基于蚁群算法的图像边缘检测_毕业设计答辩PPT
- 格式:ppt
- 大小:3.08 MB
- 文档页数:32
毕业设计论文-基于蚁群算法的图像边缘检测-附代码上海工程技术大学毕业设计(论文) 基于蚁群算法的图像边缘检测目录摘要 ...............................................................1 ABSTRACT .............................................................2 1 绪论 (3)1.1 研究背景 ...........................................................31.2 研究现状和发展方向 (4)6 1.3 研究目的和意义 .....................................................2 图像边缘检测概述 ..................................................... 7 2.1 边缘的定义及类型 ................................................... 8 2.2 常用的边缘检测方法 (10)2.3 其他边缘检测方法 .................................................. 15 2.3.1 基于小波变换的边缘检测 .......................................... 15 2.3.2 基于数学形态学的边缘检测 (16)17 2.4 传统边缘检测的不足 ................................................3 蚁群算法 ............................................................ 17 3.1蚁群算法的基本原理 (18)3.2 基于蚁群算法的图像边缘检测 ........................................21 4 实验结果及分析 ...................................................... 22 4.1 基于蚁群算法的图像边缘检测流程 .................................... 22 4.2 实验结果与性能分析 (26)4.2.1 参数对边缘检测的影响 ............................................ 294.2.2 与传统方法的比较 ................................................ 35 5 总结与展望 .......................................................... 37 参考文献 .............................................................. 39 附录 ................................................. 错误~未定义书签。
使用蚁群算法进行图像分割报告绪论蚁群算法是模拟蚂蚁群体觅食行为的仿生优化算法。
本文利用蚁群算法进行图像分割,提取目标图像的边缘路径,概括来说,是通过一定数量的人工蚂蚁根据图像的灰度值特性自由觅食,在觅食的过程中形成的信息素矩阵即代表了图像的边缘特征信息。
1 本例中蚁群算法的几个要素一幅图像中包括目标、背景、边界和噪声等内容,边缘提取的目的是要找出体现这些内容之间区别的特征量。
区别目标和背景的一个重要的特征是像素灰度,因此选用像素的灰度值作为主要特征。
另外,边界点或噪声点往往是灰度值发生突变的地方,而该点处的梯度体现出这种变化,是反映边界点与背景或目标区域内点区别的重要特征。
因此,在定义可见度因数时,一定要把梯度值作为首要特征。
1.1 确定初始蚂蚁数目蚁群算法是一种随机搜索算法,它通过多个候选解组成群体的进化过程来寻求最优解,在这个进化过程中,既需要每个个体的自适应能力,更需要群体的相互协作,这个相互协作,通过个体之间的信息交流来完成。
蚁群的数量越多,算法的全局搜索能力以及算法的稳定性越高,但是若蚂蚁数目较大,会使大量的曾被搜索过的解上的信息量的变化比较平均,信息正反馈的作用不明显,搜索的随机性虽然得到了加强,但收敛速度减慢,在本例中,蚂蚁数目取为图像像素数的开方值。
1.2 蚂蚁转移概率在蚁群算法的第n步,某一点处的蚂蚁转移到像素点(i,j)的概率主要由该点信息素浓度和能见度因数来决定,其计算公式为【1】:∑Ω∈--=ij j i n j i j i n j i n j i p βαβαητητ)()()()(,)1(,,)1(,)(,其中,i Ω表示蚂蚁k 下一步容许去的城市集合。
)(,n j i p 与1j i,-n τj i ,η成正比,1ji,-n τ为从像素点i ,j 的信息素因数,j i ,η为像素点i ,j 的能见度因数,α,β参数分别反映了蚂蚁在转移过程中,像素点所累积的信息素和像素点的启发信息,在蚂蚁选择转移时的相对重要性。
基于蚁群模糊聚类算法的图像边缘检测黄红星1 苗 京21,2武汉大学数学学院信息与计算科学系,武汉 430072E-mail:hhx825@摘要本文提出了一种基于蚁群动态模糊聚类算法的图像边缘检测。
算法将蚁群算法与模糊C均值聚类有机的结合,实现了基于改进的目标函数聚类分析。
对比实验表明,该算法具有很强的模糊边缘和微细边缘检测能力。
关键词数据挖掘 蚁群算法 模糊C-均值聚类 边缘检测文献标志码 A 中图分类号TP181Fuzzy Clustering Analysis Based on Ant Colony Algorithm for Image Edge DetectionHuang Hongxing1Miao Jing21,2 College of Mathematics, Wuhan University, Wuhan 430072Abstract: This paper proposes a method of dynamic fuzzy clustering analysis based on ant colony algorithm for image edge detection .The algorithm combines ant colony algorithm with fuzzy C-means clustering organically and realizes clustering analysis based on improved function. Compared experiments show that the algorithm can correctly detect the fuzzy edge and exiguous edge.Keywords: date mining, ant colony algorithm,fuzzy C-means clustering , edge detection1引言数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的但又是潜在有用的信息和知识的过程。