高中数学函数的单调性教学设计比赛一等奖 体现核心素养
- 格式:docx
- 大小:38.50 KB
- 文档页数:7
函数的单调性教案一、引入函数的单调性是高中数学中的重要概念,它描述的是函数在定义域上的变化趋势。
在解题中,了解函数的单调性能够帮助我们简化问题,提高解题效率。
本教案将通过详细的讲解和例题分析,帮助学生掌握函数的单调性的概念、判断和应用。
二、概念剖析1. 单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≤ f(x2),则称 f(x) 在定义域上是单调递增的。
2. 单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≥ f(x2),则称 f(x) 在定义域上是单调递减的。
3. 严格单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) < f(x2),则称 f(x) 在定义域上是严格单调递增的。
4. 严格单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) > f(x2),则称 f(x) 在定义域上是严格单调递减的。
三、判断方法1. 导数判断法:对于函数 f(x),通过求导数 f'(x),可以判断函数的单调性。
当 f'(x) > 0 时,函数 f(x) 单调递增;当 f'(x) < 0 时,函数f(x) 单调递减。
2. 一阶差分判断法:对于函数 f(x),通过计算相邻两点之间的函数值差来判断函数的单调性。
当 f(x2) - f(x1) > 0 时,函数 f(x) 单调递增;当 f(x2) - f(x1) < 0 时,函数 f(x) 单调递减。
四、应用示例1. 实例1:判断函数 f(x) = 3x + 2 的单调性。
解析:根据导数判断法,求出函数 f(x) 的导数 f'(x) = 3。
函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。
章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。
2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。
3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。
2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。
3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。
章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。
2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。
3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。
章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。
2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。
3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。
4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。
函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
1.3.1函数的单调性与最大(小)值(第一课时)教学设计一、教学内容解析:(1)教学内容的内涵、数学思想方法、核心与教学重点;本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。
函数的单调性是研究当自变量X不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究*成为相反数时,y是否也成为相反数,即函数的对称性质.函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质.函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画.函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位.教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)” 这一特征进行抽象的符号描述:在区间D上任意取x,x,当x<x时,有f(x)<f(x)(或f(x) Mx)),则称函数f(x)在区间D上是增函数(或减函数):2 1(2)教学内容的知识类型;在本课教学内容中,包含了四种知识类型。
函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题提出问题解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识.(3)教学内容的上位知识与下位知识;在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识.(4)思维教学资源与价值观教育资源;生活常见数据曲线图例子,能引发观察发现思维;函数f(x)=+1和函数y= x+ j ,能引发提出问题---分析问题解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观.二、教学目标设置:本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。
《函数的单调性》教学设计长春市实验中学刘冰一、教学内容解析本节内容是人教A版必修一教材第一章第三节内容,是一节概念性知识,属于函数的基本性质.本节内容是学生在了解函数概念后学习的函数的第一个性质,起着承前启后的作用.一方面,初中数学的许多内容在解决函数的某些问题中得到了充分的运用,另一方面,函数的单调性与前一节函数的概念和图像的知识的延续有着密切的联系,函数的单调性与后面的奇偶性是今后研究指数函数、对数函数、幂函数及三角函数等其他函数的基础.学生在观察函数图像时,首先注意到的是图像的上升或下降,但是由图像直观获得的结论还需要从数量关系的角度通过逻辑推理加以论证.教学中充分利用函数图像,让学生观察图像获得函数基本性质的直观认识,这样处理充分体现了数形结合思想,也为下一步学习函数其他性质提供了方法依据.由此确定本节课的教学重点为:重点:函数单调性的概念、判断和证明.研究函数性质时的“三步曲”是:第一步,观察图像,描述函数图像特征;第二步,结合图、表,用自然语言描述函数图像特征;第三步,用数学符号语言定义函数性质.本节课特别重视从几个实例的共同特征到一般性质的概括过程,并引导学生用数学语言表达出来,正是形成数学概念,培养学生探究能力的契机.由于函数图像是发现函数性质的直观载体,因此,教学中充分使用信息技术创设教学情境,以利于学生作函数图像,有更多的时间用于思考、探究函数的单调性.二、教学目标设置根据本节课的教学内容以及学生的认知水平,确定了本节课的教学目标:知识与技能:从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.过程与方法:通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.三、学生学情分析本节课的教学对象是长春市实验中学高一年级的学生.1.学生已有认知基础一是学生通过初中的数学学习,已有研究一次函数、二次函数等初等函数的直接经验,对函数的简单性质有初步的认识;二是前一节已经学习过函数的概念,对函数的图像也有一定的感性认知;三是能力上具备了一定的观察、类比、分析、归纳能力.2.达成目标所需要的认知基础学生需要对研究目标、方法和途径有初步认识,具备知识整合和主动迁移的能力,从形的直观认识、感性认知到形成抽象的数学概念,具有数形结合的意识和归纳推理的能力.3.难点及突破策略对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.由此确定的难点及突破策略为:难点:(1)函数单调性概念的形成;(2)理解自变量在区间[a,b]上的“任意”取值的意义.突破策略:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)教师启发引导,组织学生交流研讨,展现思维过程.四、教学策略设计根据本节课的教学内容、学生情况和教学目标,教学中采用“教师设疑引导,学生自主探究”的教学方法.通过启发引导,激发学生的思维,鼓励学生发现、探究、合作、展示,使其在探究中对问题本质的思考逐步深入,思维水平不断提高.针对本节课的重点——函数单调性的判断和证明,教学中采用直观到抽象,特殊到一般,感性到理性的教学过程,先通过讨论具体函数图像的上升或下降直观描述发现问题,再把具体的、直观形象的单调性特征抽象出来,用数学符号语言描述.本节课的难点之一是单调性概念的得出.教学中采用教师启发引导,学生自主、合作、探究的教学方法,以及多媒体直观教学的恰当应用,使学生从感性认识上升到理性认识,从“形”的直观到“数”的推理,从“无限”验证转化为“有限”证明,使学生对单调性概念的理解水到渠成,逐层深入,步步升华.本节课的另一个难点是为什么要在区间上“任意”取两个大小不等的实数21x x ,.针对这个难点,教学中采取两个措施.一是引导学生通过对图像的观察、分析,自主形成认识;二是通过小组研讨的方式让学生进行合作探究,加深对概念中“任意”含义的理解.五、教学过程设计【教学过程】一、创设情境,明确目标生活中的实例:情境一:我市某日24小时内的气温变化图.情境二:艾宾浩斯记忆遗忘曲线这是一条衰减曲线,随着时间的推移,记忆的保持两逐渐减小,第一天遗忘的速度最快,一天之后遗忘的速度趋于缓慢,这一规律提醒我们:在学习新知识的时候,一定要及时进行复习和巩固,以便加深理解和记忆.生活中很多与数据相关的问题:比如燃油价格, 股票行情,水位高低等等,了解这些数据的变化规律,对我们的生活很有帮助.而这些数据的变化,用函数的观点看,其实就是随着自变量变化时,函数值的变化规律.【学生活动】感受生活中的数学,体会了解函数的变化规律有助于把握事物的变化规律.【教师活动】通过实例,引导学生体会生活中的数学无处不在,数学对生活的影响无处不在.【设计意图】由生活情境引入新课,激发兴趣.二、自主学习,启发引导概念生成——“形”的直观感知问题:函数是描述事物运动变化规律的数学模型.如果了解了函数的变化规律,那么也就基本把握了相应事物的变化规律.在事物变化过程中,保持不变的特征就是这个事物的性质.观察下图中各个函数的图像,你能说说它们分别反映了相应函数的哪些变化规律吗?【学生活动】从个人观察的角度,描述图像反映的函数的变化规律.【教师活动】肯定学生多角度发现函数变化规律,并纠正学生语言表述的准确性.提出函数的性质有很多,引出本节课要研究的是随着自变量不断增大,函数值是增大还是减小这个特征.【学生活动】观察函数2+=x y ,2+-=x y ,2x y =,x y 1=的图象,并且观察自变量变化时,函数值有什么变化规律?【教师活动】引导学生读图分析,直观感知单调性这一性质.【设计意图】函数的变化规律反映了函数的性质,研究函数的变化规律使我们更能够把握相应事物的变化规律,引出研究函数性质的实际意义.培养学生读图和分析总结规律的能力. 得出描述性定义:函数单调性的描述性...定义:设函数的定义域为I ,区间I D ⊆,在区间D 上,若函数的图像(从左至右看)总是上升的,则称函数在区间D 上是增函数,区间D 称为函数的单调增区间;在区间D 上,若函数的图像(从左至右看)总是下降的,则称函数在区间D 上是减函数,区间D 称为函数的单调减区间.【学生活动】学生完成对函数单调性的直观认识.....根据单调性的定义,完成教材29页例1: 定义在区间[]5,5-上的函数)(x f y =的图象,根据图象说出)(x f y =的单调区间,以及在每一单调区间上,它是增函数还是减函数.【教师活动】引导学生理解函数的单调性是对定义域内某个区间而言的,是函数的局部性质.并提出图像解决问题不够精确严谨,还要有数量上的准确刻画.【设计意图】从“形”的角度直观理解函数单调性的意义,并铺垫单调性是一个区间概念.三、合作探究,互助研讨概念生成——“数”的抽象刻画探究一:根据函数的定义,对于自变量x 的每一个确定的值,变量y 有唯一确定的值与它对应.那么,当一个函数在某一区间上是单调递增(或单调递减)时,相应的,自变量的值.....与对应的函数值......的变化规律....是怎样的?(几何画板演示) 【设计意图】从“形”到“数”的转化,从图像的直观认识,到变量的数值增减理解,形象的“上升”和“下降”的规律对应到函数在变量值上的变化规律.概念生成——单调性的严格定义探究二:函数)(x f 在区间),(b a 上有无数个自变量x ,满足当b x x a <<<< 21时,有)()()()(21b f x f x f a f <<<< ,那么)(x f 在区间),(b a 上一定单调递增吗?说明理由(可举例或画图)【设计意图】自变量不能被穷举的情况下,引导学生在给定区间内任意取两个自变量1x ,2x ,体会无限向有限的转化思想.探究三:如何从解析式的角度说明2)(x x f =在[)+∞,0为增函数? 【设计意图】通过讨论,学生发现结合解析式进行严密化、精确化的研究的方法.在区间[)0,+∞上,任取两个12,x x ,得到221122(),()f x x f x x ==,当12x x <时,有12()()f x f x <则说明函数2()f x x =在[)0,+∞为增函数. 【学生活动】通过先自主再合作,小组互助研讨解决探究问题,并展示自己的观点.【教师活动】提出问题,放手学生解决,巡视、适当点拨.【设计意图】从“数”的角度深入严谨理解函数单调性的意义,培养学生思考的习惯和探究问题的能力,通过合作学习互促提升,突破难点.通过上述探究,得出增函数严格的定义,然后学生类比得出减函数的定义.板书定义: 一般地,设函数)(x f 的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值21x x ,,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数;对于定义域I 内某个区间D 上的任意两个自变量的值21x x ,,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数.判断与证明单调性判断以下说法是否正确?(1)已知x x f 1)(=,由于)1()2(f f <-,所以函数)(x f 是增函数 (2)若函数)(x f 满足)2()1(f f <,则函数)(x f 在区间]2,1[上是增函数.(3)若函数)(x f 在区间(]2,1和)3,2(上均为增函数,则函数)(x f 在区间(1,3)上为增函数.(4)因为函数x x f 1)(=在区间)0,(-∞和),0(+∞上都是减函数,所以x x f 1)(=在),0()0,(+∞⋃-∞上是减函数.【学生活动】先自主思考,再小组交流,得出结论.【教师活动】纠正学生语言的准确性,给出合理评价.【设计意图】1.从特殊到一般,从“形”到“数”,从直观到抽象,提升理解的高度和严谨性,加深理解单调性的严格定义,并培养学生类比、归纳的能力.2.通过概念辨析,强调(1)单调性是对定义域内某个区间而言的,因此谈单调性离不开区间;(2)定义中的“任意”是关键;(3)函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在B A ⋃上是增(或减)函数.四、精心点拨,启发引导1.例题:物理学中的玻意耳定律V k p =(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大.试用函数的单调性证明之.2.巩固练习:画出反比例函数xx f 1)(=的图象. (1)这个函数的定义域I 是什么?(2)它在定义域I 上的单调性是怎样的?证明你的结论.【学生活动】自主完成,展示过程.【教师活动】引导学生归纳证明函数单调性的步骤:取值、比较、变形、定号、结论. 投影学生证明过程,进行点拨和要点强调.【设计意图】初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.五、归纳小结,整理提高学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、感性到理性、无限到有限.(2) 证明方法和步骤:取值、比较、变形、定号、结论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第39页 习题1.3 A 组第1、2、3题. 课后探究:研究函数xx y 1+=的单调性,并证明你的结论. 板书设计:。
1、高中数学函数的单调性的教学设计一等奖【教学目标】1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。
2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。
3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。
【教学重点】函数单调性的概念、判断。
【教学难点】根据定义证明函数的单调性。
【教学方法】教师启发讲授,学生探究学习。
【教学工具】教学多媒体。
【教学过程】一、创设情境,引入课题师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。
生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。
师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的位置显然是在下降的。
师:(阅读教材,人教版节首内容,引导学生看图)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。
观察图中的函数图象,随着函数自变量的增大(减小),你能得到什么信息?二、归纳探索,形成概念我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的`专题研究之一──函数单调性的研究。
同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。
1.借助图象,直观感知首先,我们来研究一次函数和二次函数的单调性。
师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,师:根据图象,请同学们写出你对这两个函数单调性的描述。
生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。
函数的单调性一、教学目标1、知识目标:理解并掌握函数单调性的概念,并会判断并证明简单函数单调性。
2、能力目标:提高学生观察归纳能力、发现问题、探索问题的能力,培养学生数学抽象、逻辑推理和数学运算等核心素养3、德育目标:培养学生勇于探索,勇于创新的个性品质,激发学生学习数学的兴趣。
二、教学重点与难点重点:函数单调性的概念,掌握用定义判断和证明一些简单函数单调性的方法。
难点:关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证。
三、学法与教学用具1、从观察具体函数图象引入,直观认识增减函数,利用这定义证明函数单调性。
通过练习、交流反馈,巩固从而完成本节课的教学目标。
2、教学用具:计算机.四、教学过程:导入新课为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了2002年到2006年每年这一天的天气情况,如图1-3-1-7是北京市今年8月8日一天24小时内气温随时间变化的曲线图.图1问题:观察图1,能得到什么信息?(1)当天的最高温度、最低温度以及达到的时刻;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.引导学生识图,捕捉信息,启发学生思考回答.教师:在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.归纳:用函数观点看,其实这些例子反映的就是随着自变量的变化,函数值是变大或变小.思路2.如图2所示,观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:图2随x 的增大,y 的值有什么变化?引导学生回答,点拨提示,引出课题.设计意图:创设情景,引起学生兴趣.推进新课新知探究提出问题问题①:分别作出函数y =x +2,y =-x +2,y =x 2,y =x1的图象,并且观察自变量变化时,函数值的变化规律.如图3所示:图3问题②:能不能根据自己的理解说说什么是增函数、减函数?。
函数的单调性教案(获奖)第一章:引言1.1 现实生活中的单调性1.引入概念:单调性是指函数在定义域内的变化趋势。
2.举例说明:(1)商品价格随时间的变化;(2)物体的高度随时间的变化。
1.2 函数单调性的意义1.函数单调性在实际生活中的应用:(1)优化问题;(2)经济决策。
2.函数单调性在数学领域的应用:(1)导数的定义;(2)最值问题的求解。
第二章:函数单调性的定义与性质2.1 函数单调性的定义1.单调递增函数:若对于定义域内的任意x1<x2,都有f(x1)<f(x2),则函数f(x)为单调递增函数。
2.单调递减函数:若对于定义域内的任意x1<x2,都有f(x1)>f(x2),则函数f(x)为单调递减函数。
2.2 函数单调性的性质1.若函数f(x)在定义域内单调递增,则在任意子区间内也单调递增;2.若函数f(x)在定义域内单调递减,则在任意子区间内也单调递减;3.单调递增函数的导数大于等于0;4.单调递减函数的导数小于等于0。
第三章:函数单调性的判断与证明3.1 函数单调性的判断1.利用导数判断:若函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则函数f(x)在定义域内单调递增(或单调递减)。
2.利用图像判断:观察函数图像,若图像随着x的增大而上升,则为单调递增函数;若图像随着x的增大而下降,则为单调递减函数。
3.2 函数单调性的证明1.利用导数证明:假设函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则对于定义域内的任意x1<x2,有f(x1)<f(x2)(或f(x1)>f(x2)),从而证明函数f(x)单调递增(或单调递减)。
2.利用数学归纳法证明:对于定义域内的任意x1<x2,证明f(x1)<f(x2)(或f(x1)>f(x2)),从而得出函数f(x)单调递增(或单调递减)。
第四章:函数单调性与最值问题4.1 函数单调性与最值的关系1.若函数f(x)在定义域内单调递增,则函数在定义域内的最小值出现在定义域的左端点;2.若函数f(x)在定义域内单调递减,则函数在定义域内的最大值出现在定义域的左端点。
3函数的单调性一等奖创新教案第五章函数概念与性质第5.3节函数的单调性为了帮助学生体会函数是刻画现实世界中变量之间依赖关系的数学模型,充分利用现代信息技术体现数学的应用功能,教学中,教师应有意识地利用适当的信息技术辅助教学.为了说明函数f(x)在某个区间上不是单调增(减)函数,只需在该区间上,找到两个值x1,x2,当x1<x2时,有f(x1)≥f(x2)(或f(x1)≤f(x2) )成立,这是对例证法的把握.函数的单调性是对定义域内某个区间而言的,它反映的是函数的局部性质,函数在某个区间上单调,并不能说明函数在定义域上也单调.课程目标学科素养1.了解函数的单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.a数学抽象:函数单调性等概念b逻辑推理: 会划分函数的单调区间,判断单调性. c数学运算: 用定义证明函数的单调性1.教学重点:会用定义证明函数的单调性.2.教学难点:函数的单调区间、单调性等概念的理解.1.设f(x)=则f(f(0))等于( )A.1 B.0 C.2 D.-1答案 C2.已知函数y=则使函数值为5的x的值是( )A.-2或2 B.2或-C.-2 D.2或-2或-答案 C3.设f(x)=g(x)=则f(g(π))的值为________.答案04.已知函数f(x)=则f(f(-4))=________.答案-2类型一求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?解y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中y=f(x)在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.总结函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D 上函数要么是增函数,要么是减函数,不能二者兼有.跟踪训练1 函数y=|x2-2x-3|的图象如图所示,试写出它的单调区间,并指出单调性.解y=|x2-2x-3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调递减区间是(-∞,-1],[1,3];单调递增区间是[-1,1],[3,+∞).类型二证明单调性例2 证明f(x)=在其定义域上是增函数.证明f(x)=的定义域为[0,+∞).设x1,x2是定义域[0,+∞)上的任意两个实数,且x10,∴f(x1)-f(x2)0,故(x1-x2)。
函数的单调性优秀教案(教学设计)(公开课比赛优秀教案)教学目标:知识目标:让学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。
能力目标:通过探究函数单调性定义,培养学生观察、归纳、抽象的能力和语言表达能力;通过证明函数单调性,提高学生的推理论证能力。
德育目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维惯,让学生经历从具体到抽象、从特殊到一般、从感性到理性的认知过程。
教学重点:函数单调性的概念、判断及证明。
教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性。
教材分析:函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起。
本节课在教材中的作用如下:1)函数的单调性在初中数学中有广泛的应用。
它与前一节内容函数的概念和图像知识的延续有密切的联系,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
2)函数的单调性是培养学生数学能力的良好题材。
本节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。
教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。
同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。
3)函数的单调性有着广泛的实际应用。
在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。
函数的单调性在中学数学中扮演着十分重要的角色,因为它反映了函数的变化趋势和特点。
在解决问题时,利用函数单调性的观点是十分重要的,这为培养创新意识和实践能力提供了重要的途径和方式。
教学设计普通高中课程标准实验教科书《数学》选修1-1(人教A版)函数的单调性与导数(第一课时)《函数的单调性与导数》教学设计【课题】函数的单调性与导数【教材】人教A版《数学》选修1-1【课时】1课时【教材分析】函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容.在学习本节课之前学生已经学习了函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备.函数的单调性是高中数学中极为重要的一个知识点.以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.同时,在本课第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助.因此,学习本节内容具有承上启下的作用.【学生学情分析】课堂学生为高二年级的的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性.【教学目标】知识点:1.探索函数的单调性与导数的关系;2.会利用导数判断函数的单调性并求函数的单调区间.能力点:1.通过本节的学习,掌握用导数研究单调性的方法.2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想.教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯.自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到一般的数学思想方法.【教学重点】利用导数研究函数的单调性,会求函数的单调区间.【教学难点】⒈探究函数的单调性与导数的关系;⒉如何用导数判断函数的单调性.【教学方法】启发式教学【课时安排】 1 课时【教学准备】多媒体课件,作图软件GGB,课堂活动页.【教学设计说明】根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象.本节课的教学设计也是围绕这些目标,利用多媒体和信息技术让学生自主探究,充分参与课堂,并从中体会学习的成功和快乐.结论总结例题讲解课堂练习讨论函数单调性的一般步骤是什么?1求定义域;2求函数()f x的导数,3 讨论单调区间,解不等式()0f x'>,解集为增区间;4解不等式()0f x'<,解集为减区间.例2函数图像如下图,导函数图像可能为哪一个?练习2导函数图像如下图,则函数图像可能为()解.由学生共同回答.学生思考并共同解决.学生思考并举手回答.熟练掌握,特别是单调区间满足在定义域内.学生总结并回答问题加深记忆.从函数的单调性和导数的正负关系的讨论环节中,不断的比较了函数和导函数的图像,因此设置该题,从熟悉的函数到该题,题目更容易解决.让学生对所学知识进一步巩固和熟练掌握.回归生活布置作业观看过山车的视频,而后分析视线和切线的斜率正负的关系.分层作业:选做题:结合所学知识,举几个函数实例,比较定义法、图像法、导数法求单调区间的特点.必做题:教材P11 习题1.1A组 2、3 题.回归生活人生犹如过山车,站在人生的每个瞬间的点上,我们都能向上看,人生轨迹就会是持续上升趋势;相反,如果我们被负面情绪萦绕,我们就会走下坡路.只要饱含正能量,脚踏实地走好每一步,相信同学们的前途会一片光明!下课!学生放松的观看.。
《函数的单调性》说课稿(市级一等奖)旬阳县神河中学詹进根我说课的课题是《普通高中课程标准实验教科书必修1》第二章第三节——函数的单调性。
我将根据新课标的理念和高一学生的认知特点设计本节课的教学。
我从下面三个方面阐述我对这节课的理解和教学设计。
一、教材分析1、教材内容本节课是北师大版(必修一)第二章函数第三节——函数的单调性,本节课内容教材主要学习函数的单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2、教材的地位和作用函数是本章的核心概念,也是中学数学中的基本概念,函数贯穿整个高中数学课程。
在历年的考题中常考,函数的思想也是我们学习数学中的重要思想。
在这一节中利用函数图象研究函数性质的数形结合思想将贯穿于整个高中数学教学。
函数的基本性质包括单调性、奇偶性、周期性、对称性、有界性。
而我们今天学习的内容就是函数基本性质中的一种——单调性。
函数的单调性是用代数方法研究函数图象局部变化趋势的。
函数的单调性是学生初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识,是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步探索、研究函数的其他性质有着示范性的作用,对解决各种数学问题有着广泛作用。
此外在比较数的大小、极限、导数以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。
通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。
通过上述活动,加深对函数本质的认识。
更主要本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。
根据函数单调性在整个教材内容中的地位和作用,并结合学生的认知水平,本节课教学应实现如下教学目标。
3、教学目标知识与技能:理解函数单调性和单调函数的意义;会判断和证明简单函数的单调性。
高中数学教案课题:函数的单调性课型新授课课时1 课时教学目标知识目标理解增函数、减函数的概念;能力目标 1.掌握判断和证明某些函数增、减性的方法;2.培养学生观察、比较、分析的能力;3.增强数形结合的意识与能力;德育目标熟悉从感性认识到理性认识,从具体到抽象的研究问题的方法。
教材内容要求分解表教学重点《教学论》中指出了教科书中现有理论知识,要有应用的技能、技巧,教材的内容、要有反映生活、建设上的实际材料。
这一准则对数学教学尤其重要。
函数的单调性是函数的重要性质之一,也有广泛的应用。
但因这节课为新授课,不宜过于深入,点到为止,因而单调性的相关概念是重点。
教学难点利用概念证明或判断函数的单调性学法指导1. 理解和掌握函数的单调性的相关概念2.由于图象法是认识函数性质的重要方法,也是记忆和掌握函数性质的有效工具。
掌握下表内容,有助于提高研究函数的能力,特别是有助于数形结合思想与方法融会贯通。
函数图象直观显示函数的性质(部分)(1)着重注意从实际出发,从感性认识提高到理性认识(2)注重运用对比的方法和及时利用反馈信息纠错与强化(3)坚持结合直观图形或函数图象来说明和帮助学生理解概念(4)充分利用电脑与几何画板等辅助作用,增强教学效果。
教学流程设计开始师生问好学生作图观察教师提出问题师生对话:单调性定义不正确反馈正确例1,2,3(阅读、讲评)师生对话不正确反馈正确学生练习教师评讲引入例4(讲解)不理解反馈理解分组练习、教师讲评教师:课堂小结(布置作业)结束教学用具多媒体、实物投影仪、CAI课件、几何画板软件教学过程一.新课引入:日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从从阶梯教室后向前走,逐步下降;上下楼梯也是一样很多函数也具有类似性质。
如(学生在电脑上用几何画板画出图象):y=3x+2 y=1/x (x>0)图一图二从左往右看,函数的图象逐步上升(图一)或逐步下降(图二),这就是我们要研究的函数的重要性质之一:函数的单调性(电脑给出课题、教学目标)二.新授课1. 先由学生结合图象猜想函数的单调性的定义,然后纠错补充再让学生阅读书上从P58到P59的例1以上的部分。
函数的单调性教案(获奖)第一章:引言1.1 现实背景(1) 学生通过观察生活中的实例,如商品价格与销售量的关系,了解函数的单调性在实际问题中的应用。
(2) 引导学生思考:如何判断一个函数在其定义域内的单调性?1.2 知识准备(1) 回顾函数的定义及其图像表示。
(2) 复习导数的概念及其性质。
第二章:函数单调性的定义与性质2.1 函数单调性的定义(1) 介绍函数单调递增和单调递减的定义。
(2) 引导学生通过实例理解单调性的概念。
2.2 函数单调性的性质(1) 分析单调性在函数图像上的表现。
(2) 引导学生总结单调性的基本性质。
第三章:利用导数判断函数单调性3.1 导数与单调性的关系(1) 讲解导数在判断函数单调性方面的应用。
(2) 引导学生理解导数正负与函数单调性的关系。
3.2 利用导数判断函数单调性(1) 举例说明如何利用导数判断函数的单调性。
(2) 学生分组讨论,尝试自行判断给定函数的单调性。
第四章:单调性在实际问题中的应用4.1 实际问题建模(1) 引导学生将实际问题转化为函数单调性问题。
(2) 分析实际问题中函数单调性的应用。
4.2 求解最值问题(1) 讲解如何利用函数单调性求解最值问题。
(2) 学生练习求解具有单调性的最值问题。
第五章:总结与拓展5.1 课堂小结(1) 引导学生回顾本章所学内容,总结函数单调性的概念、性质及应用。
(2) 学生分享自己在实际问题中应用函数单调性的心得体会。
5.2 课后拓展(1) 布置课后习题,巩固函数单调性的相关知识。
(2) 鼓励学生探索函数单调性在其他领域的应用。
第六章:函数单调性的进一步探讨6.1 连续函数的单调性(1) 引入连续函数的概念,讨论连续函数的单调性。
(2) 引导学生理解连续函数单调性的重要性。
6.2 单调函数的图像特征(1) 分析单调函数图像的形状和位置。
(2) 学生通过绘制函数图像,加深对单调性的理解。
第七章:利用单调性解决实际问题7.1 最大值和最小值问题(1) 讲解如何利用单调性求解函数的最大值和最小值。
高中数学函数的单调性教学设计比赛一等
奖体现核心素养
函数的单调性是指函数在定义域上的取值随自变量单调递增或单调递减的性质。
本节课的教学目标是让学生理解并掌握函数单调性的概念,并会判断并证明简单函数单调性。
通过本节课的研究,旨在提高学生观察归纳能力、发现问题、探索问题的能力,培养学生数学抽象、逻辑推理和数学运算等核心素养,同时也希望激发学生研究数学的兴趣。
本节课的重点是函数单调性的概念,掌握用定义判断和证明一些简单函数单调性的方法。
难点则在于关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证。
在教学过程中,我们可以通过观察具体函数图象引入,直观认识增减函数,利用这定义证明函数单调性。
通过练、交流反馈,巩固从而完成本节课的教学目标。
教学用具可以使用计算机等工具。
我们可以通过实例来引入本节课的主题。
例如,为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了
2002年到2006年每年这一天的天气情况,通过观察这些数据
的变化规律,我们可以发现这些例子反映的就是随着自变量的变化,函数值是变大或变小。
通过观察函数图象,我们可以直观感知函数单调性。
例如,观察图2所示的各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律。
通过这些例子,我们可以引出本节课的主题,即函数的单调性。
在探究新知时,我们可以提出一系列问题,如分别作出函数y=x+2,y=-x+2,y=x2,y=1/x的图象,并且观察自变量
变化时,函数值的变化规律;能否根据自己的理解说说什么是增函数、减函数;如图4是函数y=x+2(x>0)的图象,能说出
这个函数分别在哪个区间为增函数和减函数;如何从解析式的角度说明f(x)=x2在[0,+∞)上为增函数等。
通过这些问题的
探究,学生可以更好地理解函数单调性的概念,并掌握用定义判断和证明一些简单函数单调性的方法。
总之,本节课的教学目标是让学生理解并掌握函数单调性的概念,并会判断并证明简单函数单调性。
通过观察具体函数图象引入,直观认识增减函数,利用这定义证明函数单调性,我们可以提高学生观察归纳能力、发现问题、探索问题的能力,培养学生数学抽象、逻辑推理和数学运算等核心素养,同时也希望激发学生研究数学的兴趣。
设计意图:通过讨论和问题引导,帮助学生逐渐理解单调性的概念和定义,并掌握判断函数单调性的方法。
问题1:如何描述函数的单调性?学生需要注意函数单调
性是对定义域内某个区间而言的局部性质。
问题2:如何从图像角度认识函数的单调性?学生需要注
意分界点的位置对函数单调性的影响。
问题3:为什么需要结合解析式进行函数单调性的研究?
学生需要认识到图像判断函数单调性的不足之处。
问题4:如何辨析学生错误的回答?学生需要用图形和文
字语言进行分析,并认识到问题的根源在于自变量无法穷举。
问题5:能否用数学符号语言表述增函数的定义?学生需
要探究不等式表示变大或变小的方法,得出增函数和减函数的定义。
归纳总结:函数单调性的几何意义是函数图像上升或下降,定义可以简称为步调一致增函数和步调相反减函数。
讨论结果:
1.函数y=x+2和y=-x+2分别在整个定义域内是增函数和
减函数,函数y=x^2在区间(0,+∞)上是增函数,在(-∞,0)上是
减函数,函数y=1/x在整个定义域内是减函数。
2.增函数和减函数的定义分别是随自变量增大,函数值增
大或减小。
3.不能用准确的数学符号语言表述增函数的定义。
4.以函数y=x^2为例,在给定区间内取两个数,如2和3,因为2^2<3^2,所以函数在区间(0,+∞)上为增函数。
通过多组
数值验证,可以得出函数在该区间上为增函数。
证明一个命题成立需要严格的逻辑推理,而否定一个命题只需要举一个反例。
换句话说,只要找到两个特殊的自变量,不符合定义就可以否定命题。
要证明函数的单调性,可以利用单调性的定义。
可以先画出函数的图象,然后体会一下再证明。
本题主要考查函数的单调性。
归纳证明函数单调性的步骤是:设元、作差、变形、断号、定论。
变式训练:要证明函数f(x)=x在[,+∞)上是增函数,可
以使用定义法证明。
除了用定义外,如果证得对任意的x1、
x2∈(a,b),且x1≠x2有分f(x2)-f(x1)/(x2-x1)>0,也能断定函数f(x)在区间(a,b)上是增函数。
要画出函数y=-x2+2x的图象,根据图象指出单调区间,
并用定义法证明。
在图象上观察在哪个区间函数图象是上升的,在哪个区间函数图象是下降的,借助于单调性的几何意义写出单调区间,再用定义证明。
讨论函数单调性的三部曲是:画函数的图象,借助单调性的几何意义写出单调区间,利用定义加以证明。
拓展提升:分析函数y=x+1/x的单调性,可以先用计算机
画出图象,找出单调区间,再用定义法证明。
课堂小结:学生可以交流在本节课研究中的体会、收获,交流研究过程中的体验和感受,师生合作共同完成小结。
本节课主要研究了概念探究过程、证明方法和步骤以及数学思想方法。
数形结合可以帮助我们更好地理解数学概念和证明方法。
函数单调性的几何意义是函数图像上升或下降的趋势,即函数值的变化趋势。
为了理解函数的单调性,我们可以观察函数图像。
如果函数的图像随着自变量的增加而上升,那么函数就是单调递增的。
反之,如果函数的图像随着自变量的增加而下降,那么函数就是单调递减的。
单调性在数学中非常重要。
它不仅可以帮助我们理解函数的性质,还可以用于证明定理和解决问题。
例如,在求解最值问题时,我们可以利用函数的单调性来确定函数的最值点。
此
外,在微积分中,单调性也是重要的概念,它可以帮助我们理解导数的定义和性质。
总之,函数的单调性是数学中重要的概念,它可以帮助我们更好地理解函数的性质和解决问题。
我们需要认真研究和理解这个概念,以提高我们的数学能力。