第二章 弹性力学基础知识
- 格式:ppt
- 大小:4.33 MB
- 文档页数:103
第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。
它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。
本章将介绍弹性力学的基本方程及有关的变分原理。
§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。
现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。
§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。
第2章弹性力学基础内容提要:本章主要介绍弹性力学的基本概念,主要包括应力、应变的定义和性质,应力平衡方程、几何方程和物理方程,并对弹性力学问题的基本求解方法进行简介。
为了便于对机械结构有限元计算结果能够很好地分析评价,本章还介绍了结构强度与失效的基本理论。
有关能量法的简单知识是后续有限元法的重要理论基础。
教学要求:学习掌握应力、应变基本概念和主要性质,掌握弹性力学基本方程、应力边界条件、协调方程等,了解弹性力学平面问题的应力函数法,掌握结构强度失效准则中的等效应力理论等内容,了解能量法的基本思想。
2.1 引言弹性力学(Elastic Theory)作为一门基础技术学科,是近代工程技术的必要基础之一。
在现代工程结构分析,特别是航空、航天、机械、土建和水利工程等大型结构的设计中,广泛应用着弹性力学的基本公式和结论。
弹性力学与材料力学(Foundamental Strengths of Materials)在研究内容和基本任务方面,是基本相同的,研究对象也是近似的,但是二者的研究方法却有较大的差别。
弹性力学和材料力学研究问题的方法都是从静力学、几何学、物理学三方面入手的。
但是材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件,分析这类构件在拉压、剪切、弯曲、扭转等几类典型外载荷作用下的应力和位移。
在材料力学中,除了从静力学、几何学、物理学三方面进行分析外,为了简化推导,还引用了一些关于构件的形变状态或应力分布的假定(如平面截面的假定、拉应力在截面上均匀分布的假定等等)。
杆件横截面的变形可以根据平面假设确定,因此综合分析的结果,即问题求解的基本方程,是常微分方程。
对于常微分方程,数学求解是没有困难的。
而在弹性力学里研究杆状构件一般都不必引用那些假定,所以其解答要比材料力学里得出的解答精确得多。
当然,弹性力学在研究板壳等一些复杂问题时,也引用了一些有关形变状态或应力分布的假定来简化其数学推导。
但是由于弹性力学除研究杆状构件之外,还研究板、壳、块,甚至是三维物体等,因此问题分析只能从微分单元体入手,以分析单元体的平衡、变形和应力应变关系,因此问题综合分析的结果是满足一定边界条件的偏微分方程。
第二章弹性力学基础
图二半轴有限元模型
一、应力分量与平衡微分方程
空间独立的应力分量正应力分量:切应力分量:应力分量列阵: x y z σσσ xy
yz zx
τττ{} T
x y z xy yz zx σσσστττ⎡⎤=⎣⎦
注意下标的意义与符号规定!!
(2-1)
⎤
二、几何方程
空间独立的应变分量正应变分量:切应变分量:应变分量列阵:(2-3)
z y x εεε,,zx yz xy γγγ,,{}T
zx yz xy z
y x
][γγγεεεε=如何计算正应变和切应变??
y
⎤⎥
五、虚功原理
虚位移:满足物体内变形连续条件,边界上位移约束条件的任何可能的无限小位移。
虚功:真实外力在虚位移上所做的功。
虚应变:对可变形的弹性体,虚位移也必将导致虚应变,虚应变和虚位移之间满足弹性体几何方程。
虚功原理:外力作用下处于平衡状态的弹性体,外力在虚位移上做的总虚功等于弹性体内真实应力在虚应变上做的总虚变形功。
x F Vx
F C
C。
第二章知识点: (1)应力矢量()0limS FSνσ∆→∆∆其中,ν是S ∆的法向量(2)应力张量()()()111121321222323132333σσσσσσσσσσσσσ⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭其中,()()()123,,σσσ 分别是123,,e e e方向的应力矢量,且()()()111122133121122223323113223333e e e e e e e e e σσσσσσσσσσσσ=++=++=++上式可以写为张量形式ij i j e e σσ=或者用正应力剪应力将应力张量写为x xy xz yx y yz zx zy z σττστστττσ⎛⎫ ⎪= ⎪ ⎪⎝⎭(3)柯西公式(应力矢量和应力张量的关系)()νσνσ=⋅其中,ν是斜面的法向量,对于表面来说,就是外法向量。
可以将柯西公式写成如下形式()i i mj m j i mj i m j i mj im j i ij j e e e e e e e e νσνσνσνσνσδνσ=⋅=⋅=⋅== 即()i ij j νσνσ=这其实是三个式子,分量形式为()()()111122133112112222332231132233333++++i i i i i i νννσνσνσνσνσσνσνσνσνσσνσνσνσνσ==++====在表面上,所求出的()νσ就是外载荷。
(4)应力张量的转轴公式''''m n ij m i n j σσββ=证明如下:'''''''''''''''''''',ij i j m n m n i m i m j n j n ij m i n j m n m n m n m n ij m i n je e e e e e e e e e e e σσσββσββσσσββ====∴=∴=也可以将转轴公式写为矩阵形式[][][][]'Tσβσβ=其中,[]σ、[]'σ是坐标系变换前后的应力张量的分量,[]()'m i ββ=,'m i β是i e 在'm e上的分量,可以用如下公式计算()''cos ,m ii m e e β=(5)剪应力互等定理根据微元体的力矩平衡,可以得到 ,,yz zy xz zx xy yx ττττττ===也就是说ij ji σσ=应力张量是一个二阶对称的张量 (6)主应力由于应力张量是二阶对称的,所以可以将其对角化[][][]123Tσσβσβσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦并且123,,σσσ从大到小排列,他们称为主应力,[]β是三个主应力的方向。
第二章应力状态分析一、内容介绍弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。
应力状态是本章讨论的首要问题。
由于应力矢量与内力和作用截面方位均有关。
因此,一点各个截面的应力是不同的。
确定一点不同截面的应力变化规律称为应力状态分析。
首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。
应力状态分析表明应力分量为二阶对称张量。
本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。
本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。
二、重点1、应力状态的定义:应力矢量;正应力与切应力;应力分量;2、平衡微分方程与切应力互等定理;3、面力边界条件;4、应力分量的转轴公式;5、应力状态特征方程和应力不变量;知识点:体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质;截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量;切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态特征方程;应力不变量;最大切应力;球应力张量和偏应力张量§2.1 体力和面力学习思路:本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。
应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。
体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。
第二章弹性力学基础弹性力学又称弹性理论,它是固体力学的一个分支。
弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。
弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。
材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。
弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。
对杆状构件作较精确的分析,也需用弹性力学。
结构力学-----研究杆状构件所组成的结构。
例如桁架、刚架。
第一节弹性力学假设在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。
1. 假设物体是线弹性的假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。
即该比例关系不随应力、应变的大小和符号而变。
由材料力学已知:脆性材料的物体:在应力≤比例极限以前,可作为近似的完全弹性体;韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。
这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。
2. 假设物体是连续性的假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。
有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。
注:实际上,一切物体都是由微粒组成的,都不能符合该假定。
但是由于物体粒子的尺寸以及相邻粒子间的距离,都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。
3. 假设物体是均匀性、各向同性的整个物体是由同一材料组成的。
这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。