一、热力学第一定律
- 格式:ppt
- 大小:665.00 KB
- 文档页数:71
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
热力学第一定律和第二定律热力学第一定律1. 内容:一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么外界对物体做的功W,与物体从外界吸收的热量Q之和,等于物体的内能的增加量2. 数学表达式:W+Q=ΔU(1)Q取决于温度变化:温度升高,Q>0;温度降低,Q<0.(2)W取决于体积变化:V增大时,气体对外做功,W<0;V减小时,外界对气体做功,W>0.(3)特例:如果气体向真空扩散,那么W=0.(4)绝热过程Q=0,关键词是“绝热材料”或“变化迅速”。
3. 热力学第1定律的理解(1)做功改变物体的内能:外界对物体做功,物体内能增加;物体对外做功,物体内能减少。
在绝热过程,物体做多少功,改变多少内能。
(2)热传递改变物体的内能:外界向物体传递热量,即物体吸热,物体的内能增加;物体向外界传递热量,即物体放热,物体的内能减少。
传递多少热量,内能就改变多少。
(3)做功和热传递的实质,做功改变内能是能量的变化,用功的数值来度量;热传递改变内能是能量的转移,用热量来度量。
热力学第二定律1.热传导的方向性:热传导的过程可以自发地由高温物体向低温物体进行,但相反方向却不能自发地进行,即热传导具有方向性,是一个不可逆过程。
2.补充说明:(1)“自发地”过程就是不受外界干扰的条件下进行的自然过程;(2)热量可以自发地从高温物体向低温物体传递,却不能自发的从低温物体传向高温物体;(2)热力学第二定律的能量守恒表达式:ds≥δQ/T(3)热量可以从低温物体传向高温物体,必须有“外界的影响或帮助”,就是要由外界对其做功才能完成。
3.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传向高温物体。
(2)开尔文表述:不可能从单一热源吸收热量,使之完全变为有用功,而不引起其他变化。
1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。
能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。
而不同形式的能量在相互转化时永远是数量相当的。
这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。
一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。
总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。
所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。
设计方案之多,但是成千上万份的设计中,没有一个能实现的。
人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。
第一类永动机是不可能制成的,这就是能量守恒原理。
到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。
想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。
1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。
至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。
把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。
2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。
它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。
也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。
人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。
热力学第一定律科技名词定义中文名称:热力学第一定律英文名称:first law of thermodynamics其他名称:能量守恒和转换定律定义:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中各种形式能源的总量保持不变。
概述热力学第一定律热力学第一定律:△U=Q+W。
系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q(吸热为正,放热为负),与环境交换的功为W(对外做功为负,外界对物体做功为正),可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。
定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
英文翻译:The first explicit statement of the first law of thermodynamics, byRudolf Clausiusin 1850, referred to cyclic thermodynamic processes "In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely, by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容能量是永恒的,不会被制造出来,也不会被消灭。
热力学第一定律的内容及公式
热力学第一定律是热力学很重要的定律,简称为第一定律。
热力学第一定律是物理和化学中最基本也是最重要的定律,概括地说,它指出了总热量是不可消失的,即能量守恒定律。
它是由德国物理学家莱布尼兹在1850年发现的。
热力学第一定律指出,内能系统内所有物质之间的总热量交换是不可消失的,即总热量守恒定律,在反应过程中能量不会消失,它只能以动能形式存在,也就是说,能量可以有很多形式存在,但是总量是不变的。
它可以用如下的公式来表示:
E=q+w
其中,E表示热力学第一定律定义的能量总量;q表示热量;w
表示功能。
热力学第一定律可以用来解释诸如内能的变化、热动力学中的功能过程、经典热力学定律的发展,以及熵的概念。
它的应用还可以普遍用于热力学和热工程的其他领域。
所有的能量转换都可以用热力学第一定律进行表述,即能量在某种形式变换到另一种形式的守恒定律。
比如,当将动能转化为功能,则q+w=E,即动能变为功能的过程中,能量总量E是不变的。
当功能转化为动能,则q-w=E,即功能变为动能的过程中,能量总量E也是不变的。
总之,热力学第一定律是一个重要的定律,它表明能量总量在任何过程中都是守恒的,它是对物理和化学中反应过程能量变化的最基
本的定律。
热力学第一定律解释了热力学和热工程中诸如内能的变化、热动力学中的功能过程、熵的性质及其变化的原理,在热力学和热工程的理论和应用方面有着重要的意义。
热力学第一定律的表达式热力学第一定律的表达式:ΔE=W+Q。
在热力学中,热力学第一定律通常表述为:热能和机械能在转化时,总能量保持不变。
其数学表达式为ΔE=W+Q,其中ΔE表示系统内能的改变,W表示系统对外所做的功,Q表示系统从外界吸收的热量。
这个定律表明,能量的转化和守恒定律是自然界的基本定律之一,它适用于任何与外界没有能量交换的孤立系统。
换句话说,在一个封闭系统中,能量的总量是恒定的,改变的只是能量的形式。
因此,热力学第一定律是能量守恒定律在热现象领域中的应用。
另外,对于一个封闭系统,如果系统内部没有发生化学反应或相变等过程,那么系统对外做的功等于系统从外界吸收的热量。
这是因为系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
值得注意的是,热力学第一定律也适用于非平衡态系统。
即使系统处于非平衡态,热力学第一定律仍然适用。
因此,它不仅是热力学的基石之一,也是整个物理学的基石之一。
为了更好地理解热力学第一定律,我们可以考虑一些具体的应用场景。
例如,在汽车发动机中,汽油燃烧产生的热能转化为汽车的动能和废气中的内能。
在这个过程中,系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
因此,根据热力学第一定律,我们可以计算出汽车发动机的效率,从而评估其能源利用效果。
此外,热力学第一定律还可以应用于电学、化学等领域。
例如,在电学中,当电流通过电阻时会产生热量,根据热力学第一定律可以计算出电阻产生的热量。
在化学中,反应热的计算也可以根据热力学第一定律来进行。
以下是一些具体例子,说明热力学第一定律的应用:1. 热电站:在热电站中,燃料燃烧产生的热能转化为蒸汽的机械能,再转化为电能。
根据热力学第一定律,热能被转化为机械能和电能,而总能量保持不变。
通过计算输入和输出的能量,我们可以评估热电站的效率。
2. 制冷机:制冷机是一种将热量从低温处转移到高温处的设备。
在制冷过程中,制冷剂在蒸发器中吸收热量并转化为气态,然后通过压缩机和冷凝器将热量释放到高温处。
第一章热力学第一定律本章主要公式及其使用条件一、热力学第一定律W Q U +∆= W Q dU δδ+=热力学中规定体系吸热为正值,体系放热为负值;体系对环境作功为负值,环境对体系作功为正值。
功分为体积功和非体积功。
二、体积功的计算体积功:在一定的环境压力下,体系的体积发生改变而与环境交换的能量。
体积功公式⎰⋅-=dV p W 外 1 气体向真空膨胀:W =0 2气体在恒压过程:)(12 21V V p dV p W V V --=-=⎰外外3理想气体等温可逆过程:2112ln lnp p nRT V V nRT W -=-= 4理想气体绝热可逆过程:)(12,T T nC W U m V -=∆=理想气体绝热可逆过程中的p ,V ,T 可利用下面两式计算求解1212,ln ln V V R T T C m V -=21,12,ln lnV V C p p C m p m V =三、热的计算热:体系与环境之间由于存在温度差而引起的能量传递形式。
1. 定容热与定压热及两者关系定容热:只做体积功的封闭体系发生定容变化时, U Q V ∆= 定压热:只做体积功的封闭体系定压下发生变化, Q p = ΔH定容反应热Q V 与定压反应热Q p 的关系:V p Q Q V p ∆+= nRT U H ∆+∆=∆n ∆为产物与反应物中气体物质的量之差。
或者∑+=RT g Q Q m V m p )(,,ν ∑+∆=∆RT g U Hm m)(ν式中∑)(g ν为进行1mol 反应进度时,化学反应式中气态物质计量系数的代数和。
2.热容 1.热容的定义式dTQ C δ=dT Q C VV δ=dT Q C pp δ=n CC VmV =,n C C p m p =, C V ,C p 是广度性质的状态函数,C V ,m ,C p,m 是强度性质的状态函数。
2.理想气体的热容对于理想气体 C p ,m - C V ,m =R 单原子理想气体 C V ,m = 23R ;C p ,m = 25R 双原子理想气体 C V ,m =25R ;C p ,m = 27R 多原子理想气体: C V ,m = 3R ;C p ,m = 4R通常温度下,理想气体的C V ,m 和C p,m 均可视为常数。