是( )
A .3
B .4
C .5
D . 6
2.已知函数e ,0,()ln ,0,
x x f x x x ⎧<=⎨>⎩则1[()]e f f =(
)
A .1e
B .e -
C .e
D .1e
-
3.下列命题中,真命题是( )
A .存在,e 0x
x ∈≤R B .1,1a b >>是1ab >的充分条件
C .任意2,2
x
x x ∈>R
D .0a b +=的充要条件是1a b
=-
4. 定义运算
a b ad bc c d
=-,若函数()123
x f x x
x -=
-+在(,)m -∞上单调递减,
则实数m 的取值范围是
A .(2,)-+∞
B .[2,)-+∞
C .(,2)-∞-
D . (,2]-∞-
5.现有四个函数:①y=x ·sinx;②y=x ·cosx;③y=x ·|cosx|;④y=x ·2x 的
图象
(部分)如下,则按照从左到右图象对应的函数序号正确的一组是( )
A.①④③②
B.④①②③
C.①④②③
D.③④②①
6.若函数⎪⎩⎪
⎨⎧<->=0
),(log 0,log )(2
12x x x x x f ,若
)(>-a af ,则实数
a
的取值范围是
( )
A .)()(1,00,1⋃-
B .)
,(),(∞+⋃-∞-11
C .),()(∞+⋃-10,1
D .)
(),(1,01⋃-∞-
7.要得到函数()cos 23f x x π⎛⎫=+ ⎪⎝
⎭
的图象,只需将函数()sin 23g x x π⎛
⎫=+ ⎪⎝
⎭
的图
象
A.向左平移2
π个单位长度
B.向右平移2
π个单位长度
C.向左平移4
π个单位长度
D.向右平移4
π个单位长度
8.已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2
π
ϕ=”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
9.函数()21log f x x x
=-的零点所在的区间为
A. ()0,1
B. ()1,2
C. ()2,3
D. ()3,4
10.设函数()f x 的导函数为'()f x ,对任意x R ∈都有'()()f x f x >
成立,则( )
A.3(ln 2)2(ln3)f f >
B.3(ln 2)2(ln3)f f <
C.3(ln 2)2(ln3)f f =
D.3(ln 2)f 与2(ln 3)f 的大小不确定
二、填空题(5 * 5分=25分)
1.曲线2y x =,y x =
所围成的封闭图形的面积为 .
12.函数()(1)x f x x e =-⋅的单调递减区间是 .
13.已知5
2)tan(=+βα,
41
)4
tan(=
-
π
β,那么)4
tan(πα+的值是 _
14. 若函数y=|log 3x|在区间(0,a]上单调递减,则实数a 的取值范围
为 .
15.给出下列命题:
①若)(x f y =是奇函数,则|)(|x f y =的图像关于y 轴对称;②若函数)(x f 对
任意
x R
∈满足1)4()(=+⋅x f x f ,则8是函数
)
(x f 的一个周期;③若
03log 3log <<n m ,则10<<<n m ;④若||)(a x e x f -=在),1[+∞上是增函数,则1a ≤.
其中正确命题的序号是 .
三、解答题(75分)
16.(12分)已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎪⎫β-π4=35,β∈⎝ ⎛⎭
⎪⎪
⎫π4,π2.
(1)求sin 2α和tan 2α的值;
(2)求cos(α+2β)的值.
17.(12分)已知函数
2
()()
21
x
f x a a R
=-∈
-
(Ⅰ)判断函数()
f x的单调性,并用单调函数的定义证明;
(Ⅱ)是否存在实数a使函数()
f x为奇函数?若存在,求出a的值;若不存在,请说明理由.
18.(12分)已知函数()a
ax
x
x
x
f-
+
-
=2
3
3
1(a∈R).
(1) 当3-=a时,求函数()x f的极值;
(2)若函数()x f的图象与x轴有且只有一个交点,求a的取值范围
19.(12分)已知函数f(x)=23sin x
2
+
π
4
cos
⎝
⎛
⎭
⎪
⎪
⎫
x
2
+
π
4-sin(
x+π).
(1)求f (x )的最小正周期;
(2)若将f (x )的图象向右平移π
6
个单位,得到函数g (x )的图象,求函数
g (x )在区间[0,π]上的最大值和最小值.
20. (13分)已知一企业生产某产品的年固定成本为10万元,每生产
千件需另投入2.7万元,设该企业年内共生产此种产品x 千件,并且全部销售完,每千件的销售收入为
()f x 万元,且22110.8(0<10)30
()1081000(10)3x x f x x x
x ⎧
-≤⎪⎪=⎨
⎪->⎪⎩
(Ⅰ)写出年利润P (万元)关于年产品x (千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该企业生产此产品所获年利润最大?
(注:年利润=年销售收入-年总成本)
21.(14分) 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.
(Ⅰ)求,a b的值;
(Ⅱ)当[03]
x∈,时,函数()
y f x
=
的图像恒在直线2
y c
=
的下方,
求c的取值范围
精品教育
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des f ins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文
-可编辑-。