初三数学圆第一单元测试题
- 格式:doc
- 大小:126.50 KB
- 文档页数:4
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A. 1 个B. 2个C. 3个D. 4个2.如图,为圆的直径,弦,垂足为,,半径为25,则弦的长为( )A. 24B. 14C. 10D. 73.如图,AB,CD是⊙O的直径,弧AE=弧BD,若∠AOE=32°,则∠COE的度数是( )A. 32°B. 60°C. 68°D. 64°4.如图,圆的两条弦AB,CD相交于点E,且弧AD=弧CB,∠A=40°,则∠CEB的度数为( )A. 50°B. 80°C. 70°D. 90°5.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )A. 点MB. 点NC. 点PD. 点Q6.如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点.若大圆半径为2,小圆半径为1,则的长为()A. B. C. D. 27.已知正六边形的边长是2,则该正六边形的边心距是( )A. 1B.C. 2D.8.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为( )A. πB. 2πC. 3πD. 4π9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A. 16B. 14C. 12D. 1010.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,如果∠CAB=40°,那么∠CAD的度数为( )A. 25°B. 50°C. 40°D. 80°二、填空题(共8小题)11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D=_____度.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为_____.三、解答题(共7小题)19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.23.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.24.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.参考答案一、选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A. 1 个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据等弧、等圆、弦的定义即可一一判断.【详解】(1)长度相等的弧是等弧,错误;(2)在同圆或等圆中,相等的圆心角所对的弧相等,错误;(3)在同圆或等圆中,劣弧一定比优弧短,错误;(4)直径是圆中最长的弦,正确;故选:A.【点睛】考查圆周角定理以及圆心角、弧、弦的关系,解答此类问题注意前提条件是在同圆或等圆中.2.如图,为圆的直径,弦,垂足为,,半径为25,则弦的长为( )A. 24B. 14C. 10D. 7【答案】B【解析】【分析】连接OA,根据垂径定理得到AE=EB,根据勾股定理求出AE,得到答案.【详解】连接OA,∵CD为圆O的直径,弦AB⊥CD,∴AE=EB,由题意得,OE=OC-CE=24,在Rt△AOE中,AE==7,∴AB=2AE=14,故选B.【点睛】本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.3.如图,AB,CD是⊙O的直径,弧AE=弧BD,若∠AOE=32°,则∠COE的度数是( )A. 32°B. 60°C. 68°D. 64°【答案】D【解析】【分析】根据圆心角、弧、弦的关系,由弧AE=弧BD得到∠AOE=∠BOD=32°,然后利用对顶角相等得∠BOD=∠A OC=32°,易得∠COE=64°.【详解】∵弧AE=弧BD,∴∠AOE=∠BOD=32°.∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°.故选D.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4.如图,圆的两条弦AB,CD相交于点E,且弧AD=弧CB,∠A=40°,则∠CEB的度数为( )A. 50°B. 80°C. 70°D. 90°【答案】B【解析】【分析】根据圆周角定理得到∠A=∠C=40°,由三角形外角的性质即可得到结论.【详解】∵弧AD=弧CB,∴∠A=∠C.∵∠A=40°,∴∠CEB=∠A+∠C=80°.故选B.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键.5.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】C【解析】试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q再以点O为圆心的圆上,OP与ON的大小不能确定,∴点P不一定在圆上.故选C.考点:点与圆的位置关系;线段垂直平分线的性质.6.如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点.若大圆半径为2,小圆半径为1,则的长为()A. B. C. D. 2【答案】A【解析】【分析】连接OA、OB、OP,OP即为小圆半径,易证△OAP≌△OBP,通过构建直角三角形,可解答.【详解】解:连接OA、OB、OP,OP即为小圆半径,∵OA=OB,∠OAB=∠OBA,∠OPA=∠OPB=90°,∴△OAP≌△OBP,∴在直角△OPA中,OA=2,OP=1,∴AP=,∴AB=2.故选:A.【点睛】本题主要考查了切线、勾股定理的应用,本题综合性较强;掌握其定理、性质,才能熟练解答.7.已知正六边形的边长是2,则该正六边形的边心距是( )A. 1B.C. 2D.【答案】B【解析】【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】如图,连接OA,作OM⊥AB.∵正六边形ABCDEF的边长为2,∴∠AOM=30°,AM AB2=1,∴正六边形的边心距是OM.故选B.【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算.8.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为( )A. πB. 2πC. 3πD. 4π【答案】B【解析】【分析】根据圆周角定理可得出∠AOB=90°,再根据弧长公式计算即可.【详解】如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°.∵OA=4,∴弧AB的长=2π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解题的关键是掌握弧长公式l.9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A. 16B. 14C. 12D. 10【答案】B【解析】【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC的周长.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF.∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14.故选B.【点睛】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.10.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,如果∠CAB=40°,那么∠CAD的度数为( )A. 25°B. 50°C. 40°D. 80°【答案】A【解析】【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【详解】如图,连接BC,BD.∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=40°,∴∠ABC=50°.∵弧AD=弧CD,∴∠ABD=∠CBD∠ABC=25°,∴∠CAD=∠CBD=25°.故选A.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解答本题的关键是作出辅助线.二、填空题(共8小题)11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.【答案】∠AOB=∠COD【解析】【分析】直接利用圆心角、弧、弦的关系求解.【详解】∵弧AB=弧CD,∴∠AOB=∠COD.故答案为:∠AOB=∠COD.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D=_____度.【答案】30【解析】【分析】连接OC,如图,根据切线的性质得∠OCD=90°,再根据等腰三角形的性质和三角形外角性质得到∠COD=60°,然后利用互余计算∠D的度数.【详解】连接OC,如图,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°.∵OA=OC,∴∠ACO=∠CAB=30°,∴∠COD=∠ACO+∠CAB=60°,∴∠D=90°﹣∠COD=90°﹣60°=30°.故答案为:30.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.【答案】4【解析】【分析】连接OA,OB,证出△BOA是等边三角形,【详解】解:如图所示,连接OA、OB∵多边形ABCDEF是正六边形,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=OB=4故答案为4【点睛】本题考查正六边形和圆,等边三角形的判定与性质,解题关键是熟练掌握正六边形的性质.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)【答案】5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.【答案】5【解析】【分析】连接OA,根据垂径定理求出AD.在Rt△AOD中,根据勾股定理列式计算即可.【详解】连接OA.∵OD⊥AB,∴AD AB=3.在Rt△AOD中,OA2=OD2+AD2,即OC2=(9﹣OC)2+32,解得:OC=5.故答案为:5.【点睛】本题考查了勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.【答案】70【解析】【分析】连接OA、OB,如图,根据切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】连接OA、OB,如图,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣40°=140°,∴∠ACB∠AOB140°=70°.故答案为:70.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.【答案】(3,)【解析】【分析】将正六边形ABCDEF绕原点O逆时针旋转2019次时,点A所在的位置就是原D点所在的位置.【详解】2019×60°÷360°=336…3,即与正六边形ABCDEF绕原点O逆时针旋转3次时点A的坐标是一样的.当点A按逆时针旋转180°时,与原D点重合.连接OD,过点D作DH⊥x轴,垂足为H;由已知ED=6,∠DOE=60°(正六边形的性质),∴△OED是等边三角形,∴OD=DE=OE=6.∵DH⊥OE,∴∠ODH=30°,OH=HE=3,HD=.∵D在第四象限,∴D(3,﹣3),即旋转2019后点A的坐标是(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为_____.【答案】.【解析】【分析】解答时根据扇形面积公式带入数值进行计算即可得到答案【详解】扇形面积:S=在△ABC中,D为BC的中点BD=DCBD长为半径画一弧交AC于E点BD=DE∠A=60°,∠B=100°∠C=20°=∠DEC∠BDE=∠C+∠DEC=40°=aBC=2 r=1S=故答案为:【点睛】此题重点考察学生对扇形面积公式的理解,正确选择面积公式是解题的关键三、解答题(共7小题)19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF【答案】见解析【解析】【分析】连结AD,如图,根据垂径定理由CD⊥AB得到弧AC=弧AD,再根据圆周角定理得∠ADC=∠AED,然后根据圆内接四边形的性质得∠CEF=∠ADC,于是利用等量代换即可得到结论.【详解】证明:连结AD,如图,∵CD⊥AB,∴弧AC=弧AD,∴∠ADC=∠AED,∵∠CEF=∠ADC,∴∠AED=∠CEF.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和圆内接四边形的性质.20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点睛】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.【答案】(1)答案见解析;(2)135°.【解析】【分析】(1)根据正方形的性质得到AB=CD,根据圆心角、弧、弦的关系得到,得到,即可得到结论;(2)连接OA、OB、OM,根据正方形的性质求出∠AOB和∠AOM,计算即可.【详解】(1)∵四边形ABCD是正方形,∴AB=CD,∴.∵M为的中点,∴,∴,∴BM=CM;(2)连接OA、OB、OM.∵四边形ABCD是正方形,∴∠AOB=90°.∵M为弧AD的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.【点睛】本题考查了正多边形的性质、圆心角、弧、弦的关系定理,掌握正方形的性质、圆心角、弧、弦的关系定理是解题的关键.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.【答案】(1)45°;(2).【解析】【分析】(1)根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质即可得到结论;(2)根据阴影部分的面积=S△ABC-S扇形DBC即可得到结论.【详解】(1)∵AB为半圆⊙O的直径,∴∠ACB=90°.∵AC=BC,∴∠ABC=45°;(2)∵AC=BC,∴∠ABC=45°,∴△ABC是等腰直角三角形.∵AB=2,∴BC=AB=,∴阴影部分的面积=S△ABC-S扇形DBC=.【点睛】本题考查了不规则图形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.23.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.【答案】(1)证明见解析;(2)y=x2.【解析】【分析】(1)连接OC,根据圆心角、弧、弦的关系定理得到∠COA=∠COB,证明△COD≌△COE,根据全等三角形的性质证明;(2)连接AC,根据全等三角形的判定定理得到△AOC为等边三角形,根据正切的定义求出CD,根据三角形的面积公式计算即可.【详解】(1)证明:连接OC,∵,∴∠COA=∠COB,∵D、E分别是⊙O两条半径OA、OB的中点,∴OD=OE,在△COD和△COE中,,∴△COD≌△COE(SAS)∴CD=CE;(2)连接AC,∵∠AOB=120°,∴∠AOC=60°,又OA=OC,∴△AOC为等边三角形,∵点D是OA的中点,∴CD⊥OA,OD=OA=x,在Rt△COD中,CD=OD•tan∠COD=,∴四边形ODCE的面积为y=×OD×CD×2=x2.【点睛】本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.24.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.【答案】(1)4;(2)详见解析【解析】【分析】(1)首先连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长;(2)由OC=CP=4,△OBC是等边三角形,可求得BC=CP,即可得∠P=∠CBP,又由等边三角形的性质,∠OBC=60°,∠CBP =30°,则可证得OB⊥BP,继而证得PB是⊙O的切线.【详解】(1)连接OB,∵弦AB⊥OC,劣弧AB的度数为120°,∴弧BC与弧AC的度数为:60°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC=4;(2)证明:∵OC=CP,BC=OC,∴BC=CP,∴∠CBP=∠CPB,∵△OBC是等边三角形,∴∠OBC=∠OCB=60°,∴∠CBP=30°,∴∠OBP=∠CBP+∠OBC=90°,∴OB⊥BP,∵点B在⊙O上,∴PB是⊙O的切线.【点睛】此题考查了切线的判定、等边三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD,证明△CDE∽△DBE,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°.∵AB=AC,∴∠ABC=∠ACB.∵∠ADB=∠ACB,∴∠F=∠FDE,∴DE=EF=3.∵CE=2,∠BCD=90°,∴∠DCE=90°,∴CD.∵∠BDE=90°,CD⊥BE,∴∠DCE=∠BDE=90°.∵∠DEC=∠BED,∴△CDE∽△DBE,∴,∴BD,∴⊙O的半径.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE=EF是解答本题的关键.。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一.选择题(每小题3分,共36分)1.设⊙O的直径为12cm,点A在直线l上,若AO=6cm,则直线l与⊙O的位置关系是()A. 相离B. 相切C. 相交或相切D. 以上都不对2.如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD垂足为E,下列结论不一定成立的是()A. B. C. EO=EB D. EC=ED3.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A. B. C. D.4.如图,在⊙O中,∠ABC=51°,则∠AOC等于()A. 51°B. 80°C. 90°D. 102°5.已知点I为△ABC的内心,若∠A=40°,则∠BIC=()A. 80°B. 110°C. 130°D. 140°6.如图,⊙O中,弦AB、CD相交于点P,∠A=35°,∠B=40°,则∠APD的大小是()A. 45°B. 55°C. 65°D. 75°7.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A. 32B. 40C. 24D. 308.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A. 60°B. 90°C. 120°D. 150°9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=28°,那么∠C为()A. 28°B. 30°C. 34°D. 35°10.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、BC、BD、AD,若CD平分∠ACB,∠CBA=30°,BC=3,则AD的长为()A. 3B. 6C. 4D. 311.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A. 50°B. 55°C. 65°D. 70°12.如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()A. 7B. 7C. 10D. 8二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为_____.14.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.当A,B,C,D四点在同一个圆上时,该圆的半径为_____.15.如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.16.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.17.如图,在⊙O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN 的长是_____cm.18.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为_____.19.如图,点A、B、C在⊙O上,∠O=44°,则∠C=_____°.20.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.三.解答题(每题10分,共60分)21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=5,AC=12,求⊙O的半径和CE的长.22.如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.(1)试说明△ABC是等边三角形;(2)若AD=2,DC=4,求四边形ABCD的面积.23.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=58°,求∠BDF的度数.24.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D.(1)求证:DE∥OC;(2)若AD=2,DC=3,且AD2=AE•AB,求的值.25.如图,在△ABC中,AB=AC.(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.26.如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.(1)求证:AF=GC;(2)若BD=6,AD=4,求⊙O的半径;(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.参考答案一.选择题(每小题3分,共36分)1.设⊙O的直径为12cm,点A在直线l上,若AO=6cm,则直线l与⊙O的位置关系是()A. 相离B. 相切C. 相交或相切D. 以上都不对【答案】C【解析】【分析】根据直线与圆的位置关系的判定方法,分OA⊥l和圆心O到直线l的距离小于AO两种情况判断即可解答. 【详解】已知⊙O的直径为12cm,则半径为6cm,又已知AO=6cm,所以AO为半径,则A在⊙O上.当AO⊥l时,有1个公共点,即相切.当圆心O到直线l的距离小于AO时,有2个公共点,即相交.故选C.【点睛】本题考查了直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.2.如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD垂足为E,下列结论不一定成立的是()A. B. C. EO=EB D. EC=ED【答案】C【解析】【分析】根据垂径定理解答即可.【详解】∵AB是直径,AB⊥CD,∴,,EC=DE,选项A,B,D正确,不能判断EO=EB,选项C错误.故选C.【点睛】本题考查了垂径定理,熟知垂直于弦的直径平分弦,并且平分弦所对的两条弧是解决问题的关键.3.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A. B. C. D.【答案】C【解析】【分析】分针1小时(60分钟)转1周,扫过的面积是一个圆的面积,40分钟分针扫过的面积是圆面积的,根据圆的面积公式s=πr2,把数据代入公式进行求解即可.【详解】依题意,得×π×22=π(cm2);答:分针所扫过的面积是πcm2.故选C.【点睛】本题考查了扇形面积的计算和旋转的性质.解答本题的关键是明确分针的尖端40分钟扫过的面积是圆面积的.4.如图,在⊙O中,∠ABC=51°,则∠AOC等于()A. 51°B. 80°C. 90°D. 102°【答案】D【解析】【分析】根据圆周角定理即可解答.【详解】由圆周角定理得,∠AOC=2∠ABC=102°,故选D.【点睛】本题考查了圆周角定理,熟知圆周角定理的内容是解决问题的关键.5.已知点I为△ABC的内心,若∠A=40°,则∠BIC=()A. 80°B. 110°C. 130°D. 140°【答案】B【解析】【分析】根据三角形的内角和定理求得∠ABC+∠ACB=140°,由内心的定义可求得∠IBC+∠ICB=70°,再由三角形的内角和定理即可求得∠BIC的度数.【详解】∵∠A+∠ABC+∠ACB=180°,∠A=40°,∴∠ABC+∠ACB=140°,∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=×140°=70°,∴∠BIC=180°﹣(∠IBC+∠ICB)=110°.故选B.【点睛】本题考查了三角形的内心,熟知三角形的内心是三角形三个角的角平分线的交点是解决问题的关键.6.如图,⊙O中,弦AB、CD相交于点P,∠A=35°,∠B=40°,则∠APD的大小是()A. 45°B. 55°C. 65°D. 75°【答案】D【解析】【分析】根据等弧所对的圆周角相等可知∠B=∠C,故根据三角形的一个外角等于与它不相邻的两个内角和可以求出∠APD的大小.【详解】由于∠C和∠B所对应的弧都是,故∠C=∠B=40°,∴∠APD=∠C+∠A=75°,故答案选D.【点睛】本题主要考查了等弧所对应的圆周角相等以及三角形的外角等于与它不相邻的两个内角之和,灵活应用这些是解答本题的关键.7.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A. 32B. 40C. 24D. 30【答案】A【解析】【分析】取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,即可得△ODE的面积=×△ADE的面积,由此求得△ODE的面积,再由圆内接正八边形ABCDEFGH是由8个与△ODE全等的三角形构成,即可求得正八边形ABCDEFGH的面积.【详解】取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,∴△ODE的面积=×△ADE的面积=×8=4,圆内接正八边形ABCDEFGH是由8个与△ODE全等的三角形构成.则圆内接正八边形ABCDEFGH为8×4=32,故选A.【点睛】本题考查了正多边形和圆的知识,一般的,任何一个正n边形都有一个外接圆,分别经过各顶点的这些半径将这个正n边形分成n个全等的等腰三角形.8.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A. 60°B. 90°C. 120°D. 150°【答案】C【解析】【分析】根据圆内接四边形的性质、圆周角定理即可求得∠A=60°,∠BOD=120°,由此即可求得的度数.【详解】∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的度数为120°故选C.【点睛】本题考查了圆内接四边形的性质及圆周角定理,正确求得∠BOD=120°是解决问题的关键.9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=28°,那么∠C为()A. 28°B. 30°C. 34°D. 35°【答案】C【解析】【分析】连接OD,已知CD与⊙O相切,根据切线的性质定理可得∠ODC=90 °,由OA=OD,根据等腰三角形的性质可得∠A=∠ODA,由三角形外角的性质可得∠COD=∠A+∠ODA=2∠A=56°,由此即可求得∠C=34°.【详解】如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,即∠ODC=90 °,∵OA=OD,∴∠A=∠ODA,∴∠COD=∠A+∠ODA=2∠A=56°,∴∠C=90°﹣56°=34°,故选C.【点睛】本题考查了切线的性质定理、等腰三角形的性质及三角形外角的性质,熟练运用相关知识是解决问题的关键.10.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、BC、BD、AD,若CD平分∠ACB,∠CBA=30°,BC=3,则AD的长为()A. 3B. 6C. 4D. 3【答案】B【解析】【分析】由直径所对的圆周角为直角可得∠ACB=∠ADB=90°,再利用特殊角的三角函数值求出AB的值,再根据等弧所对的弦相等结合勾股定理可得出结果.【详解】∵AB是⊙O的直径, ∴∠ACB=∠ADB=90°, ∵∠CBA=30°,BC=,∴AB==6,∵CD平分∠ACB,∴∠BCD=∠ACD, ∴AD=BD,∴AD=,∴2AD²=72, ∴AD=6.故选B.【点睛】本题考查了圆周角的性质,直径所对的圆周角为直角,在同圆或等圆中,相等的圆周角所对的弧相等,解题的关键是得出AD=BD.11.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A. 50°B. 55°C. 65°D. 70°【答案】B【解析】【分析】连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【详解】解:连接BD,∵AD是半圆O的直径,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故选B.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、等腰三角形的性质及三角形的内角和定理等知识,熟练运用相关知识是解决问题的关键.12.如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()A. 7B. 7C. 10D. 8【答案】B【解析】【分析】作点C关于AB的对称点C′,连接C′D交AB于点P,则此时PC+PD最小,为C′D的长,求得C′D的长即可求得PC+PD的最小值.【详解】解:作点C关于AB的对称点C′,连接C′D交AB于点P,则此时PC+PD最小,连接OC,OD,由勾股定理得,OE==3,OF=4,∴EF=EO+OF=7,作C′H⊥DF交DF的延长线于H,则四边形EC′HF为矩形,∴FH=C′E=CE=4,C′H=EF=7,∴DH=DF+FH=7,∴PC+PD=C′D=.故选B.【点睛】本题考查了轴对称-线路最短的问题,确定使PC+PD的值最小时动点P的位置是解题的关键.二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为_____.【答案】.【解析】【分析】先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD的中点,由三角形的面积可求出CM的长;再在Rt△ACM中,根据勾股定理可求出AM的长,然后再由AD=2AM即可得出结论.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵且AC=3,BC=4,AB=5,∴在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即解得:∴故答案为:【点睛】考查勾股定理,垂径定理及推论,掌握垂径定理是解题的关键.注意辅助线的作法.14.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.当A,B,C,D四点在同一个圆上时,该圆的半径为_____.【答案】【解析】【详解】如图,设AC交BD于点E,当A,B,C,D四点在同一个圆上时,∵AB=AD=5,CB=CD,∴AC垂直平分线段BD,AC为圆的直径,设该圆的半径为r,圆心为O.连接OD.∴BE=DE=4,AE==3,在Rt△ODE中,则有r2=(r﹣3)2+42,得r=.故答案为:.【点睛】本题考查了线段垂直平分线的性质、垂径定理及勾股定理,求得BE =4,AE=3是解决问题的关键.15.如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.【答案】65【解析】【分析】连接OA、OC、OB,根据切线的性质定理可得∠DAO=∠EBO=90°,由是必须的内角和为360°可得∠P+∠AOB=180°,由此求得∠AOB=130°,由切线长定理可得∠AOD=∠DOC,∠COE=∠BOE,从而得∠DOE=∠AOB=65°.【详解】连接OA、OC、OB,∵OA⊥PA,OB⊥PB,OC⊥DE,∴∠DAO=∠EBO=90°,∴∠P+∠AOB=180°,∴∠AOB=180°﹣50°=130°;∵∠AOD=∠DOC,∠COE=∠BOE,∴∠DOE=∠AOB=×130°=65°.故答案为:65.【点睛】本题考查了切线的性质定理及切线长定理,求得∠AOB=130°是解决问题的关键.16.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.【答案】【解析】试题解析:∵直线与x轴、y轴分别交于两点,∴A点的坐标为(4,0),B点的坐标为(0,−3),∴OA=4,OB=3,过C作CM⊥AB于M,连接AC,MC的延长线交C于N,则由三角形面积公式得,圆C上点到直线的最小距离是∴△P AB面积的最小值是故答案为:17.如图,在⊙O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN 的长是_____cm.【答案】2【解析】【分析】作OH⊥MN于H,连接ON,由已知条件可得OA=OB=ON=4,OP =2,再求得OH=;在Rt△OHN中,利用勾股定理求得NH=,再利用垂径定理即可求得MNN=2cm.【详解】解:作OH⊥MN于H,连接ON,AB=AP+PB=8,∴OA=OB=ON=4,∴OP=OA﹣AP=2,∵∠NPB=45°,∴OH=OP=,在Rt△OHN中,NH=,∵OH⊥MN,∴MN=2HN=2(cm),故答案为:2.【点睛】本题考查了垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解决问题的关键.18.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为_____.【答案】2﹣4【解析】【分析】由∠AFD=90°可得点F的运动轨迹是以AD为直径的⊙O,连接OB,OF,根据勾股定理求得OB=2,由BF≥OB﹣OF即可求得BF的最小值为2﹣4.【详解】如图,∵AE⊥DF,∴∠AFD=90°,∴点F的运动轨迹是以AD为直径的⊙O,连接OB,OF.∵四边形ABCD是矩形,∴∠BAO=90°,∵AB=6,AO=4,∴OB==2,FO=AD=4,∵BF≥OB﹣OF,∴BF的最小值为2﹣4,故答案为2﹣4.【点睛】本题考查了圆周角定理的推论及勾股定理,明确点O、B、F在一条直线上时BF的值最小是解决问题的关键.19.如图,点A、B、C在⊙O上,∠O=44°,则∠C=_____°.【答案】22【解析】【分析】根据圆周角定理即可求解.【详解】由圆周角定理可得:∠C= ∠O=×44°=22°;故答案为:22;【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决本题的关键.20.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.【答案】5【解析】【分析】求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最小距离,根据面积公式求出即可.【详解】∵直线y=x﹣3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,﹣3),3x ﹣4y﹣12=0,即OA=4,OB=3,由勾股定理得:AB=5.过C作CM⊥AB于M,连接AC,则由三角形面积公式得:×AB×CM=×OA×OC+×OA×OB,∴5×CM=4×2+3×4,∴CM=4,∴圆C上点到直线y=x﹣3的最小距离是:4-2=2,∴△P AB面积的最小值是×5×2=5.故答案为:5.【点睛】本题考查了三角形的面积,点到直线的距离公式的应用,解答此题的关键是求出圆上的点到直线AB的最小距离.三.解答题(每题10分,共60分)21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=5,AC=12,求⊙O的半径和CE的长.【答案】(1)证明见解析;(2)CE=.【解析】【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等可证得∠BCE =∠A,又由C是的中点,证得∠DBC =∠A,继而可证得CF﹦BF;(2)由C是的中点和CD=5可求得BC=5,利用勾股定理求得AB=13,即可求得⊙O的半径为6.5;在Rt△ACB中,利用三角形面积的两种表示方法即可求得EC的长.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°.∴∠A+∠ABC=90°.又∵CE⊥AB,∴∠CEB=90°.∴∠BCE+∠ABC=90°.∴∠BCE=∠A,∵C是的中点,∴=.∴∠DBC=∠A,∴∠DBC=∠BCE.∴CF=BF;(2)∵=,CD=5,∴BC=CD=5,∴AB==13,∴⊙O的半径为6.5,∵CE•AB=AC•BC,∴CE===.【点睛】本题考查了圆周角定理、勾股定理及直角三角形的面积求法,熟练运用相关知识是解决本题的关键.22.如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.(1)试说明△ABC是等边三角形;(2)若AD=2,DC=4,求四边形ABCD的面积.【答案】(1)见解析;(2)四边形ABCD的面积为.【解析】【分析】(1)据已知条件和圆周角定理即可得到结论;(2)过点A作AE⊥CD,过点B作BF⊥AC,得∠AED=90°,∠ADE=60°,∠DAE=30°,DE =1,,CE= 5,从而求出,再求出,即可求出结论.【详解】解:(1)∵ 四边形ABCD内接于⊙O∴∠ABC+∠ADC=180°∵∠ABC=60°,∴∠ADC=120°∵ DB平分∠ADC,∴∠ADB=∠CDB=60°∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°∴∠ABC=∠BCA=∠BAC∴△ABC是等边三角形⑵ 过点A作AE⊥CD,垂足为点E;过点B作BF⊥AC,垂足为点F.∴∠AED=90°∵∠ADC=120°∴∠ADE=60°∴∠DAE=30°∴ DE==1,∵ CD=4∴ CE=CD+DE=1+4=5∴Rt△AEC中,∠AED=90°∴ AC=∵ △ABC是等边三角形∴ AB=BC=AC=∴ AF=FC=∴∴∴ 四边形ABCD的面积=.【点睛】本题考查勾股定理、圆周角定理、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=58°,求∠BDF的度数.【答案】(1)证明见解析;(2)∠BDF=116°.【解析】【分析】(1)连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;由CD=BD 可得AD垂直平分BC,根据线段垂直平分线的性质可得AB=AC,所以∠B=∠C;根据同弧所对的圆周角相等可得∠B=∠E,由此即可证得∠E=∠C;(2)已知四边形AEDF是⊙O的内接四边形,根据圆内接四边形对角互补可得∠AFD=180°﹣∠E,由邻补角的定义可得∠CFD=180°﹣∠AFD,从而求得∠CFD=∠E=58°,再由∠BDF=∠C+∠CFD即可求得∠BDF的度数.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=58°,又∵∠E=∠C=58°,∴∠BDF=∠C+∠CFD=116°.【点睛】本题考查了圆周角定理及圆内接四边形对角互补的性质,熟知圆周角定理及圆内接四边形对角互补的性质是解决问题的关键.24.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D.(1)求证:DE∥OC;(2)若AD=2,DC=3,且AD2=AE•AB,求的值.【答案】(1)证明见解析;(2) .【解析】试题分析:(1)首先连接OD,由在△ABC中,∠B=90°,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,易证得Rt△ODC≌Rt△OBC(HL),然后由等腰三角形与三角形外角的性质,证得∠OED=∠BOC,继而证得DE∥OC;(2)由AD、DC的长可得AC、BC的长,再根据勾股定理即可得AB的长,再根据AD2=AE•AB,从而可得AE的长,继而得到OB的长,问题得以解答.试题解析:(1)连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°,在Rt△OCD和Rt△OCB中, ,∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC,∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,∴∠BOC=∠OED,∴DE∥OC;(2)由AD=2,DC=3得:BC=3,AC=5,由勾股定理得AB= =4,又∵AD2=AE·AB,∴AE=1,∴BE=3,OB=BE=,∴=.【点睛】本题考查了切线的性质、全等三角形的判定与性质、勾股定理等.解题的关键是恰当添加辅助线,解题过程中要注意掌握数形结合思想的应用.25.如图,在△ABC中,AB=AC.(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.【答案】(1)①证明见解析;②直线DE与⊙O相切,理由见解析;(2)AF=3.【解析】【分析】(1)①连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;再由等腰三角形三线合一的性质即可证得结论;(2)直线DE与⊙O相切,连接OD,已知AB=AC、OB=OD,根据等腰三角形的性质可得∠ODB=∠B=∠C,即可判定OD∥BC,由DE⊥AC可得DE⊥OD,由此即可判定DE 与⊙O相切;(2)根据已知条件易证四边形ODEF是矩形,即可得OD=EF=4;设AF=x,则AB=AC=x+6,AO =x+2,在Rt△AOF中,利用勾股定理列出方程(x+2)2=x2+42,解方程求得x的值,即可求得AF的长.【详解】(1)①连接AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,AD⊥BC,∴BD=CD;②直线DE与⊙O相切,理由:连接OD,∵AB=AC,OB=OD,∴∠ODB=∠B=∠C,∴OD∥BC,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切;(2)由(1)同理得,DE与⊙O相切,连接OF,∵EF与⊙O相切,DE⊥AC,∴∠ODE=∠OFE=∠EDF=90°,即四边形ODEF是矩形,∴OD=EF=4,设AF=x,则AB=AC=x+6,AO=x+6﹣4=x+2,在Rt△AOF中,(x+2)2=x2+42,解得,x=3,即AF=3.【点睛】本题考查了切线的判定与性质,解决第(2)问构造直角三角形利用勾股定理作为相等关系列方程是解决问题的关键.26.如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.(1)求证:AF=GC;(2)若BD=6,AD=4,求⊙O的半径;(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.【答案】(1)详见解析;(2)2;(3)4﹣π.【解析】【分析】(1)连接OD、OE、OF、OA,证明四边形OFCE为正方形,根据正方形的性质得到OF=CF,证明△GFC≌△AOF,根据全等三角形的性质证明结论;(2)根据切线长定理得到BE=BD=6,AF=AD=4,CF=CE,根据勾股定理列出方程,解方程即可;(3)根据正方形的面积公式和扇形面积公式计算.【详解】(1)证明:连接OD、OE、OF、OA,∵⊙O是△ABC的内切圆,切点分别为D、E、F,∴OE⊥BC,OF⊥AC,又∠ACB=90°,OE=OF,∴四边形OFCE为正方形,∴OF=CF,∵AF=AD,OF=OD,∴OA⊥DF,又∠AFD=∠GFC,∴∠G=∠OAF,在△GFC和△AOF中,,∴△GFC≌△AOF(AAS),∴AF=GC;(2)解:由切线长定理得,BE=BD=6,AF=AD=4,CF=CE,则AB=AD+BD=10,由勾股定理得,AC2+BC2=AB2,即(4+CF)2+(6+CE)2=102,解得,CF=2,即⊙O的半径为2;(3)解:图中由弧EF与线段CF、CE围成的阴影部分面积=22﹣=4﹣π.【点睛】本题考查的是三角形的内切圆与内心,扇形面积计算,掌握切线长定理,扇形面积公式,全等三角形的判定和性质是解题的关键.。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为( )A. 2πB.C.D.2.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A. 85°B. 95°C. 105°D. 115°3.如图,正方形ABCD的边长为2cm,以点B为圆心,AB的长为半径作弧AC,则图中阴影部分的面积为()A. (4-π)cm2B. (8-π)cm2C. (2π-4)cm2D. (π-2)cm24.如图,在⊙O中,弦AB与直径CD垂直,垂足为E,则下列结论中错误的是()A. AE=BEB. CE=DEC. AC=BCD. AD=BD5.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为()A. 35°B. 40°C. 50°D. 80°6.圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB和CD的距离是()A. 7cmB. 17cmC. 12cmD. 7cm或17cm7.如图,AB为⊙O的直径,点C在⊙O上,若∠C=16°,则∠BOC的度数是()A. 74°B. 48°C. 32°D. 16°8.如图,四边形ABCD内接于圆O,AB为圆O的直径,CM切圆O于点C,∠B CM=60º,则∠B的正切值是()A. B. C. D.9.如图,BD是⊙O的直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是( )A. 60°B. 45°C. 35°D. 30°10.已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为()A. B. 1 C. D. a二、填空题(共10题;共30分)11.如图,MN为⊙O的弦,∠M=50°,则∠MON等于________.12.在直径为10cm的圆中,弦的长为8cm,则它的弦心距为________cm.13.如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=________°.14.如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是_____.15.如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是_____.16.已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.17.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为_______.18.如图,等腰△ABC的底边BC的长为4cm,以腰AB为直径的⊙O交BC于点D,交AC于点E,则DE的长为________cm.19.如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向响点B匀速运动,若y=AE²-EF²,则y与动点F的运动时间x(0≤x≤6 )秒的函数关系式为.20.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆O n与直线l相切.设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=________.三、解答题(共8题;共60分)21.如图,要把残破的轮片复制完整,已知弧上的三点A、B、C.①用尺规作图法找出所在圆的圆心(保留作图痕迹,不写作法);②设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.22.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.23.如图,是⊙D的圆周,点C在上运动,求∠BCD的取值范围.24.如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.25.如图,AB是⊙O的直径,CD切⊙O于点C,AC平分∠DAB,求证:AD⊥CD.26.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE,AF的长.27.如图,AB为⊙O的直径,AD与⊙O相切于一点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.⑴求证:BC为⊙O的切线;⑵若AB=2,AD=2,求线段BC的长.28.如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+∠ODA= °.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.参考答案一、单选题(共10题;共30分)1.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为( )A. 2πB.C.D.【答案】D【解析】分析:连接OC,根据∠BAC=50°,求出∠COA的度数,再根据弧长公式即可求出弧AC的长.详解:连接OC.则∠BAC=∠OCA=50°,∴∠AOC=80°,∴故选:D点睛:此题考查了扇形的弧长公式的应用,连接OC,由等边对等角及三角形内角和定理得到∠AOC=80°是解题的关键.2.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=()A. 85°B. 95°C. 105°D. 115°【答案】B【解析】【分析】直接根据圆内接四边形的性质进行解答即可.【详解】∵ABCD为⊙O内接四边形,∠D=85°,∴∠B=180°−∠D=180°−85°=95°,故选:B.【点睛】考查圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.3.如图,正方形ABCD的边长为2cm,以点B为圆心,AB的长为半径作弧AC,则图中阴影部分的面积为()A. (4-π)cm2B. (8-π)cm2C. (2π-4)cm2D. (π-2)cm2【答案】A【解析】【分析】根据:阴影面积=正方形面积-扇形面积可得. S扇形=.【详解】S阴影=S正方形-S扇形=22-(cm2)故选:A【点睛】本题考核知识点:求扇形面积.解题关键点:求出正方形和扇形面积.4.如图,在⊙O中,弦AB与直径CD垂直,垂足为E,则下列结论中错误的是()A. AE=BEB. CE=DEC. AC=BCD. AD=BD【答案】B【解析】回顾一下垂径定理的内容,根据定理得出AE=BE,弧AD=弧BD,弧AC=弧BC,即可得出选项.【详解】∵CD⊥AB,CD为直径,∴AE=BE,弧AD=弧BD,弧AC=弧BC,CE>DE,AD=BD,AC=BC,故选:B.【点睛】本题考查了垂径定理的应用,解此题的关键是能正确理解定理的内容,注意:垂直于弦的直径平分这条弦,并且平分弦所对的每一条弧.5.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB 的度数为()A. 35°B. 40°C. 50°D. 80°【答案】B【解析】【分析】首先连接OA,OB,由圆的内接四边形的性质,即可求得∠AOB的度数,又由圆周角定理,即可求得∠ACB 的度数.【详解】连接OA,OB,∵∠ADB=110°,∴∠AOB=180°−∠ADB=70°,∴∠ACB=∠AOB=35°.故选A.【点睛】本题考查的是圆,熟练掌握圆的内接四边形的性质和圆周角定理是解题的关键.6.圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB和CD的距离是()A. 7cmB. 17cmC. 12cmD. 7cm或17cm【解析】试题分析:第一种情况:两弦在圆心的一侧时,已知CD=10cm,∴DE=5cm.∵圆的半径为13cm,∴OD=13cm,∴利用勾股定理可得:OE=12cm.同理可求OF=5cm,∴EF=7cm.第二种情况:只是EF=OE+OF=17cm.其它和第一种一样.故选D.考点:1.垂径定理;2.勾股定理.7.如图,AB为⊙O的直径,点C在⊙O上,若∠C=16°,则∠BOC的度数是()A. 74°B. 48°C. 32°D. 16°【答案】C【解析】∵OA=OC,∴∠A=∠C=16°,∴∠BOC=∠A+∠C=32°.故选C。
人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知与的半径分别为和3,若两圆相交,则两圆的圆心距满足( )A .B .C .D .2.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .73.如图,AB 为O 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )A . 070B . 035C . 030D .20︒4.在同圆中,CD 的度数小于180︒,且2AB CD =,那么弦AB 和弦CD 的大小关系为( )A .AB CD > B .AB CD =C .AB CD < D .无法确定5.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A .115︒B .105︒C .100︒D .95︒ 6.Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm 长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是1O 2O 2m 5m =1m =5m >15m <<EDC BA( )A .0个B .l 个C .2个D .3个7.在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )A .B .cmC .cmD .cm8.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则ABE 面积的最小值是A .2B .1C .D .9.在圆柱形油槽内装有一些油.截面如图所示,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽度为8分米,圆柱形油槽直径MN 为( ) A .6分米 B .8分米 C .10 分米 D .12 分米10.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=4,则⊙O 的直径等于( )Rt ABC △90C ∠=︒4BC cm =3AC cm =ABC △A 90︒11AB C △B 54π52π5π△22-2A.B. C. D .7 二 、填空题(本大题共5小题,每小题3分,共15分)11.已知1O ⊙与2O ⊙半径的长是方程27120x x -+=的两根,且1212O O =,则1O ⊙与2O ⊙的位置关系是___________.12.在Rt △ABC 中,∠C=90°,AC=3,BC=4,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .13.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.14.如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 cm 2.(结果保留π)15.已知正六边形的边心距为,则它的周长是 .三 、解答题(本大题共7小题,共55分)16.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;B(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.17.如图⊙O 半径为2,弦BD =,A 为弧BD 的中点,E 为弦AC 的中点,且在BD上。
人版九年上期教数学级学《圆》元单测试(满分120分,考试用时120分钟)一、选择题(每小题3分,共30分)1. 已知的⨀O半径为3cm, 点P到圆心O的距离OP=2cm, 则点P( )A. 在⨀O外B. 在⨀O 上C. 在⨀O 内D. 无法确定2. 在 Rt△ABC 中,∠C=90°,BC=3cm,AC=4cm,以点C 为圆心,以2.5cm 为半径画圆,则⊙C与直线AB的位置关系是 ( )A. 相交B. 相切C. 相离D. 不能确定3. 如图,在⊙O中,若点C是 AB的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°4. 如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心 M 到坐标原点O 的距离是 ( )A. 10;B.C.D.5. 如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是( )55° B. 60° C. 65° D. 70°6. 如图,过⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别是A ,B ,OP 交⊙O 于点C ,点D 不与点A 、点C 重合的一个动点,连接AD ,CD ,若∠APB=80°,则∠ADC 的度数是( )A. 15°B. 20°C. 25°D. 30°7. 如图,AB 是⊙O 的直径,点C 在⊙O 上,ABC ∠=30°,AB =8,则BC 等于 ( )A. 4;B.C. ;D. 8;8. 在半径为2的圆中,弦AB 的长为2( )A. 3π9. 已知一块圆心角为(接缝忽略不计),圆锥的底面圆的直径是80cm ,则这块扇形铁皮的半径是( )A. 24cmB. 48cmC. 96cmD. 192cm10. 如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC,则图中阴影部分面积是 ( )A. 43π-二、填空题(每小题4分,共32分)11. 用反证法证明“垂直于同一条直线的两条直线平行”时,第一个步骤是_____.12. 如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.13. 如图,点A,B,C,D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是________.∥,若 AB 和CD 之间的距离为14. 在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且 AB CD18,则弦CD 的长为.15. 如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是__.∥的16. 如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC OA长为.(结果保留π)17. 如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B面积为____.18. 如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离________cm.三、解答题(共58分)19. “五段彩虹展翅飞”,横跨南渡江的琼州大桥如图,该桥的两边均有五个红色的圆拱,如图(1).最高的圆拱的跨度为110m,拱高为22m,如图(2),那么这个圆拱所在圆的直径为多少米?20. 如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD,求证:AD=CD.21. 如图,已知在⊙O中,AB,AC是⊙O的直径,AC⊥BD于点F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.22. 已知一个圆的半径为6cm,这个圆的内接正六边形的周长和面积各是多少?23. 如图,以△边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.24. 如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE,求证:(1)AC平分∠DAB;(2)△PCF是等腰三角形.⊥点 M 是直线CD 上异于点25. 如图,⊙O 的半径为1,直线CD 经过圆心O,交⊙O 于C、D 两点,直径AB CD,C、O、D 的一个动点,AM 所在的直线交⊙O 于点N,点 P 是直线CD 上另一点,且PM=PN.(1)当点 M 在⊙O 内部,如图①,试判断 PN 与⊙O 的关系,并写出证明过程;(2)当点 M 在⊙O 外部,如图②,其他条件不变时,(1)的结论是否还成立? 请说明理由;(3)当点 M 在⊙O 外部,如图③,AMO∠=15°,求图中阴影部分的面积.参考答案一、选择题(每小题3分,共30分)1. 已知的⨀O 半径为3cm, 点P 到圆心O 的距离OP=2cm, 则点P ( )A. 在⨀O 外B. 在⨀O 上C. 在⨀O 内D. 无法确定【答案】C【解析】【分析】根据点到圆心的距离d 和圆的半径r 之间的大小关系,即可判断;【详解】∵⊙O 的半径为r =3cm ,点P 到圆心的距离OP =d =2cm ,∴d <r ,∴点P 在圆内,故选C.【点睛】本题考查了点与圆的位置关系.2. 在 Rt △ABC 中,∠C =90°,BC =3cm ,AC =4cm ,以点C 为圆心,以2.5cm 为半径画圆,则⊙C 与直线AB 的位置关系是 ( )相交B. 相切C. 相离D. 不能确定【答案】A【解析】试题分析:Rt △ABC 中,∠C =90°,BC =3cm,AC =4cm,可以求出斜边AB=5cm, 以点C 为圆心,以2.5cm 为半径画圆,则圆过AB 的中点,BC >r ,所以⊙C 与直线AB 的位置关系是相交.故选A.3. 如图,在⊙O 中,若点C 是AB 的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°【答案】A【解析】试题解析:50,,A OA OB ∠==∵点C的中点,故选A.点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.4. 如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心 M 到坐标原点O 的距离是 ( )A. 10;【答案】D【解析】【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在Rt△AOM中求出OM即可.【详解】解:如图连接BM、OM,AM,作MH⊥BC于H.已知⊙M与x轴相切于点A(8,0),可得AM⊥OA,OA=8,即可得∠OAM=∠MH0=∠HOA=90°,所以四边形OAMH是矩形,根据矩形的性质可得AM=OH,因MH⊥BC,由垂径定理得HC=HB=6,所以OH=AM=10,在RT△AOM中,由勾股定理可求得故答案选D.【点睛】本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.5. 如图,A,B,C是⊙O上三点,∠ACB=25数是( )A. 55°B. 60°C. 65°D. 70°【答案】C【解析】【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【详解】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠180°﹣50°)=65°.故选C.考点:圆周角定理.6. 如图,过⊙O外一点P引⊙O的两条切线PA,PB,切点分别是A,B,OP交⊙O于点C,点D是 ABC上不与点A、点C重合的一个动点,连接AD,CD,若∠APB=80°,则∠ADC的度数是( )A. 15°B. 20°C. 25°D. 30°【答案】C【解析】【详解】解;如图,连接OB,OA.因为PA,PB是圆O的切线,所以∠OBP=∠OAP=90°,PA=PB.由四边形的内角和定理,得∠BOA=360°-90°-90°-80°=100°.在△BPO和△APO中,PB=PA,PO=PO,OB=OA,所以△BPO≌△APO,所以∠BOC=∠AOB=50°.由圆周角定理,得∠ADC=12∠AOC=25°.故选C.7. 如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC=30°,AB=8,则BC 等于 ( )A. 4; C. 4; D. 8;【答案】C【解析】试题分析:AB 是⊙O 的直径,点C 在⊙O 上,所以∠ACB=90°,又因∠ABC=30°,AB=8,所以AC=4,根据勾股定理得故选C.8. 在半径为2的圆中,弦AB的长为2( )πA. 3【答案】C【解析】【详解】试题分析:如图,连接OA、OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,故选C.【考点】弧长的计算.9. 已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是( )A. 24cmB. 48cmC. 96cmD. 192cm【答案】B【解析】【分析】利用底面周长=展开图的弧长可得.【详解】设这个扇形铁皮的半径为rcm ,由题意得300=80180r ππ⨯,解得r=48.故这个扇形铁皮的半径为48cm ,故选B .考点:圆锥的计算.10. 如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC,则图中阴影部分面积是 ( )A. 43π-C. 43π-【答案】A【解析】试题分析:连接AB 、OC ,,所以可将四边形AOBC 分成三角形ABC 、和三角形AOB ,进行求面积,求得r 2所以阴影部分面积是扇形面积减去四边形面积即故选A.二、填空题(每小题4分,共32分)11. 用反证法证明“垂直于同一条直线的两条直线平行”时,第一个步骤是_____.【答案】垂直于同一条直线的两条直线相交【解析】试题分析:反证法有如下三个步骤:(1)提出反证,(2)推出矛盾,(3)肯定结论.所以第一步先提出反证垂直于同一条直线的两条直线相交.12. 如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.【答案】4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴,∵,△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.13. 如图,点A,B,C,D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是________.【答案】13【解析】【详解】连接AC,根据∠ABC=90°可得AC为直径,则∠ADC=90°,根据Rt△ACD的勾股定理可得:AC==14. 在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且 AB∥CD,若 AB 和CD 之间的距离为18,则弦CD 的长为.【答案】24【解析】【分析】如图,设AB与⊙O相切于点F,连接OF,OD,延长FO交CD于点E,首先证明OE⊥CD,在RT△EOD 中,利用勾股定理即可解决问题.【详解】如图,设AB与O相切于点F,连接OF,OD,延长FO交CD于点E.∵2πR=26π,∴R=13,∴OF=OD=13,∵AB是O切线,∴OF⊥AB,,AB CD∥∴EF⊥CD即OE⊥CD,∴CE=ED,∵EF=18,OF=13,∴OE=5,在RT△OED中∴CD=2ED=24.故答案为24.【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,利用垂径定理解决问题,属于中考常考题型.15. 如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是__.【解析】【分析】过点O作OC⊥AB于C,交⊙O于D、E两点,根据圆周角定理得△OAB为等腰直角三角形,所以AB=S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,可得到四边形MANB面积的最大值.【详解】过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴∵S 四边形MANB=S △MAB+S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值= S 四边形DAEB =S △DAB +S △EAB=12AB•CD+12(CD+CE )=12考点:1.垂径定理;2.圆周角定理.16. 如图,AB 切⊙O 于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,劣弧BC 的弧长为 .(结果保留π)【解析】试题分析:连接OB ,OC ,由AB 为圆的切线,利用切线的性质得到△AOB 为Rt △,根据30度所对的直角边等于斜边的一半,由OA=2求出OB=1,且∠AOB=60°,再由BC ∥OA ,利用两直线平行内错角相等得到∠OBC=60°,又OB=OC ,得到△BOC 为等边三角形,得出∠BOC=60°,利用弧长公式考点:切线的性质;含30度角的直角三角形;弧长的计算.17. 如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B面积为____.【解析】试题分析:连结AO,连结PO交圆于C.∵PA,PB是⊙O的切线,A,B为切点,PA=3,∠P=60°,∴∠OAP=90°,OA=1,∴S阴影=2×(S△PAO S﹣扇形AOC)=故答案为考点:1.扇形面积的计算;2.切线的性质.18. 如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离________cm.【解析】试题分析:因为OE=OF=EF=10(cm),所以底面周长=10π(cm),将圆锥侧面沿OF剪开展平得一扇形,此扇形的半径OE=10(cm),弧长等于圆锥底面圆的周长10π(cm)设扇形圆心角度数为n,则根据弧长公式得:10π=,所以n=180°,即展开图是一个半圆,因为E点是展开图弧的中点,所以∠EOF=90°,连接EA,则EA就是蚂蚁爬行的最短距离,在Rt△AOE中由勾股定理得,EA2=OE2+OA2=100+64=164,所以EA=2(cm),即蚂蚁爬行的最短距离是2(cm).考点:平面展开-最短路径问题;圆锥的计算.三、解答题(共58分)19. “五段彩虹展翅飞”,横跨南渡江的琼州大桥如图,该桥的两边均有五个红色的圆拱,如图(1).最高的圆拱的跨度为110m,拱高为22m,如图(2),那么这个圆拱所在圆的直径为多少米?【答案】159.5m.【解析】试题分析:在三角形OCF中可求得OF=OE-EF,OE=OC,所以根据勾股定理可得OC2=OF2+CF2,CF=12 CD,求出半径OC的长,进而求出直径.设所在圆的圆心为O,作OE⊥CD 于点F,交圆拱于点E,连接OC.设圆拱的半径为rm,则OF=(r-22)m.∵OE⊥CD,∴CF=55(m).根据勾股定理,得OC2=CF2+OF2,即r2=552+(r-22) 2.解这个方程,得r=79.75.这个圆拱所在圆的直径是79.75×2=159.5(m).20. 如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD,求证:AD=CD.【答案】详见解析.【解析】试题分析:垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧.因为AB 为直径,所以°,又因OD∥BC,所以根据垂径定理得DO垂直且平分AC,根据垂直平分线的性质得AD=CD.证明:连接OC,∵OD∥BC,∴∠ODB=∠CBD,又OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∵∠AOD=2∠OBD,∠DOC=2∠CBD,∴∠AOD=∠DOC,∴AD=CD.21. 如图,已知在⊙O中,AB,AC是⊙O的直径,AC⊥BD于点F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.【答案】【解析】试题分析:(1)由∠A=30°,可求得∠BOC=60°,再根据垂径定理得∠BOD=120°,由勾股定理得出BF 以及OB 的长,从而计算出阴影部分的面积即扇形的面积.(2)直接根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得圆锥的底面圆的半径.试题解析:(1)∵AC ⊥BD 于F ,∠A=30°,∴∠BOC=60°,∠OBF=30°,∵∴BF=23 ,∴(2)设圆锥的底面圆的半径为r ,则周长为2πr ,∴21204180r ππ=⋅∴这个圆锥底面圆的半径为43 .考点:1.圆锥的计算,2.扇形面积的计算.22. 已知一个圆的半径为6cm,这个圆的内接正六边形的周长和面积各是多少?【答案】【解析】试题分析:连接圆心和六边形的顶点,将六边形分成六个全等的三角形,这六个三角形是等边三角形.所以正六边形的边长是6cm,所以周长就是36cm;计算每个三角形面积,过圆心作一个三角形的高,求得高是3cm2,故正六边形的面积是2.如图所示,⊙O 中内接正六边形,OA=6cm.∵正六边形内接于⊙O,∴中心角∠AOB=60°,∴△AOB 是等边三角形,∴AB=OA=6cm,∴周长为::6 AB=36cm.过O 点作OD⊥AB,∴∠AOD=30°,∴AD=3cm,∴由勾股定理可得OD=,∴S△OAB2),∴S正六边形=2).23. 如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)证明见【解析】【分析】(1)连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴【点睛】本题考查切线的判定.24. 如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE,求证:(1)AC平分∠DAB;(2)△腰三角形.【答案】证明见解析【解析】(1)连接OC∵PD切⊙O于点C,∴OC⊥PD.又∵AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.又∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACE=∠BCE,∴∠CAO+∠ACE=∠PCB+∠BCE,∴∠PEC=∠PCE,∴PC=PE,即△25. 如图,⊙O 的半径为1,直线CD 经过圆心O,交⊙O 于C 、D 两点,直径AB ⊥CD,点 M 是直线CD 上异于点C 、O 、D 的一个动点,AM 所在的直线交⊙O 于点N,点 P 是直线CD 上另一点,且PM =PN .(1)当点 M 在⊙O 内部,如图①,试判断 PN 与⊙O 的关系,并写出证明过程;(2)当点 M 在⊙O 外部,如图②,其他条件不变时,(1)的结论是否还成立? 请说明理由;(3)当点 M 在⊙O 外部,如图③,∠AMO =15°,求图中阴影部分的面积.【答案】(1)详见解析;(2)成立,理由详见解析;(3)124【解析】试题分析:(1)PN 与⊙O 相切.要证明O N 即可,连接O N ,PM =PN ,所以∠PNM =∠PMN ,∠AMO =∠PMN ,AB ⊥CD,所以∠PMN+∠MAO=90°,又因∠MAO=∠MNO,所以∠PNM+∠MNO=90°,所以PN 与⊙O 相切.(2)成立,进行等量代换,∠MAO+∠OMA=90°,因∠OMA=∠PNM ,∠MAO=∠ONA,所以∠PNM+∠ONA=90°,所以∠O NP=90°;(3)阴影部分的面积可通过+S 扇形AOC 求得. (1)PN 与⊙O 相切.证明:连接ON ,则∠ONA =∠OAN .∵PM =PN ,∴∠PNM =∠PMN .又∵∠AMO =∠PMN ,∴∠PNM =∠AMO .∴∠PNO =∠PNM +∠ONA =∠AMO +∠OAN =90°,即PN 与⊙O 相切.(2)成立.理由如下:连接ON ,则∠ONA =∠OAN .∵PM =PN ,∴∠PNM =∠PMN .在Rt △AOM 中,∠OMA +∠OAM =90°.∴∠PNM +∠ONA =90°,∴∠PNO =180°-90°=90°.即PN 与⊙O 相切.(3)连接ON ,由(2)可知∠ONP =90°.∵∠AMO =15°,PM =PN ,∴∠PNM =15°,∠OPN =30°,∴∠PON =60°,∠AON =30°.过点N 作NE ⊥OD ,垂足为点E .则OE ∴NE =2.∴S 阴影=S △AOC +S 扇形AON -S △CON +2301360π⋅⋅4∴4。