新高一数学下期末试卷(带答案)
- 格式:doc
- 大小:1.47 MB
- 文档页数:19
2022-2023学年广东省梅州市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =(1+m )+(2﹣m )i (m ∈R ,i 为虚数单位)对应的点在第二象限内,则实数m 的取值范围是( ) A .﹣1<m <2B .m <﹣1C .m >2D .m <﹣1或m >22.已知|a →|=2,|b →|=3,且a →⊥b →,则|b →−a →|=( ) A .1B .√5C .√13D .53.某水果店老板为了了解葡萄的日销售情况,记录了过去10天葡萄的日销售量(单位:kg ),结果如下:43,35,52,65,40,54,49,38,62,57.一次进货太多,水果会变得不新鲜;进货太少,又不能满足顾客的需求,店长希望每天的葡萄尽量新鲜,又能60%地满足顾客的需求(在100天中,大约有60天可以满足顾客的需求),每天大约应进( )千克葡萄. A .49B .51C .53D .554.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,下列结论正确的是( ) A .若a ⊥b ,a ⊥c ,则b ∥c B .a ∥α,b ∥α,则a ∥bC .若a ∥α,b ⊥a ,则b ⊥αD .若a ⊂α,α∥β,则a ∥β5.十字测天仪广泛应用于欧洲中世纪晚期的航海领域,主要用于测量太阳等星体的方位,便于船员确定位置,如图1所示,十字测天仪由杆AB 和横档CD 构成,并且E 是CD 的中点,横档与杆垂直并且可在杆上滑动,十字测天仪的使用方法如下:如图2,手持十字测天仪,使得眼睛可以从A 点观察,滑动横档CD 使得A ,C 在同一水平面上,并且眼睛恰好能观察到太阳,此时视线恰好经过点D ,DE 的影子恰好是AE .然后,通过测量AE 的长度,可计算出视线和水平面的夹角∠CAD (称为太阳高度角),最后通过查阅地图来确定船员所在的位置.若在一次测量中,AE =60,横档CD 的长度为30,则太阳高度角的正弦值为( ) A .417B .817C .1317D .15176.在直角坐标系xOy 中,已知a →=(1,3),b →=(3,1),若∀t ∈R ,|a →−λb →|≤|a →−tb →|恒成立,则λ=( )A .13B .23C .25D .357.如图,三棱台ABC ﹣A 1B 1C 1中,底面ABC 是边长为6的正三角形,且AA 1=A 1C 1=C 1C =3,平面AA 1C 1C ⊥平面ABC ,则棱BB 1=( )A .3√62B .3√3C .3D .3√28.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b =2,C =π3,则c 的取值范围为( ) A .(2,2√3)B .(2√3,+∞)C .(√3,2√3)D .(2,+∞)二、选择题:本题共4小题,每小题5分,共20分。
四川省泸州市2023-2024学年高一下学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.若集合,,则( )A. B. C. D.2.设复数z 满足( )A. B. C. D.3.设,,A. B. C. D.4.已知( )5.平面与平面平行的充分条件可以是( )A.内有无穷多条直线都与平行B.直线,,且,C.直线,直线,且,D.内的任何一条直线都与平行6.如图,为直角三角形,,,C 为斜边的中点,P 为线段的中点,则( )7.若圆台侧面展开图扇环的圆心角为,其母线长为2,下底面圆的半径是上底面圆的半径的2倍,则该圆台的高为( ){}25A x x =∈-<<Z {}24B x x x =<A B = (0,4){1,2,3}{}1-(2,4)-(1i)3i z -=-=2i+2i-12i -12i+0.48a = 1.312b -⎛⎫= ⎪⎝⎭c =a c b <<a b c<<c b a <<c a b<<tan α=α=αβαβm ⊄m β⊄//m α//m βm α⊂n β⊂//m β//n ααβAOB △1OA =2OB =AB OC AP OP ⋅=12180︒A.8.已知函数,若方程有4个不同的根,,,,且,则的值为( )A.3B.0C.2D.6二、多项选择题9.下列说法正确的是( )A.任意向量,与同向,则B.若向量,且,则A,B,C 三点共线C.若,则与的夹角是锐角,,则在上的投影向量为10.已知函数,满足,且,则( )A.的图象关于C.在上单调递减D.的图象关于点对称11.正方体的棱长为2,已知平面,则关于平面截正方体所得截面的判断正确的是( )A.截面形状可能为正三角形B.平面与平面ABCD 所成二面角的正弦值为C.截面形状可能为正六边形D.截面面积的最大值为三、填空题12.已知函数是定义在R 上的周期为2的奇函数,当时,,则的值为____________.__________.41,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩()f x k =1x 2x 3x 4x 1234x x x x <<<3412x x x x --a b ba b> PA PB PC λμ=+ 1(01)λμλ+=<<0a b ⋅>a b 6b 3,π4b = a b -()sin(2)f x x ϕ=+ππ33f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭()ππ2f f ⎛⎫> ⎪⎝⎭()f x x 1φ2=-()f x π,π2⎛⎫⎪⎝⎭()f x 13π,012⎛⎫⎪⎝⎭1111ABCD A B C D -1AC α⊥αα()f x 01x <<()2xf x =72f ⎛⎫ ⎪⎝⎭=14.已知三棱锥底面是边长为3的等边三角形,且,当该三棱锥的体积取得最大值时,其外接球的表面积为____________.四、解答题15.已知向量,且.(1)求向量与的夹角.(2)若向量与互相垂直,求k 的值.16.已知函数的部分图象如下图所示.(1)求函数的解析式.(2)若将函数的图象,求不等式的解集.17.在中,角A,B,C 所对的边分别为a,b,c ,已知.(1)求B ;(2)若.18.如图,在四棱锥中,底面是正方形,E ,F 分别为,的中点,G 为线段上一动点,平面.(1)证明:平面平面;(2)当时,证明:平面;(3)若,四面体的体积等于四棱锥的S ABC -SA AB SB ==(1,1a =-()3a b b +⋅= a bka b + a kb -π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><()f x (f x ()g x ()1g x >ABC △2cos 2b C a c =+b =sin A C =c +P ABCD -ABCD PB PC AC PD ⊥ABCD ⊥BDF A E G 3CG AG =//EG BDF 2AD PD =BGEF P ABCD -.19.对于三个实数a,b,k ,若(1)写出一个数a 使之与2具有“性质1”,并说明理由;(2)若,具有“性质k ”,求实数k 的最大值.()()()(22111a b k a b --≥--22x --x ≤≤x cos x参考答案1.答案:B解析:,,所以.故选:B.2.答案:C,.故选:C.3.答案:D解析:因为函数在R 上单调递增,所以,又因为函数在上单调递增,所以,所以.故选:D.4.答案:B解析:依题意,故选:B.5.答案:D解析:对于A,若内有无穷多条直线都与平行,则,平行或相交,故充分性不成立,故A 错误;对于B,如图,在正方体中,平面,平面,{}{}251,0,1,2,3,4A x x =∈-<<=-Z {}{}2404B x x x x x =<=<<{1,2,3}A B = ()()()()323i 1i 3i 3i 33i i+i 24i12i 1i 1i 1i 1i 22z ++-++++======+---+2x y =. 1..130.31422220182b a -⎛⎫== ⎪=>=>⎝>⎭lg y x =(0,)+∞1lg lg103c =<=c a b <<2222222211cos sin 1tan 2cos2cos sin 1cos sin 1tan 12ααααααααα---=-=====+++αβαβ1111ABCD A B C D -11//C D ABCD 11//C D 11ABB A而平面平面,故充分性不成立,故B 错误;对于C,如图,在正方体中,平面,平面,而平面平面,故充分性不成立,故C 错误;对于D,由面面平行的定义知能推出平面与平面平行,故充分性成立,故D 正确.故选:D.6.答案:B解析:因为,取中点Q ,连接,故选:B.7.答案:C解析:设圆台的上底面的圆心为H ,下底面的圆心为O ,设圆台的母线交于点S ,11ABB A ABCD AB =1111ABCD A B C D -11//A B ABCD //CD 11ABB A 11ABB A ABCD AB =αβ()()1111111122222224PQ PO PA CO PA CO AO AC CA BA ⎛⎫⎡⎤=+=+=-+== ⎪⎢⎥⎝⎭⎣⎦14BA ==AO PQ 144AP OP PA PO PA PO⋅=⋅=⋅⋅()()22221514164PA PO PA PO PQ AQ ⎡⎤=+--=-=-=⎢⎥⎣⎦为圆台的母线,且,下底面圆的半径是上底面圆的半径的2倍,,所以,由圆台侧面展开图扇环的圆心角为,所以下底面圆的周长为,所以,所以,,在直角梯形中,易求得故选:C.8.答案:A解析:作出函数的图象如下由对称性可知,由图可知,所以,则,,,故选:A.9.答案:BD解析:对于A,向量不能比较大小,故A 错误,对于B,向量且时,由向量共线定理的推论,知A,B,C 三AB 2AB =HA OB ==2=4SB =180︒4π2π4πOB ⋅=2OB =1HA =HABO OH ==41,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩12x x +=-434log x =3401x x <<<43log 0x <444344log 0log log x x x ⇒-=>434log 0x x =341x x ∴=34121(2)3x x x x ---=-=PA PB PC λμ=+1(01)λμλ+=<<点共线,故B 正确,对于C,当,同向共线时,,此时夹角不是锐角,故C 错误,,故D 正确.故选:BD 10.答案:BD解析:因为函数函数,满足,所以的图象关于所以,所以,,因为,,即,所以,,所以则,由,可得,所以在上不单调,故C 错误;由,所以的图象关于点对称,故D 正确.故选:BD .11.答案:ACD解析:如图,在正方体中,连接,,,,a b 0a b a b ⋅=⋅>3π4=-()sin(2)f x x ϕ=+ππ33f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭()sin(2)f x x ϕ=+x =πsin(2)3ϕ⨯+=±πk ϕ+=+∈Z ππ6k ϕ=-k ∈Z ()ππ2f f ⎛⎫> ⎪⎝⎭()()sin πsin 2πϕϕ+>+sin 0ϕ<2k n =n ∈Z sin ϕ=π()sin(26f x x =-π,π2x ⎛⎫∈ ⎪⎝⎭π5π11π(,)2666x ∈-()f x π,π2⎛⎫⎪⎝⎭1313ππππ0i 1212()sin(2)s n 26f =⨯==-()f x 13π,012⎛⎫ ⎪⎝⎭1111ABCD A B C D -1A B 1A D BD AC因为平面,平面,则,因为四边形为正方形,则,又因为,,平面,所以,平面,因为平面,则,同理可证,因为,,平面,则平面,所以平面与平面平行或重合,所以平面与正方体的截面形状可以是正三角形,故A 正确;平面与平面所成二面角正弦值为即为平面与平面所成的角,设与交于O ,连接,因为四边形是正方形,所以,又平面,又平面,所以,又,,平面,又平面,所以,所以是平面平面与平面所成二面角的平面角,由题意可得,进而可得所以所以平面与平面的1AA ⊥ABCD BD ⊂ABCD 1AA BD ⊥ABCD BD AC ⊥1AA AC A = 1AA AC ⊂11AA C C BD ⊥11AA C C 1AC ⊂11AA C C 1BD AC ⊥11A B AC ⊥1A B BD B = 1A B BD ⊂1A BD 1AC ⊥1A BD α1A BD 1A BD αABCD 1A BD ABCD AC BD 1OA ABCD AC BD ⊥1AA ⊥ABCD BD ⊂ABCD 1AA BD ⊥1AA AC A = 1AA AC ⊂1AA O 1AO ⊂1AA O 1BD AA ⊥1AOA ∠1A BD ABCD 12A A =12AO AC ==1AO ==111sin AA AOA A O ∠===α当E,F,N,,M,G,H 分别为对应棱的中点时,截面为正六边形,因为E ,H 分别为,的中点,则,因为平面,平面,则平面,同理可得平面,又因为,,平面,则平面平面,所以,平面,此时截面为正六边形,故C 正确;如图设截面为多边形,设,则,则,所以多边形的面积为两个等腰梯形的面积和,所以,因为EFNMGH 1BB 11A B 1//EH A B EH ⊄1A BD 1A B ⊂1A BD //EH 1A BD //EF 1A BD EH EF E =I EH EF ⊂EFNMGH //EFNMGH 1A BD 1AC ⊥EFNMGH GMEFNH 1A G x =02x ≤≤,)GH ME NF MG HN EF x ======-MN =GMEFNH 1211()()22S GH MN h MN EF h =+⋅++⋅1h ==所以=时,故选:ACD.12.答案:解析:根据题意,是定义在R上周期为2的奇函数,所以故答案为:13.答案:414.答案:解析:依题意,三棱锥的底面面积是个定值,侧面是等边三角形,顶点S到边的距离也是一个定值,所以当该三棱锥的体积取得最大值时,平面平面,取的中点,连接,,N,M分别为正三角形,的中心,所以,,所以为二面角平面角,可得,过N,M分别作平面,平面的垂线,,两垂线交于O,的2h==11)22S x=+-11)22S x=+++-221)x=++=-+1x=maxS=()f x127111422222f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()2sin301041sin202︒-︒==︒15πS ABC-ABC△SAB ABSAB⊥ABCAB SH CH SAB ABCSH AB⊥CH AB⊥SHC∠S AB C--SH CH⊥SAB ABC NO MO则O 为外接球的球心,由正三角形的性质可求得进而可得易得四边形是正方形,所以由勾股定理可得其外接球的表面积为.故答案为:.(2)或解析:(1)由,得设向量与的夹角为,由,,所以,所以,解得所以向量与(2)由向量向量与互相垂直,得,所以,即,解得或.16.答案:(1)(2),解析:(1)由图象知,即,又,,所以SH CH ==NH HM ==CM ==OMHN OM =OC ==24π15π=15π1k =1k =-()1,1a =-||a == a b[0,π]θ∈()3a b b +⋅= 2a b b ⋅+= 1a b ⋅= ||||cos 1a b θ⋅= cos θ=a b ka b + a kb -()()·0ka b a kb +-= 2220ka k a b a b kb -⋅+⋅-= 22120k k k -+-=1k =1k =-1π()2sin()26f x x =+ππ(π,π)66k k -+k ∈ZA =8π2π2π33=-=4πT =0ω>4π=ω=1()2sin()2f x x ϕ=+又函数过点,所以,所以,,解得,.又.(2)将函数可得函数,的图象,所以,由,可得,所以所以,,所以,所以不等式的解集为,.(2)2解析:(1)因为余弦定理可得,所以,因为,所以,,2π(,2)32π12π(2sin()2323f ϕ=⨯+=πsin()3ϕ+=π2π2k ϕ+=+k ∈Z 2ππ6k ϕ=+k ∈Z ||ϕ=1π()2sin(26f x x =+(f x ()1ππ42sin(4)2sin(2)266f x x x =⨯+=+()g x ()ππ2sin[2()]2cos 266g x x x =++=()1g x >2cos 21x >cos 2x >ππ2π22π33k x k -<<+k ∈Z πππ6k x k -<<+∈Z ()1g x >ππ(π,π66k k -+k ∈Z 222222a b c b a c ab+-⨯=+222a b c ac -+=-2221cos ,(0,π)22a cb B B ac +-==-∈B =2sin sin b c B C====sin =sin C =又,由余弦定理得,即,因为,所以.18.答案:(1)证明见解析(2)证明见解析解析:(1)设与交于O ,连接,因为四边形是正方形,所以,且O 为的中点,又平面,又平面,所以,因为E 是的中点,所以,所以,又,,平面,所以平面,又平面,所以平面平面;(2)连接交于点M ,连接,连接,则O 为的中点,因为,的中点,所以M 为所以,又平面,平面,所以平面;(3)由平面,可得,因为E,F 分别为,的中点,sin sin A C =2c =1=2222cos b a c ac B =+-221322a c ac ⎛⎫=+-⨯- ⎪⎝⎭222233()4()a c ac ac a c a c =++⇒+=+⇒=+,0a c >2a c +=AC BD OE ABCD AC BD ⊥BD PD ⊥ABCD BD ⊂ABCD PD BD ⊥PB //PD OE OE BD ⊥OE AC O = OE AC ⊂A E G BD ⊥A E G BD ⊂BDF ⊥BDF A E G CE BF EF OM AC 3CG ==PB PC PBC △==//OM GE OM ⊂BDF EG ⊄BDF //EG BDF PD ⊥ABCD 22P ABCD P ABC A PBC V V V ---==PB PC所以,所以,所以又四面体的体积等于四棱锥,所以点G ,A平面.19.答案:(1)(答案不唯一),理由见解析.(2)(3)0解析:(1)与2具有“性质1”.当时,即,则2与2具有“性质1”(2)若所以,即,令,,所以,所以,解得即所以因此x 的取值范围,具有“性质k ”,14BEF PEF PBC S S S ==△△△4A PBC A BEF V V --=228P ABCD P ABC A PBC A BEF V V V V ----===BGEF P ABCD -A BEF G BEF V --=BEF 34=2a =4{|log x x ≤4log x ≥2a =2a =()()()(22212112212--≥⨯--⨯90>22x x --()()2222110x x -⎡⎤---≥⎢⎥⎣⎦()22210442104430xxx x x x -----≥⇒+--≥⇒+-≥4xt =0t >2131300t t t t t-++-≥⇒≥2310t t -+≥0t <≤≥04x <≤x ≥4log x ≤4log x ≥4{|log x x ≤4log x ≥x ≤≤x cos x所以,,化简得令,,两边平方得令求导得令,求导得令,解得,当,,在上单调递减;当,,在上单调递增;又因为,所以,因此,即y 在单调递减,当时,y 取最小值为0,进而得到,实数k 的最大值为0.()()()(22sin 1cos 1sin cos 1sin cos x x k x x x --≥--x ≤≤x >cos x cos 0,1cos 0sin sin x x x x ->->()()22cos sin sin cos 1sin cos x x k x x xx k ≥--⇒≤sin cos t x x =-[]0,1t ∈sin cos x x =2224321()12222112t t t k t t t t --+≤=+⎛⎫-- ⎪⎝⎭43212,22t t y t t++-=()()()()()33242234422122622t t t t t t t y t t -++--++='=+462551()h t t t t =+--534220102(3105)()6h t t t t t t t '=+-=+-()0h t '=0,1t t ==<t =()0h t '<()h t t =()0h t '>()h t (0)1h =-(1)0h =()0h t <0'<y []0,11t =0k ≤。
新高一数学下期末试卷(含答案)新高一数学下期末试卷(含答案)一、选择题1.已知三角形ABC的内角A、B、C的对边分别为a、b、c,且a=b,则A选2.2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=5选3.3.已知三角形ABC中,A为60度,c=2,cosA=1/2,则ABC为有一个内角为30°的等腰三角形选D。
4.已知对任意实数x、y,不等式(x+y)/(1+xy)≥9恒成立,则实数a的最小值为2选D。
5.已知ABC为等边三角形,AB=2,设P,Q满足AP=λAB,AQ=(1-λ)AC(λ∈R),若BQ·CP=-2,则λ=1/2选A。
6.已知f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),ω>π/2,f(x)是奇函数,直线y=2与函数f(x)的图像的两个相邻交点的横坐标之差的绝对值为π/2,则f(x)在[π/3.π/8]上单调递减选B。
7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是[-1,2]选B。
8.若α,β均为锐角,sinα=2/5,sin(α+β)=3/5,则cosβ=4/5或-3/5选C。
9.要得到函数y=2/3cos2x+1/3的图像,只需将函数y=2sin2x的图像向左平移π/4个单位选C。
10.已知sin(π/3-α)=-1/2,cos(2α+π/3)=2/3,则cosα=7/8选D。
分析】详解】1) 当 $a=1$ 时,$f(x)=-x^2+x+4$,$g(x)=|x+1|+|x-1|$。
因为 $f(x)$ 是一个开口向下的二次函数,所以其图像在顶点处取得最大值。
顶点横坐标为 $x=\frac{-b}{2a}=-\frac{1}{2}$,纵坐标为 $f(-\frac{1}{2})=\frac{15}{4}$。
而 $g(x)$ 的图像是由两个 V 形图像组成的,分别在 $x=-1$ 和 $x=1$ 处取得最小值$0$。
2023-2024学年安徽省六安一中高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数为纯虚数,则复数z的共轭复数为()A. B.2024i C. D.2025i2.已知向量,若,则()A. B. C.1 D.23.已知,,是不共面的三个向量,则能构成空间的一个基底的一组向量是()A.,,B.,,C.,,D.,,4.某不透明的袋中有3个红球,2个白球,它们除颜色不同,质地和大小都完全相同.甲、乙两同学先后从中各取一个球,先取的球不放回,则他们取到不同颜色球的概率为()A. B. C. D.5.已知样本数据,,,…,的平均数为x,方差为,若样本数据,,,…,的平均数为,方差为,则平均数()A.1B.C.2D.6.已知,,,则M到直线AB的距离为()A. B. C.1 D.7.PA,PB,PC是从点P出发的三条射线,每两条射线的夹角均为,那么直线PC与平面PAB所成角的正弦值是()A. B. C. D.8.中国古代数学瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体扇环是指圆环被扇形截得的部分现有一个如图所示的曲池,其中底面ABCD,底面扇环所对的圆心角为,扇环对应的两个圆的半径之比为1:2,,,E是的中点,则异面直线BE与所成角的余弦值为()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.2021年11月10日,中国和美国在联合国气候变化格拉斯哥大会期间发布《中美关于在21世纪20年代强化气候行动的格拉斯哥联合宣言》以下简称《宣言》承诺继续共同努力,并与各方一道,加强《巴黎协定》的实施,双方同意建立“21世纪20年代强化气候行动工作组”,推动两国气候变化合作和多边进程.为响应《宣言》要求,某地区统计了2020年该地区一次能源消费结构比例,并规划了2030年一次能源消费结构比例,如图所示:经测算,预估该地区2030年一次能源消费量将增长为2020年的倍,预计该地区()A.2030年煤的消费量相对2020年减少了B.2030年天然气的消费量是2020年的5倍C.2030年石油的消费量相对2020年不变D.2030年水、核、风能的消费量是2020年的倍10.下列对各事件发生的概率判断正确的是()A.某学生在上学的路,上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为C.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是11.如图,已知正方体的棱长为1,P为底面ABCD内包括边界的动点,则下列结论正确的是()A.不存在点P,使平面B.三棱锥的体积为定值C.若,则P点在正方形底面ABCD内的运动轨迹长为D.若点P是AD的中点,点Q是的中点,过P,Q作平面平面,则平面截正方体的截面面积为三、填空题:本题共3小题,每小题5分,共15分。
2023—2024学年第二学期期末试卷高一数学注意事项:1.本试卷包括单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题)四部分。
本试卷满分为150分,考试时间为120分钟。
2.答卷前,考生务必将自己的姓名、学校、班级填在答题卡上指定的位置。
3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,再写上新答案;不准使用铅笔和涂改液。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =3+i(i 为虚数单位),则复数zz -2i的虚部是 A .45B . 45iC . 35D .35i2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是 A .若m ∥α,n α⊂,则m ∥n B .若m ⊥α,n ⊥α,则m ∥nC .若m ∥β,n ∥β,且m α⊂,n α⊂,则α∥βD .若α⊥β,α β=m ,m ⊥n ,则n ⊥β 3.已知数据x 1,x 2,x 3, …x n 的平均数为10,方差为5,数据3x 1-1,3x 2-1,3x 3-1, …3x n-1的平均数为—x ,方差为s 2,则 A .—x =10,s 2=14 B .—x =9,s 2=44 C .—x =29,s 2=45D .—x =29,s 2=444.向量→a 与→b 不共线,→AB =→a + k →b ,→AC = m →a -→b (k ,m ∈R ),若→AB 与→AC 共线,则k ,m 应满足A .k +m =0B .k -m =0C .km +1=0D .km -1=05.同时抛掷两枚质地均匀的骰子,观察向上的点数,设事件A =“第一枚向上点数为奇数”,事件B =“第二枚向上点数为偶数”,事件C =“两枚骰子向上点数之和为8”,事件D =“两枚骰子向上点数之积为奇数”,则 A . A 与C 互斥B . A 与C 相互独立C . B 与D 互斥 D . B 与D 相互独立6. 在△ABC 中,角A ,B ,C 对边分别为a ,b ,c .若2b cos C =2a -c ,A =π4,b =3,则实数a 的值为 A . 6B . 3C . 6D . 37. 如图,四棱锥P -ABCD 中,P A ⊥面ABCD ,四边形ABCD 为正方形,P A =4,PC 与平面ABCD 所成角的大小为θ,且 tan θ=223,则四棱锥P -ABCD 的外接球表面积为 A . 26π B . 28π C . 34πD . 14π8.已知sin2θ=45,θ∈(0,π4) ,若cos(π4-θ)=m cos(π4+θ),则实数m 的值A .-3B .3C .2D .-2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.设复数z =i +3i 2(i 为虚数单位),则下列结论正确的是 A . z 的共轭复数为-3-iB .z ·i=1-3iC . z 在复平面内对应的点位于第二象限D .|z +2|= 210.已知△ABC 内角A ,B ,C 对边分别为a ,b ,c ,则下列说法正确的是 A .若sin A >sin B ,则A >BB .若a cos B =b cos A ,则△ABC 为等腰三角形 C .若a 2+b 2>c 2,则△ABC 为锐角三角形D .若a =1.5,b =2,A =30°的三角形有两解11.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则A .M ,N ,B ,A 1四点共面B .若a =2,则异面直线PD 1与MNC .平面PMN 截正方体所得截面为等腰梯形D .若a =1,则三棱锥P -MD 1B 的体积为124三、填空题:本大题共3小题,每小题5分,共15分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.12.一只不透明的口袋中装有形状、大小都相同的6个小球,其中2个白球,1个红球和3个黄球,从中1次随机摸出2个球,则恰有一球是黄球的概率是▲ .13.已知A(-3,5),B(1,10),C(2,1),则tan∠ACB=▲ .14.在△ABC中,角A、B、C所对的边分别为a、b、c,∠ABC=120°,BD是△ABC的中线,且1BD=,则a+c的最大值为▲.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.(13分)已知sin α=-55,α∈(π,3π2),sin(α+β)=513,β∈(π2,π).(1)求tan2α的值;(2)求sinβ的值.16.(15分)某市高一年级数学期末考试,满分为100分,为做好分析评价工作,现从中随机抽取100名学生成绩,经统计,这批学生的成绩全部介于40和100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成如图所示的频率直方图。
2023学年第二学期温州市高一期末教学质量统一检测数学试题(A 卷)(答案在最后)本试卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟.考生注意:1.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卡上.2.选择题的答案须用2B 铅笔将答题卡上对应题目的答案涂黑,如要改动,须将原填涂处用橡皮擦净.3.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题卡上相应区域内,答案写在本试题卷上无效.选择题部分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()()2,1,,1a b t ==-,若a ∥b,则t =()A.2B.12C.2- D.3【答案】C 【解析】【分析】根据向量平行的坐标表示运算求解.【详解】因为()()2,1,,1a b t ==-,若a∥b,则()211t ⨯-=⨯,即2t =-.故选:C.2.设m 是一条直线,α、β是两个不同的平面,则下列命题一定正确的是()A.若αβ⊥,m α⊥,则//m βB.若αβ⊥,//m α,则m β⊥C.若//αβ,m α⊥,则m β⊥D.若//αβ,//m α,则//m β【答案】C 【解析】【分析】对于选项A :根据面面垂直的性质定理即可判断;对于选项B :根据面面垂直的性质定理即可判断;对于选项C :根据面面平行的性质定理判断即可;对于选项D :根据线面的位置关系判断即可.【详解】对于选项A :若αβ⊥,m α⊥,则//m β或m β⊂,故A 不正确;对于选项B :若αβ⊥,//m α,则//m β或m β⊂或m β⊥,故B 不正确;对于选项C :若//αβ,m α⊥,根据面面平行的性质定理可得m β⊥,故C 正确;对于选项D :若//αβ,//m α,则//m β或m β⊂,故D 不正确.故选:C.【点睛】本题主要考查了面面垂直的性质定理以及面面平行的性质定理.属于较易题.3.复数024i 1i2=+()A.11i 22-- B.11i 22-+ C.11i 22- D.11i 22+【答案】C 【解析】【分析】由复数的乘除法运算法则求解即可.【详解】()()2024i 11i 1i 11i 1i 1i 1i 1i 222z --=====-+++-.故选:C.4.如图,某校数学兴趣小组对古塔AB 进行测量,AB 与地面垂直,从地面C 点看塔顶A 的仰角β为60︒,沿直线BC 前行20米到点D 此时看塔顶A 的仰角α为30︒,根据以上数据可得古塔AB 的高为()米.A. B.20 C.10D.【答案】A 【解析】【分析】根据直角三角形三角关系可得3BC h =,BD =,根据题意列式求解即可.【详解】设古塔AB 的高为h 米,在Rt ABC △中,可得60tan 3h BC ︒==;在Rt △ABD 中,可得tan 30hBD ==︒;由题意可知:CD BD BC =-,即203h =-,解得h =,所以古塔AB 的高为米.故选:A.5.数据:1,1,2,3,3,5,5,7,7,x 的40%分位数为2.5,则x 可以是()A.2 B.3 C.4D.5【答案】A 【解析】【分析】按照百分位数计算公式,逐项计算即可求解.【详解】对于A ,因为1040%4⨯=,所以若2x =,则1,1,2,2,3,3,5,5,7,7的40%分位数为232.52+=,故A 正确;对于B ,因为1040%4⨯=,所以若3x =,则1,1,2,3,3,3,5,5,7,7的40%分位数为3332+=,故B 错误;对于C ,因为1040%4⨯=,所以若4x =,则1,1,2,3,3,4,5,5,7,7的40%分位数为3332+=,故C 错误;对于D ,因为1040%4⨯=,所以若5x =,则1,1,2,3,3,5,5,5,7,7的40%分位数为3332+=,故D 错误.故选:A.6.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,)2224a c b S +-=,若1c =,则ABC 面积的取值范围是()A.,84⎛⎫⎪ ⎪⎝⎭ B.,82⎛⎫⎪ ⎪⎝⎭ C.,42⎛⎫⎪⎪⎝⎭D.,8⎛⎫+∞ ⎪⎪⎝⎭【答案】A 【解析】【分析】根据题意利用余弦定理和面积公式可得π3B=,利用正弦定理结合三角恒等变换可得112tanaC⎛⎫=+⎪⎪⎝⎭,代入面积公式结合角C的范围运算求解.)2224a cb S+-=,则12cos4sin2ac B ac B=⨯,整理可得tan B=,且π0,2B⎛⎫∈ ⎪⎝⎭,可知π3B=,由题意可得:π22ππ32CC⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62C<<,由正弦定理sin sina cA C=可得()31cos sinsinsin1221sin sin sin2tanC CB Cc AaC C C C+⎛⎫+====+⎪⎪⎝⎭,则ABC面积111sin111222tan28tanS ac BC C⎛⎫⎫==⨯+⨯⨯⎪⎪⎪⎪⎝⎭⎝⎭,因为ππ62C<<,则tan3C>,可得01tan C<<,所以ABC面积1,8tan84SC⎛⎫⎛⎫=+∈⎪ ⎪⎪ ⎪⎝⎭⎝⎭.故选:A.7.已知样本数据129,,,x x x⋅⋅⋅的平均数为9,方差为12,现这组样本数据增加一个数据10x,此时新样本数据的平均数为10,则新样本数据的方差为()A.18.2B.19.6C.19.8D.21.7【答案】C【解析】【分析】根据平均数和方差公式整理可得9921181,837i ii ix x====∑∑,由新样本数据的平均数可得1019x=,结合方差公式运算求解即可.【详解】由题意可知:()9992221111119,99912999i i i i i i x x x ===⎛⎫=-=-⨯= ⎪⎝⎭∑∑∑,可得9921181,837ii i i xx ====∑∑,且()9101011181101010i i x x x =⎛⎫+=+= ⎪⎝⎭∑,解得1019x =,所以新样本数据的方差为()1010922222210111111101010101019.8101010i i i i i i x x x x ===⎛⎫⎛⎫-=-⨯=+-⨯= ⎪⎪⎝⎭⎝⎭∑∑∑.故选:C.8.已知平面向量,,a b c 满足12,2a c a b a b a b λ==⋅=-≥- 对任意实数λ恒成立.若对每一个确定的c ,对任意实数m ,n ,c ma c nb -+- 有最小值t .当c变化时,t 的值域为[],x y ,则x y +=()A.2+B.C.2+D.【答案】D 【解析】【分析】根据题意结合向量的几何意义分析可知2b =,进而分析可知,MC NC 的最小值分别为过点C 分别作直线,OA OB 的垂线长,设COA θ∠=,分π0,3θ⎡⎤∈⎢⎥⎣⎦和π,π3θ⎡⎤∈⎢⎥⎣⎦两种情况讨论,结合三角函数运算求解即可.【详解】设,,OA a OB b OC c === ,OP b =uu u r rλ,可知P OB ∈,则a b OA OP PA -=-=uu r uu u r uu r r r λ,可知PA 的最小值即为点A 到直线OB 的距离,若12a b a b λ-≥-对任意实数λ恒成立,可知当点P 为线段OB 的中点,且AP OB ⊥,即a 在b方向上的投影向量为12b r ,则2122a b b ⋅==r r r ,可得2b = ,即2OB OA BA ===,可知OAB 为等边三角形,可设,OM ma ON nb ==uuu r uuur r r ,则,c ma MC c nb NC -=-= ,可知,MC NC的最小值分别为过点C 分别作直线,OA OB的垂线长,设COA θ∠=,根据对称性只需分析[]0,πθ∈即可,若π0,3θ⎡⎤∈⎢⎥⎣⎦,可得min minπ2sin 2sin 3t MC NC θθ⎛⎫=+=+- ⎪⎝⎭π2sin sin sin 2sin 3θθθθθθ⎛⎫=+-=+=+ ⎪⎝⎭,因为π0,3θ⎡⎤∈⎢⎥⎣⎦,则ππ2π,333θ⎡⎤+∈⎢⎥⎣⎦,可得πsin ,132θ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,即2t ⎤∈⎦;若π,π3θ⎡⎤∈⎢⎥⎣⎦,则min min π2sin 2sin 3t MC NC θθ⎛⎫=+=+- ⎪⎝⎭π2sin sin 3sin 6θθθθθθ⎛⎫=+=-=- ⎪⎝⎭,因为π,π3θ⎡⎤∈⎢⎥⎣⎦,则ππ5π,666θ⎡⎤-∈⎢⎥⎣⎦,可得π1sin ,132θ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,即t ∈;综上所述:t ∈,即x y ==x y +=故选:D.【点睛】关键点点睛:本题的解题关键是把向量的模长转化为两点间距离,结合几何性质分析求解,这样可以省去烦琐的运算.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.已知复数z 满足1z =,则下列结论正确..的是()A.1z z ⋅= B.1z z+∈R C.1z -的最大值为2 D.21z =【答案】ABC 【解析】【分析】根据共轭复数及乘法计算判断A,B 选项,应用特殊值法判断D 选项,结合模长公式判断C 选项.【详解】设i z =,所以22i 1z ==-,D 选项错误;112z z -≤+=,C 选项正确;设i z a b =+,因为1,z =所以221,1a b =+=,所以()()22222·i i i =1z z a b a b a b a b =+-=-+=,A 选项正确;1·i+i=2R z z z z z z a b a b a z z+=+=+=+-∈,B 选项正确.故选:ABC.10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数【答案】ACD 【解析】【详解】根据平均数,中位数,众数的概念结合图形分析判断.【分析】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 正确;图(2)众数最小,右拖尾平均数大于中位数,故B 错误,C 正确;图(3)左拖尾众数最大,平均数小于中位数,故D 正确.故选:ACD.11.正方体1111ABCD A B C D -棱长为1,E ,F 分别为棱11B C ,AD (含端点)上的动点,记过C ,E ,F 三点的平面为α,记1d 为点B 到平面α的距离,2d 为点1D 到平面α的距离,则满足条件()的α是不唯一的.A.12d d +=B.12d d +=C.122d d -=D.122d d +=【答案】AC 【解析】【分析】设1,C E x DF y ==,结合解三角形知识求得CEF △的面积S =,利用等体积法求得1d =2d =.根据题意结合选项逐一分析判断即可.【详解】设1,C E x DF y ==,则[],0,1x y ∈,可得CE CF EF ===在CEF △中,由余弦定理可得222cos 2CE CF EF ECF CE CF+-∠==⋅且()0,πECF ∠∈,则sin ECF ∠==,所以CEF △的面积1sin 2S CE CF ECF =⋅⋅∠=,设平面α与直线11A D 的交点为G ,连接,GF GE ,可知1D G x y =+,因为平面11ADD A ∥平面11BCC B ,且平面α 平面11ADD A GF =,平面α 平面11BCC B CE =,可得GF ∥CE ,同理可得:GE ∥CF ,可知四边形CEGF 为平行四边形,则GEF CEF S S S ==△△,对于三棱锥B CEF -可知:B CEF E BCF V V --=,则1111111332S d ⋅=⨯⨯⨯⨯,解得112d S ==;对于三棱锥1D GEF -可知:11D GEF F D EG V V --=,则()211111332S d x y ⋅=⨯⨯⨯⨯+,解得22x y d S +==;对于选项A:若12d d +==+=,显然01x y =⎧⎨=⎩和1x y =⎧⎨=⎩上式均成立,所以平面α是不唯一的,故A 正确;对于选项B:若12d d ==+=,整理可得()()()222110x y x y -+-+-=,解得1x y ==,所以平面α是唯一的,故B 错误;对于选项C:若122d d -+-===,显然02x y =⎧⎪⎨=-⎪⎩和20x y ⎧=-⎪⎨=⎪⎩上式均成立,所以平面α是不唯一的,故C 正确;对于选项D:若122d d +===,整理可得()()()22221210x y x y -+-+-=,解得12x y ==,所以平面α是唯一的,故D 错误;故选:AC.【点睛】关键点点睛:将平面α延展为平面CEGF ,分析可知CEGF 为平行四边形,进而可利用等体积法求12,d d .非选择题部分三、填空题:本大题共3小题,每题5分,共15分.把答案填在题中的横线上12.已知2i 3-是关于x 的实系数方程220x px q ++=的一个根,则实数p 的值为_______.【答案】12【解析】【分析】根据题意分析可知2i 3--也是方程220x px q ++=的一个根,利用韦达定理运算求解即可.【详解】因为2i 3-是关于x 的实系数方程220x px q ++=的一个根,则2i 3--也是关于x 的实系数方程220x px q ++=的一个根,由韦达定理可得()()2i 32i 362p-+--=-=-,解得12p =.故答案为:12.13.设样本空间{}1,2,3,4Ω=含有等可能的样本点,{}{}{}1231,2,1,3,1,4A A A ===,则()()()()123123P A A A P A P A P A =_______.【答案】2【解析】【分析】根据题意利用列举法求()()()()123123,,,P A P A P A P A A A ,代入即可得结果.【详解】因为样本空间{}1,2,3,4Ω=,{}{}{}1231,2,1,3,1,4A A A ===,则{}1231A A A =,可知()()()()()1231234,2,1n n A n A n A n A A A Ω=====,则()()()()()()()()()()()()1231231231231111,,,2224n A n A n A n A A A P A P A P A P A A A n n n n ========ΩΩΩΩ,所以()()()()123123142111222P A A A P A P A P A ==⨯⨯.故答案为:2.14.与多面体的每条棱都相切的球称为该多面体的棱切球.已知四面体ABCD 满足6AB BC CD DA ====,8BD =,且四面体ABCD 有棱切球,则AC 的长为________.【答案】4【解析】【分析】设球心,和相应的切点,根据题意结合切线长性质可知相应的长度关系,结合题中棱长关系分析运算即可.【详解】设棱切球的球心为O ,与棱,,,,,AB BC CD DA AC BD 分别切于点,,,,,E F G H I J ,可知,,,AH AI AE BE BF BJ CI CF CG DH DG DJ ========,由题意可得:6668AH DH AE BE AH BE BF CF BE CF BJ DJ BE DH +=⎧⎪+=+=⎪⎨+=+=⎪⎪+=+=⎩,解得42BE DH AH CF ==⎧⎨==⎩,所以4AC AI CI AH CF =+=+=.故答案为:4.【点睛】关键点点睛:本题的解题关键是切线长相等,结合棱长列式求解即可.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知圆台上底面半径为1,下底面半径为2,高为2.(1)求该圆台的体积;(2)求该圆台母线与下底面所成角的余弦值.【答案】(1)14π3(25【解析】【分析】(1)根据题意利用台体的体积公式运算求解;(2)借助于轴截面,分析可知该圆台母线与下底面所成角的大小为CBE ∠,结合题中数据分析求解.【小问1详解】由题意可知:该圆台的体积(114ππ4ππ4π233V =++⨯⨯=.【小问2详解】借助于轴截面,如图所示,其中21,O O 分别为上、下底面圆的圆心,则21O O 与上、下底面均垂直,过C 作CE AB ⊥,垂足为E ,可知CE ∥21O O ,则CE 与上、下底面均垂直,则该圆台母线与下底面所成角的大小为CBE ∠,由题意可知:212CE O O ==,1BE =,可得BC ==,则cos 5BE CBE BC ∠==,所以该圆台母线与下底面所成角的余弦值为5.16.已知,a b是单位向量,满足2a b -= a 与b 夹角为θ.(1)求θ;(2)若平面向量c 在a 上的投影向量为,1a b c ⋅=,求c .【答案】(1)2π3θ=(2)2c =【解析】【分析】(1)由题意可知1==a b r r ,cos a b θ⋅=r r ,由2a b -= 结合数量积的运算可得1cos 2θ=-,即可得结果;(2)设,,c xa yb x y =+∈R rr r,结合题意列式解得2x y ==,结合模长与数量积的运算律分析求解.【小问1详解】因为1==a b r r ,则cos cos a b a b θθ⋅==,若2a b -= ,则222244a b a a b b -=-⋅+,即714cos 4=-+θ,可得1cos 2θ=-,且[]0,πθ∈,所以2π3θ=.【小问2详解】由(1)可知:1==a b r r ,12a b ⋅=-r r ,由题意可设,,c xa yb x y =+∈R r r r,因为平面向量c 在a 上的投影向量为a,则21a c a ⋅==r r r ,由题意可得:22a c xa yab bc xa b yb⎧⋅=+⋅⎪⎨⋅=⋅⋅+⎪⎩ ,可得112112x y x y ⎧-=⎪⎪⎨⎪-+=⎪⎩,解得2x y ==,则()2a c b =+ ,可得()()2224241114c a a b b =+⋅+=-+= ,所以2c =.17.如图,ABC 绕边BC 旋转得到DBC △,其中2AC BC ==,,AC BC AE ⊥⊥平面ABC ,DE ∥AC.(1)证明:BC ⊥平面ACD ;(2)若二面角B DE C --的平面角为60︒,求锐二面角D CB A --平面角的正弦值.【答案】(1)证明见详解(2)3【解析】【分析】(1)根据题意可得,BCAC BC CD ⊥⊥,结合线面垂直的判定定理分析证明;(2)作辅助线,根据三垂线法分析可知二面角B DE C --的平面角为60BFC ∠=︒,可得CF =结合(1)分析可知锐二面角D CB A --平面角为ACD ∠,运算求解即可.【小问1详解】由题意可知:,BCAC BC CD ⊥⊥,且AC CD C = ,,AC CD ⊂平面ACD ,所以BC ⊥平面ACD .【小问2详解】过C 作CF DE ⊥,垂足为F ,连接BF ,即CF EF ⊥,因为BC ⊥平面ACD ,EF ⊂平面ACD ,则BC EF ⊥,且CF BC C = ,,CF BC ⊂平面BCF ,则EF ⊥平面BCF ,由BF ⊂平面BCF ,可得EF BF ⊥,可知二面角B DE C --的平面角为60BFC ∠=︒,且2BC =,可得23CF =,由(1)可知:,BCAC BC CD ⊥⊥,则锐二面角D CB A --平面角为ACD ∠,且DE ∥AC ,可知ACD CDF ∠=∠,可得233sin sin 23CF ACD CDF CD ∠=∠==,所以锐二面角D CB A --平面角的正弦值为33.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,过ABC 内一点M 的直线l 与直线AB 交于D ,记BA 与DM夹角为θ.(1)已知cos sin c a B b A -=,(i )求角A ﹔(ii )M 为ABC 的重心,1,30b c θ===︒,求AD;(2)请用向量方法....探究θ与ABC 的边和角之间的等量关系.【答案】(1)(i )45︒;(ii )6226+(2)cos cos()cos()c a B b A θθθ=-++【解析】【分析】(1)(i )利用正弦定理将边化角,再由两角和的正弦公式计算可得;(ii )由1()3AM AB AC =+ 及数量积模的运算求得2cos 32AAM =,根据正弦定理结合三角恒等变换得AD211sin cos 3222A A ⎛⎫=++ ⎪ ⎪⎝⎭,将45A =o 代入求值即可;(2)由BA BC CA =+,结合数量积可得DE BA DE BC DE CA ⋅=⋅+⋅ ,再运用数量积定义可分别求出DE BA ⋅ 、DE BC ⋅、DE CA ⋅ ,代入整理即可.【小问1详解】(i )因为cos sin c a B b A -=,由正弦定理可得sin sin cos sin sin C A B B A -=,即()sin sin cos sin sin A B A B B A +-=,所以cos sin sin sin A B B A =,又0180B << ,所以sin 0B >,所以cos sin A A =,所以tan 1A =,又0180A << ,所以45A =o .(ii )由题意1,30b c θ===︒,因为M 为ABC 的重心,所以1()3AM AB AC =+,所以12cos 332A AM AM AB AC ==+=== ,在ADM △中,由正弦定理知AD AM θ=∠,所以sin AM AD AMD θ=⨯∠,显然ABC 为等腰三角形,则AM 平分BAC ∠,所以sin 302sin 301222AM A A AD AD AM ⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭441cos sin 30cos sin cos 322322222A A A A A ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭222112sin cos cos sin cos 322223222A A A A A ⎛⎫⎛⎫=⨯+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2321216223222226⎛⎫++=⨯+⨯+= ⎪ ⎪⎝⎭;【小问2详解】直线l 与ABC 的边AC 相交于点E ,如图所示,因为BA BC CA =+,所以()DE BA DE BC CA ⋅=⋅+ ,即DE BA DE BC DE CA ⋅=⋅+⋅ ,又因为||||cos ||cos DE BA DE BA EDA c DE θ⋅=∠=,||||cos()||cos()DE BC DE BC B a DE B θθ⋅=-=-,||||cos()||cos()DE CA DE CA A b DE A θθ⋅=+=+,所以||cos ||cos()||cos()c DE a DE B b DE A θθθ=-++,即cos cos()cos()c a B b A θθθ=-++.19.给定两组数据()12,,,n A x x x =⋅⋅⋅与()12,,,n B y y y =⋅⋅⋅,称()1,niii X A B x y==-∑为这两组数据之间的“差异量”.鉴宝类的节目是当下非常流行的综艺节目.现有n 个古董,它们的价值各不相同,最值钱的古董记为1号,第二值钱的古董记为2号,以此类推,则古董价值的真实排序为()1,2,,I n =⋅⋅⋅.现在某专家在不知道古董真实排序的前提下,根据自己的经验对这n 个古董的价值从高到低依次进行重新排序为12,,,n x x x ⋅⋅⋅,其中i x 为该专家给真实价值排第i 位古董的位次编号,记()12,,,n A x x x =⋅⋅⋅,那么A 与I 的差异量()1,nii X A I x i ==-∑可以有效反映一个专家的水平,该差异量(),X A I 越小说明专家的鉴宝能力越强.(1)当3n =时,求(),X A I 的所有可能取值;(2)当5n =时,求(),4X A I =的概率;(3)现在有两个专家甲、乙同时进行鉴宝,已知专家甲的鉴定结果与真实价值I 的差异量为a ,专家甲与专家乙的鉴定结果的差异量为4,那么专家乙的鉴定结果与真实价值I 的差异量是否可能为6a +?请说明理由.【答案】(1)0,2,4(2)18(3)不可能,理由见详解【解析】【分析】(1)利用列举法求A 的所有可能性结果,结合(),X A I 的定义运算求解;(2)分析可知样本容量()Ω120n =,且(),4X A I =只能调整两次两个连续序号或连续三个序号之间调整顺序,结合(1)中结论运算求解;(3)由题意可得:1n ii x i a =-=∑,14niii x y=-=∑,结合绝对值不等式的运算求解.【小问1详解】若3n =时,则()()()()()()1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1A =,且()1,2,3I =,可得(),0,2,2,4,4,4X A I =,所以(),X A I 的所有可能取值为0,2,4.【小问2详解】设“(),4X A I =”为事件M ,样本空间为Ω,因为5n =,可知A 共有54321120⨯⨯⨯⨯=个,即样本容量()Ω120n =,显然若对调两个位置的序号之差大于2,则(),4X A I >,可知(),4X A I =只能调整两次两个连续序号或连续三个序号之间调整顺序,若调整两次两个连续序号:则有()(){}()(){}()(){}1,2,3,4,1,2,4,5,2,3,4,5,共有3种可能;若连续三个序号之间调整顺序,连续三个序号有:{}{}{}1,2,3,2,3,4,3,4,5,共3组,由(1)可知:每组均有3种可能满足(),4X A I =,可得共有3412⨯=种可能;综上所述:()31215n M =+=.所以()()()151Ω1208n M P B N ===.【小问3详解】不可能,理由如下:设专家甲的排序为12,,,n x x x ⋅⋅⋅,记()12,,,n A x x x =⋅⋅⋅;专家乙的排序为12,,,⋅⋅⋅n y y y ,记()12,,,n B y y y =⋅⋅⋅;由题意可得:()1,n ii X A I x i a ==-=∑,()1,4niii X A B x y==-=∑,因为()()i i i i i i i i i i y i y x x i y x x i x i x y -=-+-≤-+-=-+-,结合i 的任意性可得11146nnniiiii i i y i x i x ya a ===-≤-+-=+<+∑∑∑,所以专家乙的鉴定结果与真实价值I 的差异量不可能为6a +.【点睛】方法点睛:1.对于(2):利用转化法,将问题转为(1)中已知的结论;2.对于(3):结合绝对值不等式分析证明.。
2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。
武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。
新高一数学下期末试卷(带答案)一、选择题1.已知向量()cos ,sin a θθ=,()1,2b =,若a 与b 的夹角为6π,则a b +=( )A .2BCD .12.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}3.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3B .2C .1D .04.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53B .103C .56D .1166.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( ) A .112x x ⎧⎫-<<⎨⎬⎩⎭B .112x x x ⎧⎫<->⎨⎬⎩⎭或 C .{}21x x -<<D .{}21x x x <->或7.我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱111ABC A B C -,其中AC BC ⊥,若11AA AB ==,当“阳马”即四棱锥11B A ACC -体积最大时,“堑堵”即三棱柱111ABC A B C -的表面积为A .21+B .31+C .2232+ D .332+ 8.在ABC 中,已知,2,60a x b B ===,如果ABC 有两组解,则x 的取值范围是( ) A .4323⎛⎫⎪ ⎪⎝⎭,B .4323⎡⎤⎢⎥⎣⎦,C .4323⎡⎫⎪⎢⎪⎣⎭,D .432,3⎛⎤⎥ ⎝⎦9.函数223()2xx xf x e+=的大致图像是( ) A . B .C .D .10.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增11.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生12.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 14.()sin1013tan 70+=_____15.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.16.对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2exf x x -=+-与()1422x x g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)17.若x ,y 满足约束条件10,{30,30,x y x y x -+≥+-≥-≤则z=x−2y 的最小值为__________.18.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________. 19.已知函数2,()24,x x mf x x mx m x m ⎧≤=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.20.已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m的取值范围为 .三、解答题21.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=. (1)求角C ;(2)若7c =33ABC S ∆=ABC ∆的周长. 22.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 23.已知函数()()sin 0,0,2f x A x A πωφωφ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)求()f x 的单调增区间并求出()f x 取得最小值时所对应的x 取值集合.24.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 25.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ; (2)求证:1C F ∥平面ABE ; (3)求三棱锥E ABC -体积.26.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先计算a 与b 的模,再根据向量数量积的性质22()a b a b +=+即可计算求值. 【详解】因为()cos ,sin a θθ=,()1,2b =, 所以||1a =,||3b =.又222222()2||2||||cos||6a b a b a a b b a a b b +=+=+⋅+=+π+137=++=, 所以7a b +=,故选B. 【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.2.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.3.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点,22⎛ ⎝⎭,22⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A 【解析】 【分析】设5人分到的面包数量从小到大记为{}n a ,设公差为d ,可得345127()a a a a a ++=+,5100S =,求出3a ,根据等差数列的通项公式,得到关于d 关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为{}n a ,设公差为d , 依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A. 【点睛】本题以数学文化为背景,考查等差数列的前n 项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.6.A解析:A 【解析】 【分析】根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得,a b ;利用一元二次不等式的解法可求得结果.【详解】220ax bx ++>的解集为{}12x x -<<1∴-和2是方程220ax bx ++=的两根,且0a <1212122ba a⎧-=-+=⎪⎪∴⎨⎪=-⨯=-⎪⎩,解得:11a b =-⎧⎨=⎩ 222210x bx a x x ∴++=+-< 解得:112x -<<,即不等式220x bx a ++<的解集为112x x ⎧⎫-<<⎨⎬⎩⎭故选:A 【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.7.C解析:C 【解析】分析:由四棱锥11B A ACC -的体积是三棱柱体积的23,知只要三棱柱体积最大,则四棱锥体积也最大,求出三棱柱的体积后用基本不等式求得最大值,及取得最大值时的条件,再求表面积.详解:四棱锥11B A ACC -的体积是三棱柱体积的23,11111122ABC A B C V AC BC AA AC BC -=⋅⋅=⋅222111()444AC BC AB ≤+==,当且仅当2AC BC ==时,取等号.∴121)12S =⨯+++⨯=故选C .点睛:本题考查棱柱与棱锥的体积,考查用基本不等式求最值.解题关键是表示出三棱柱的体积.8.A解析:A 【解析】 【分析】已知,,a b B ,若ABC 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得2x <<故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 9.B 解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 10.A解析:A 【解析】 【分析】将f(x)化简,求得ωφ,,再进行判断即可. 【详解】()πf x ωx φ,4⎛⎫=+- ⎪⎝⎭∵最小正周期为2ππ,π,ω∴=得ω2=,又f x f x ()()-=为偶函数,所以ππφk π42-=+, k Z ∈∵πφ2<,∴k=-1,()πππφ,f x 2x 444⎛⎫=-∴=--=⎪⎝⎭, 当2k π2x 2k ππ≤≤+,即πk πx k π2≤≤+,f(x)单调递增,结合选项k=0合题意, 故选A. 【点睛】本题考查三角函数性质,两角差的正弦逆用,熟记三角函数性质,熟练计算f(x)解析式是关键,是中档题.11.C解析:C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.12.A解析:A 【解析】 【分析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解. 【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角, 在△A 2BM 中,22252()22a A B a BM a a ==+=,,222313()22a A M a a =+=,222222,2A B BM A M MBA π∴+=∴∠=, . 故选A . 【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.二、填空题13.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决 解析:12nm【解析】 【分析】 【详解】由题意得ABC ∆的三边分别为,1,2x x x ++ 则由()()22221x x x +=++ 可得3n = ,所以,三角数三边分别为3,4,5,因为A B C π∠+∠+∠= ,所以三个半径为1 的扇形面积之和为211=22ππ⨯⨯ ,由几何体概型概率计算公式可知1122,1342n n m m ππ=∴=⨯⨯,故答案为12nm. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.14.【解析】【分析】将写成切化弦后利用两角和差余弦公式可将原式化为利用二倍角公式可变为由可化简求得结果【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题涉及到两角和差余弦公式二 解析:1【解析】 【分析】tan 60,切化弦后,利用两角和差余弦公式可将原式化为sin10cos10cos 60cos 70,利用二倍角公式可变为1sin 202cos 60cos 70⋅,由sin 20cos70=可化简求得结果. 【详解】()()cos 60cos 7060sin 70sin1013tan70sin101tan 60tan70sin1s 0co i s 60o 7n c s 0+=++⋅=()cos 7060sin10cos101sin 201sin101cos60cos70cos60cos702cos60cos702cos60-=⋅==⋅==本题正确结果:1 【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.15.【解析】【分析】由题意知本题是一个古典概型从0~9中任意取两个数(可重复)共有100种取法列出满足所有可能情况代入公式得到结果【详解】从0~9中任意取两个数(可重复)共有100种取法则的情况有:共有 解析:725【解析】 【分析】由题意知本题是一个古典概型,从0~9中任意取两个数(可重复)共有100种取法,列出满足||1a b -所有可能情况,代入公式得到结果。