递 推 数 列
- 格式:doc
- 大小:306.47 KB
- 文档页数:4
高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例:已知数列满足,,求。
解:由条件知:分别令,代入上式得个等式累加之,即所以,变式:(2004,全国I ,个理22.本小题满分14分)已知数列,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式.解:,,即,…………将以上k 个式子相加,得将代入,得,。
经检验也适合,类型2解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。
例:已知数列满足,,求。
解:由条件知,分别令,代入上式得个等式累乘之,即又,例:已知,,求。
解:。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,(n ≥2),则{a n }的通项解:由已知,得,用此式减去已知式,得当时,,即,又,,将以上n个式子相乘,得类型3(其中p,q均为常数,)。
解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。
例:已知数列中,,,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.变式:(2006,,文,14)在数列中,若,则该数列的通项_______________(key:)变式:(2006..理22.本小题满分14分)已知数列满足(I)求数列的通项公式;(II)若数列{b n}滿足证明:数列{b n}是等差数列;(Ⅲ)证明:(I)解:是以为首项,2为公比的等比数列即(II)证法一:①②②-①,得即③-④,得即是等差数列证法二:同证法一,得令得设下面用数学归纳法证明(1)当时,等式成立(2)假设当时,那么这就是说,当时,等式也成立根据(1)和(2),可知对任何都成立是等差数列(III)证明:变式:递推式:。
一、a n =p ·a n -1+q 型【例1】 某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和绿灯的概率都是,从开关第二次闭合12起,若前次出现红灯,则下次出现红灯的概率是,出现绿灯的概率是;若前次出现绿灯,则下次出现红灯的概率是,出现绿灯的概率132335是,记开关第n 次闭合后出现红灯的概率为P n 。
25(1)求:P 2;(2)求证:P n < (n ≥2) ;12(3)求。
lim n n P →∞解析:(1)第二次闭合后出现红灯的概率P 2的大小决定于两个互斥事件:即第一次红灯后第二次又是红灯;第一次绿灯后第二次才是红灯。
于是P 2=P 1·+(1-P 1)·=。
1335715(2)受(1)的启发,研究开关第N 次闭合后出现红灯的概率P n ,要考虑第n -1次闭合后出现绿灯的情况,有 P n =P n -1·+(1-P n -1)·=-P n -1+,133541535再利用待定系数法:令P n +x =-(P n -1+x )整理可得x =- 415919∴{P n -}为首项为(P 1-)、公比为(-)的等比数列 919919415P n -=(P 1-)(-)n -1=(-)n -1,P n =+(-)n -1 919919415138415919138415∴当n ≥2时,P n <+=91913812(3)由(2)得=。
lim n n P →∞919【例2】 A 、B 两人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,则由原掷骰子的人继续掷;若掷出的点数不是3的倍数时,由对方接着掷.第一次由A 开始掷.设第n 次由A 掷的概率为P n ,(1)求P n ;⑵求前4次抛掷中甲恰好掷3次的概率. 解析:第n 次由A 掷有两种情况:① 第n -1次由A 掷,第n 次继续由A 掷,此时概率为P n -1; 1236② 第n -1次由B 掷,第n 次由A 掷,此时概率为(1-)(1-P n -1)。
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
公务员考试行测常考题型:数列递推规律递推数列是数列推理中较为复杂的一类数列。
其推理规律变化多样,使得很多考生不易察觉和掌握。
要想掌握递推数列的解题方法,需要从两个方面入手。
一是要清楚递推数列的“鼻祖”,即最典型、最基础的递推数列;二是要明确递推规律的变化方式。
(一)递推数列的“鼻祖”1,1,2,3,5,8,13,21……写出这个数列之后,有不少考生似曾相识。
其中有一些考生知道,这个数列被称为“斐波那契(Febonacci,原名Leonardo,12-13世纪意大利数学家)数列”或者“兔子数列”。
这些考生中还有一些人知道这个数列的递推规律为:从第三项开始,每一项等于它之前两项的和,用数学表达式表示为这个递推规律是整个数列推理中递推数列的基础所在。
在公务员考试中,曾经出现过直接应用这个规律递推的数列。
例题1:(2002年国家公务员考试A类第4题)1,3,4,7,11,()A.14B.16C.18D.20【答案】:C。
【解析】:这道题可以直接应用斐波那契数列的递推规律,即因此所求项为7+11=18(二)递推规律的多种变式例题2:(2006年北京市大学应届毕业生考试第1题)6,7,3,0,3,3,6,9,5,()A.4B.3C.2D.1【答案】:A。
【解析】:这是很别致的一道试题。
从形式上看,这个数列很特殊,不仅给出的已知项达到了9项之多,而且每一项都是一位数字,由此可以猜到这个数列的运算规律。
这个数列从第三项开始存在运算递推规律取“”的尾数由此可知所求项为取“9+5=14”的尾数,即4这道题的运算递推规律是将两项相加之和变为了取尾数。
例题3:(2005年国家公务员考试二卷第30题,2006年广东省公务员考试第5题)1,2,2,3,4,6,()A.7B.8C.9D.10【答案】:C。
【解析】:初看这道题容易将题目错看为一个简单的等差数列1,2,3,4,5,6……正是因为存在这样“先入为主”的观点,使得这道题的运算递推规律被隐藏起来。
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
递推数列求通项公式-高考数学一题多解一、攻关方略数列学习中难度较高的一个内容是递推数列,由递推关系求通项公式是一种十分重要的题型,解题方法丰富多彩,注重分析递推式的结构特点,合理构造得到等差或等比等常见数列是解题的重要策略.下面对一些常见的由递推关系求通项公式的求法做一些归纳.第一类:型如()1n n a a f n +=+的一阶递推式,可改写为()1n n a a f n +-=的形式,左端通过“累加”可以消项;右端()f n 是关于n 的函数,可以求和.故运用“累加法”必定可行,即()()()112132111()n n n n k a a a a a a a a a f k --==+-+-+⋅⋅⋅+-=+∑.第二类:型如1()n n a g n a +=的递推式,可改写为1()n na g n a +=的形式.左端通过“迭乘”可以消项;右端通常也可以化简,故运用“迭乘法”必定可行,即3211121(1)(2)(1)(2)n n n a a a a a a n n g g a a a -=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅-≥.第三类:型如1n n a pa q +=+(1p ≠,0q ≠)的递推式,可由下面两种构造法求通项公式.构造法一:由1n n a pa q +=+及1n n a pa q -=+,两式相减得()11n n n n a a p a a +--=-,得{}1n n a a +-是首项为21a a -,公比为p 的等比数列,先求{}1n n a a +-的通项公式,再利用“累加法”求{}n a 的通项公式.构造法二:若1p =,则显然是以1a 为首项、q 为公差的等差数列;若1p ≠,0p ≠,0q ≠,则构造数列{}n a λ+,满足()1n n a p a λλ++=+.运用待定系数法,解得1q p λ=-,则1n q a p ⎧⎫+⎨⎬-⎩⎭是首项为11q a p +-,公比为p 的等比数列.第四类:型如1nn n pa a a q+=+(0p ≠,0q ≠,0n a ≠)的递推式,运用取倒数,构造数列1n a ⎧⎫⎨⎬⎩⎭,满足111n n q a pa p +=+,运用换元法,即令1n n b a =,得11n n q b b p p +=+,从而转换为第三类.第五类:型如1rn n a pa +=(0p >,0r ≠,1r ≠)的递推式,运用两边取对数法得1lg lg lg n n a r a p +=+,令lg n n b a =,转化为1lg n n b rb p +=+型,即第三类,再运用待定系数法.第六类:型如1n n a pa qn r +=++(1p ≠,0p ≠,0q ≠)的递推式,可构造数列{}n a n λμ++,满足()1(1)n n a n p a n λμλμ++++=++,运用待定系数法解得1q p λ=-,21(1)r qp p μ=+--,从而由等比数列求通项公式;进一步推广,若递推式中包含n 的二次项、三次项,则构造的数列中也同样包含对应次数项.第七类:型如1()n n a pa f n +=+(1p ≠,0p ≠)的递推式,可在等式两边同除以1n p +,构造数列nn a p ⎧⎫⎨⎬⎩⎭,满足111()n n n n n a a f n p p p +++=+,令n n n a b p =,则转化为11()n n n f n b b p ++=+,即第一类,再利用“累加法”求通项公式.第八类:型如满足:11a m =,22a m =,21n n n a pa qa ++=+(p 、q 是常数)的递推式,则称数列{}n a 为二阶线性递推数列,可构造数列{}1n n a a λ+-,满足()11n n n n a a a a λμλ+--=-,则,,p q λμλμ+=⎧⎨=-⎩即λ,μ为方程20x px q --=的两个根,此方程称之为特征方程,则数列{}n a 的通项公式n a 均可用特征根求得(即转化为第七类进一步求解).第九类:型如1n n n ra sa pa q++=+(0p ≠,0q ≠,0r ≠,0s ≠)的递推式,利用不动点法,其中rx sx px q +=+的根为该数列的不动点,若该数列有两个相异的不动点μ,则n n a a v μ⎧⎫-⎨⎬-⎩⎭为等比数列;若该数列有唯一的不动点μ,即方程等根时,1n a μ⎧⎫⎨⎬-⎩⎭为等差数列,这就是不动点求递推数列通项公式的方法.除上述9种类型之外还有换元法、数学归纳法(归纳一猜想一论证)等.给出相类似的递推式必有相应的破解之道,这是模型思想的运用,对所给的递推式借助于变形、代换、运算等方法转化为等差数列、等比数列这两类基本数列(模型)而求解.切变形、代换、运算的手段都是构造法的体现,真可谓:递推数列变化无穷,变形、代换方法众多.模型思想是根主线,合理构造顿显坦途.【典例】(2021·全国甲卷T17)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.选①②作条件证明③:(一)待定系数法解法一:【解析】待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.解法二:【解析】待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n +-=所以是等差数列.选②③作条件证明①:(二)定义法解法一:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43ab =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a =-<不合题意,舍去.综上可知{}n a 为等差数列.解法二:求解通项公式因为213a a ===也为等差数列,所以公差1d =()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.【针对训练】(2022年全国高考乙卷)1.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <2.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .3.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.4.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .(2022全国甲卷)5.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.6.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.7.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.8.对负整数a ,数43a +、77a +、283a a ++依次成等差数列.(1)求a 的值;(2)若数列{}n a 满足()112n n n a aa n *++=-∈N ,1a m =,求{}n a 的通项公式;(3)在(2)的条件下,若对任意n *∈N ,有2121n n a a +-<,求m 的取值范围.9.设0b >,数列{}n a 满足1a b =,()1121n n n nba a n a n --=≥+-(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,121n n a b +≤+.10.设数列{}n a 满足:11a =,12n n n a a -=-+(2n ≥),数列{}n b 满足:1(1)3n n n b a +=-⋅.求数列{}n b 的通项公式.参考答案:1.D【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,47b b <故D 正确.2.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.3.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯++⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.4.(1)2n n a =;(2)100480S =.【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.5.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-n n n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b n S b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;7.(1)11()3n n a -=,3n nn b =;(2)证明见解析.【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n nn n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.8.(1)2a =-(2)()()()1212n nn a m n -=⋅-+-⋅-(3)163m <【分析】(1)根据等差中项的性质可出关于a 的等式,结合a 为负整数可得出a 的值;(2)推导出数列()2n n a ⎧⎫⎪⎪⎨-⎪⎪⎩⎭为等差数列,确定该数列的首项和公差,即可求得数列{}n a 的通项公式;(3)由2121n n a a +-<对*n ∈N 恒成立结合参变量分离法可得出1243n m +<,求出1243n +的最小值,可得出实数m 的取值范围.【详解】(1)解:由题意可得()21414383a a a a +=++++,整理可得2280a a --=,a 为负整数,解得2a =-.(2)解:因为()1122n n n a a ++=-+-,等式两边同时除以()12n +-可得()()11122n nn n a a ++-=--,所以,数列()2n n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是首项为2m -,公差为1的等差数列,故()()122n n a m n =-+--,因此,()()()1212n n n a m n -=⋅-+-⋅-.(3)解:由2121n n a a +-<对*n ∈N 恒成立得()()()()()()22122212222222n n n n m n m n +--⋅-+-<⋅--⋅⋅+-对n *∈N 均成立.()2220n --> ,不等式两边同除()222n --,得()()()482222m n m n +-⋅<+-⋅-,得1243n m +<对n *∈N 恒成立,当1n =时,1243n +取最小值163,163m ∴<.9.(1)11(1)011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明见解析【分析】(1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【详解】(1)()1121n n n nba a n a n --=≥+- 1111(2)n n n n n a b b a --∴=+⨯≥当1b =时,11(2)1n n n n n a a -=+≥-,∴数列n n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,以1为公差的等差数列,1(1)1n n n n a ∴=+-⨯=,即1n a =,当0b >,且1b ≠时,11111(2)11n n n n n a b b b a -⎛⎫-+=+≥ --⎝⎭即数列11n n a b ⎧⎫+⎨⎬-⎩⎭是以11111(1)a b b b +=--为首项,公比为1b 的等比数列,111111(1)(1)n n n n a b b b b b b -⎛⎫∴+=⨯= ⎪---⎝⎭即(1)1n n nnb b a b -=-,∴数列{}n a 的通项公式是()111011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明:当1b =时,不等式显然成立当0b >,且1b ≠时,(1)1n n nnb b a b -=-,要证对于一切正整数n ,121n n a b +≤+,只需证1(1)211n n n nb b b b+-⨯≤+-,即证()11121011n nn n b b nb b b b +--≤+⨯>--)()1111n n b bb +-+⨯- ()1111n n b b b +-=+⨯-()()11211n n n b b b b +--=+⨯++⋯++()()22121121n n n n n n b b b b b b b -++--=++⋯+++++⋯++()12211111n n n n n b b b b b b bb b --⎡⎤⎛⎫=++⋯+++++⋯++ ⎪⎢⎥⎝⎭⎣⎦(222)2n n b nb ≥++⋯+=∴不等式成立,综上所述,对于一切正整数n ,有121n n a b +≤+,【点睛】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.10.223n n b =-⋅.【分析】利用辅助法,对于数列{}n a 的递推公式,两边同时除以2n ,根据数列构造法,可得答案.【详解】∵12n n n a a -+=,两边同时除以2n 得1111222n n n n a a --+⋅=.令2n n n a c =,则1112n n c c -=-+.两边同时加上23-得1212323n n c c -⎛⎫-=-⋅- ⎪⎝⎭.∴数列23n c ⎧⎫-⎨⎬⎩⎭是以123c -为首项,12-为公比的等比数列.∴112211133232n n n c c -⎛⎫⎛⎫⎛⎫-=-⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴211332n n c ⎛⎫=+⋅- ⎪⎝⎭.∴2122(1)33n n n n n a c ==⋅+⋅-⋅.又∵1(1)3n n n b a +=-⋅,∴12(1)233n n n n b a =⋅--=-⋅,。
二次函数递推数列二次函数递推数列是数学中的一个重要概念,它在许多领域中都有广泛应用。
本文将从定义、性质、应用等方面详细介绍二次函数递推数列。
一、定义二次函数递推数列是指满足以下递推式的数列:$$a_n=a_{n-1}+pcdot a_{n-2}+qcdot n^2$$其中$p$和$q$为常数,$a_0$和$a_1$为已知的初始值。
二、性质1. 通项公式二次函数递推数列的通项公式为:$$a_n=frac{1}{2p}left[(p+sqrt{p^2+4q})a_{n-1}-(p-2q+2pn)a_{n-2}right]+frac{(p-2q+2pn)}{2p}cdot n^2$$2. 通项公式的推导为了推导出上述通项公式,我们可以先将递推式改写为如下矩阵形式:$$begin{pmatrix}a_na_{n-1}end{pmatrix}=begin{pmatrix}1 & p1 & 0end{pmatrix}begin{pmatrix}a_{n-1}a_{n-2}end{pmatrix}+begin{pmatrix}qcdot n^2end{pmatrix}$$对于这个矩阵,我们可以求出其特征值和特征向量: $$begin{aligned}lambda_1 &= frac{p+sqrt{p^2+4}}{2}lambda_2 &= frac{p-sqrt{p^2+4}}{2}vec{x_1} &= begin{pmatrix}lambda_11end{pmatrix}vec{x_2} &= begin{pmatrix}lambda_21end{pmatrix}end{aligned}$$根据特征值和特征向量的定义,我们可以得到矩阵的对角化形式: $$begin{pmatrix}a_na_{n-1}end{pmatrix}=begin{pmatrix}vec{x_1} & vec{x_2}end{pmatrix}begin{pmatrix}lambda_1 & 00 & lambda_2end{pmatrix}begin{pmatrix}vec{x_1}^{-1} & vec{x_2}^{-1}end{pmatrix}begin{pmatrix}a_{1}a_{0}end{pmatrix}+begin{pmatrix}qcdot n^2end{pmatrix}$$由于矩阵$begin{pmatrix}vec{x_1} & vec{x_2}end{pmatrix}$是可逆的,所以我们可以将上式进一步化简: $$begin{pmatrix}a_{n-1}end{pmatrix}=frac{1}{lambda_1-lambda_2}begin{pmatrix}vec{x_1} & vec{x_2}end{pmatrix}begin{pmatrix}lambda_1 & 00 & lambda_2end{pmatrix}begin{pmatrix}vec{x_2}^{-1} & -vec{x_1}^{-1} end{pmatrix}begin{pmatrix}a_{1}a_{0}end{pmatrix}+begin{pmatrix}qcdot n^2end{pmatrix}$$然后我们可以将上式代入$a_n$的定义式中,得到:$$a_n=frac{1}{lambda_1-lambda_2}left[lambda_1^{n-1}cdot(lambd a_1 a_1-a_0)-lambda_2^{n-1}cdot(lambda_2a_1-a_0)right]+frac{lambda_2a_1-a_0}{lambda_1-lambda_2}cdotn^2+frac{q}{lambda_1-lambda_2}cdot n^2$$进一步化简,即可得到二次函数递推数列的通项公式。
递推数列求通项公式的常见类型及方法递推数列求通项即依据给出数列中相邻两项或几项的关系式,n a 与n S 的关系式等,求出通项公式,是数列中的重要内容,是高考中常见的题目.本文给出常见的类型和方法.1. )(1n f a a n n +=+.方法:叠加法. 令1,2,1-=n n,得21321(1)(2)(1)n n a a f a a f a a f n -=+=+=+-以上1-n 个式子相加,得111().n ni a a f i -==+∑ 例1.数列{}n a 中,)2(1,1211≥-+==-n n n a a a n n ,求数列{}n a 的通项. 解: 令n n ,,3,2 =,得212322121221331n n a a a a a a n n -=+-=+-=+-n n a a n -++-+-+=∴22211331221 11111223(1)111111(1)()()223112.a n n n n n =+++⨯⨯-=+-+-++--=- 2. )(1n f a a n n =+. 方法:累积法. 令1,2,1-=n n,得21321(1)(2)(1).n n a a f a a f a a f n -===-以上1-n 个式子求积,得)(111i f a a n i n-=∏+=. 例2. 数列{}n a 中,)2()11(,2121≥⋅-==-n a na a n n ,求数列{}n a 的通项.解: 由题1212)1)(1()11(--+-=-=n n n a nn n a n a ,令1,2,1-=n n ,得 21232212132243(1)(1)n n a a a a n n a a n -⨯=⨯=-+= 2221)1)(1(342231n n n a a n +-⋅⋅⨯⋅⨯⋅=∴ 11121.n a n n n +=⋅⋅+= 3. )0,1(1≠≠+=+q p q pa a n n . 方法一:配凑法.1().n n a p a λλ+-=-方法二:待定系数法.令)(1λλ-=-+n n a p a 比较已知得,.1q p q pλλλ-==- λ是方程q px x +=的根. q px x +=是特征方程.方程三: 两根同除以1+n p ,得111++++=n n n n n p q p a p a 转化为类型1. 例3(07.全国) 数列{}n a 中, ,3,2,1),2)(12(,21=+-==n a a a n n ,求数列{}n a 的通项. 解法一: )2)(12(1+-=+n n a a {}为公比的等比数列为首项,是以数列122222)2)(12(211--=--∴--=-∴+a a a a n n nn n na )12(2)12)(22(21-⨯=--=-∴- 故 2)12(2+-⨯=n n a解法二:令))(12(1λλ--=-+n n a a)12(2)12(-=--∴λλ 解得2=λ下同解法一.解法三:)12(2)12()2)(12(1-+-=+-=+n n n a a a两边同除以1)12(+-n ,得nn n n n a a )12(2)12()12(11-+-=-++ 令n n n n n a a b )12()12(+=-= 则n n n b b )12(21++=+.令.1,2,1-=n n 得11223112)12(2)12(2)12(2--++=++=++=n n n b b b b b b1211)12(2)12(2)12(2-+++++++=∴n n b b2)12(2)12(1])12(1)[12(2)12(21++=+-+-+⋅++=-n nn n n n b a )12(22)12(-⨯+=-=∴.4. )0,1(,1≠≠+=+q p q pa a n n n .方法一:两边同除以1+n p ,得111++++=n nn n n n p q p a p a 转化为类型一.方法二:待定系数法.令)(11-+-=-n n n n q a p q a λλ比较已知得p q q -=λ. 例4.数列{}n a 中,)1(,23,111≥+==+n a a a n n n ,求数列{}n a 的通项. 解法一:两边同除以13+n ,得1113233++++=n nn n n n a a . 令n n n a b 3=,则1132+++=n nn n b b . 令.1,2,1-=n n 得n n n n b b b b b b 323232113223212--+=+=+= n n n b b 32323213221-++++=∴ nn n n )32(1321])32(1[31323232311322-=--=++++=- n n n a 23-=∴.解法二:令)2(3211-+⋅-=-n n n n a a λλn n n 22321=-⋅∴-λλ解得2-=λ.即)2(3211n n n n a a +=+++,所以数列{}n n a2+是以321=+a 为首项,3为公比的等比数列. .23,32n n n n n n a a -==+∴故5. )1).((1≠+=+p n f pa a n n .方法:两边同除以1+n p ,得111)(++++=n n n n n pn f p a p a 转化为类型一. 例5. 数列{}n a 中,)1(,223,111≥-+==+n n a a a n n ,求数列{}n a 的通项.解: 两边同除以13+n ,得11132233+++-+=n n n n n n a a 令n nn a b 3=,得11322++-+=n n n n b b . 利用叠加法及错位相减法,以求得2123+-=n a n n . 6.)()(1n g a n f a n n +=+.方法: 两边同除以)()2()1(n f f f ,得)()2()1()()()2()1()()2()1(1n f f f n g n f f f a n f f f a n n +=+转化为类型一 例6. (2008年河南省普通高中毕业班教学质量调研考试)数列{}n a 中,)1(2)1(22,111≥++++==+n n n a n n a a n n ,求数列{}n a 的通项. 解: 令,2)(+=n n n f 则)2)(1(2211534231)()2()1(++=+⨯+-⨯⨯⨯⨯=n n n n n n n f f f 两边同除以)()2()1(n f f f ,得)2)(1(22)1(2)1(2)2)(1(21++++++=+++n n n n n n a n n a n n 即21)1(2)1()1)(2(+++=+++n na n a n n n n 令n n na n b )1(+=,则21)1(2++=+n b b n n令.1,2,1-=n n 得2122321223222n b b b b b b n n +=⨯+=⨯+=-)32(22221n b b n +++⨯+=∴3)12)(1(]16)12)(1([212++=-++⨯+⨯=n n n n n n 312+=∴n a n . 7. )(1n f a a n n =+. 方法: 由已知)1(12+=++n f a a n n ,两式相除,得)()1(2n f n f a a n n +=+. 例7. 数列{}n a 中,)1(,)31(,211≥==+n a a a n nn ,求数列{}n a 的通项. 解: 由题2,31121==a a a ,得612=a n n n a a )31(1=+ ………..① 112)31(+++=n n n a a ……...② ②÷①得 312=+n n a a k k a a a a a a 2421231,,,,,,和+∴都是以31为公比的等比数列 当n 为奇数时,21211)31(2--⋅==n n n q a a 当n 为偶数时,22222)31(61--⋅==n n n q a a ⎪⎪⎩⎪⎪⎨⎧⋅⋅=∴--为偶数,为奇数n n a n nn 2221)31(61,)31(2. 8.n n n qa pa a +=++12. 方法一: 配凑法.)(112n n n n a a a a αβα-=-+++方法二: 待定系数法. 令)(112n n n n a a a a αβα-=-+++,比较已知得 ⎩⎨⎧==+q p αββα 得出βα, 其中βα,是方程q px x +=2的两根,方程q px x +=2是特征方程.例8. 数列{}n a 中,)1(,65,5,11221≥-===++n a a a a a n n n ,求数列{}n a 的通项.解: 令)(112n n n n a a a a αβα-=-+++比较已知得⎩⎨⎧==+65αββα 得出2,3==βα )3(23112n n n n a a a a -=-∴+++数列{}n n a a 31-+是以2312=-a a 为首项,2为公比的等比数列.则n n n a a 231=-+,即n n n a a 231+=+.下同例4. 9.)0(,1≠++=+ac b aa d ca a n n n . 方法: 不动点法. 令bax d cx x ++=………(*) 若(*)有两重根,021x x x ==,则⎭⎬⎫⎩⎨⎧-01x a n为等差数列. 若(*)有两根,21x x ≠,则⎭⎬⎫⎩⎨⎧--21x a x a nn 为等比数列. 例9.(08,洛阳三练)数列{}n a 中,n n a a a -==+21,2111,求数列{}n a 的通项. 解:令xx -=21,得1=x . 111121111111-=----=---+n n n n a a a a , 为公差的等差数列为首项,是以1-2121111111-=-=-⎭⎬⎫⎩⎨⎧-∴a a n . 1)1()1(211--=-⨯-+-=-∴n n a n 1+=∴n n a n . 例10.(07.全国)数列{}n b 中,)1(3243,211≥++==+n b b b b n nn ,求数列{}n b 的通项. 解: 令3243++=x x x ,解得2,221=-=x x , 则411)12(2223243232432222+=-+-+++++=-+-+++n n n n n n n n n n b b b b b b b b b b 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+22n n b b 是以22222211-+=-+b b 为首项,4)12(+为公比的等比数列. 24)1(4)12()12(222222--+=+⋅-+=-+∴n n n nb b故1)12(1)12(22424-+++⋅=--n n nb .10. n n S a 与的关系.方法: ⎩⎨⎧-=-,,1n nn n S S S a 21≥=n n 可以向n a 转化,也可以向n S 转化.例11. 数列{}n a 的前n 项和,)1(12≥+=n a a S nn n ,求数列{}n a 的通项公式. 解法一: 1=n 时,1111212a a a S =+=,解得11=a )2(,1212111≥+=∴+=---n a a S a a S n n n nn n 两式相减得 11112---+-=n n n n n a a a a a ,)1(111--+-=-n n n n a a a a . 平方得 4)1()1(212122=+-+--n n n n a a a a . 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+221n n a a 是以212121=+a a 为首项,4为公差的等差数列。
递推数列一、知识点介绍定义1 对于任意N n ∈,由递推关系()n k n k n k n a a a f a ,,,21Λ-+-++= 确定的数列{}n a 称之为递推数列,或称递归数列.若f 是线性的,则称此数列为线性递推数列,否则称为非线性递推数列.数学竞赛中的数列问题主要涉及到递推数列,并且常常是非线性递推数列.定义2 若数列{}n a 从第k 项以后任一项都是其前k 项的线性组合,即n k k n k n k n a a a a λλλ+++=-+-++Λ2211 ①其中k N n λλλ,,,21Λ∈是常数,0≠k λ,则称{}n a 为k 阶线性递推数列,①称为{}n a 的递推方程.与递归方程相应的代数方程()02211≠+++=--k k k k k x x x λλλλΛ ②称为k 阶线性递归数列{}n a 的特征方程.例如,公比为q 的等比数列是一阶线性递归数列,递归方程为n n qa a =+1()0,0,1≠≠∈q a N n .等差数列是二阶线性递归数列,递归方程为()N n a a a n n n ∈-=++122.著名的斐波那契数列也是二阶线性递归数列,递归方程为()112≥+=++n a a a n n n ,初始条件为121==a a .1.一阶递归数列一阶递归数列的一般形式为: ()()()()(),为常数0.11≠⎩⎨⎧=+=+n p a a a n q a n p a n n其特例为:(1)()01≠=+p pa a n n ,这就是等比数列.(2)()0,01≠≠+=+q p q pa a n n . 当1=p 时数列为等差数列.当0,0,1≠≠≠q p p 时,可用待定系数法求解.令()λλ-=-=+n n a p a 1,求得p q -=1λ,从而有⎪⎭⎫ ⎝⎛--=--+p q a p p q a n n 111,所以数列⎭⎬⎫⎩⎨⎧--+p q a n 11是首项为p q a --11,公比为p 的等比数列.(3)()()01≠+=+p n q pa a n n . 两边同除以1+n p ,得()111++++=n n n n n pn q p a p a ,令n n n p a b =,则()11+++=n n n pn q b b ,由此可用累加的方法求出n b ,从而求出n a .(4) ()()01≠+=+q q a n p a n n .解决这类问题的思想方法,通常也是利用待定系数法构造类似于“等比数列”的新数列.二、递推数列例1 如图,ΛΛ,,,21n A A A 顺次在x 轴上,ΛΛ,,,,21n B B B 顺次在曲线x y =上,且11B OA ∆,221B A A ∆,……,n n A B A 1-n ∆,……为正三角形,求n OA .分析 22111,B A A B OA ∆∆Θ,332B A A ∆,……,都是正三角形,∴点1B 的横坐标为112121x OA =,点2B 的横坐标为)(21121x x x -+. 利用点1B ,2B ,3B ,……在曲线x y =上的条件,可以推出,,,321x x x ……,利用直线1+k k B A 的参数方程⎩⎨⎧+=+=οο60sin 60cos t y y t x x k k (其中k k x x t -=+1). 可推出k n =到1+k 的递推关系,则可用数学归纳法证明n x 的公式.解法1 ∵点)23,2x (111x B 在曲线x y =上,∴22311x x =,由此可得)21(31321⨯==x .直线21B A 的参数方程为⎪⎩⎪⎨⎧=+=οο60sin 60cos 32t y t x )(12x x t -=, ∴t t 2132432+=,即34,038232==--t t t , 32312343212⨯⨯==+=+=t x x . 类似地433143⨯⨯==x . 猜想)1(31+=n n x n .下面用数学归纳法证明.直线1+k k B A 的参数方程为⎩⎨⎧=+=οο60sin 60cos t y t x x k (k k x x t -=+1), ∴t x t k 21432+=,即04232=--k x t t . 如果设)1(31+=k k x k ,则0)1(34232=+--k k t t ,)1(32+=k t , ∴t x x k k +=+1)1(32)1(3+++=k k k =)2)(1(31++k k . 故1+=k n 时,命题)1(31+=n n x n 也正确.∴n 为一切自然数时,)1(31+=n n x n 都成立,即)1(31+=n n OA n . 解法2 同解法1,2,3221==x x . 依题意得n B 的坐标为)60tan 2,2x (11n οn n n x x x -+++. 又点n B 在曲线x y =上,所以23211+++=⋅-n n n n x x x x , 所以 )(2)(3121n n n n x x x x +=-++①以n 置换1+n ,得)(2)(3121--+=-n n n n x x x x ②①-②并整理,得)2)((31111-+-++--n n n n n x x x x x ()112-+-=n n x x ③因为011>--+n n x x ,所以,有322x 11n =+--+n n x x ④式④是二阶线性递归方程,可写成 32)()(11=----+n n n n x x x x . 所以数列{}n n x x -+1是以32为公差的等差数列,又3412=-x x ,所以 )1(32)1(32341+=-+=-+n n x x n n , ∑+=--=111)1(32n k n k x x ,]1)1(21[3232-++=n n x n )1(31+=n n . 即)1(31+=n n OA n . 说明 本例给出的数学问题转化为数列问题,给定一个数列一般有两种方式:一是给出通项公式)(n n f a =;二是给出前一项或有限项,再给出第n 项与前几项,,21--n n a a …的关系式(这一关系称为递推关系).于是,可用每项都递归到前几项的方法,逐个地求出各项.人们从问题的特例出发,借助于递推关系,猜出问题的一般结论,并通过递推关系,运用数学归纳法,证明自己猜想的思维方法,称为递推观点,这里不仅有归纳思维(从特殊到一般的合情推理),而且有利用递推关系来进行推理的逻辑思维.问题里的递推关系有的是明显的,但也有的是隐含的,由于它既是进行归纳思维的工具,又是数学归纳法论证部分的关键,因此根据题意分析出递推关系,是应用递推观点解题的首要任务,其次要善于应用递推关系的变形引入辅助数列,从而猜出一般规律.例2 设xa cot 1=,x n x a a n n )1sin(cos 1--=-,试求数列{}n a 的通项n a .分析 x a cot 1=,x x x x x a a sin cos cot sin cos 12-=-=x xx x x sin 2cos sin sin cos 22=-=, x x a a 2sin cos 23-=x x x x x x sin 3cos 2sin sin cos 2cos =-=,xx a a 3sin cos 34-=xx x x x x x sin 4cos sin sin 3sin cos 3cos =-=,……至此已猜出xnxa n sin cos =.这一猜想是否正确,有待于证明.证 根据分析,已猜出xnx a sin cos n =,下面应用数学归纳法证明当1=n 时,x xxa cot sin cos 1==,命题成立.设k n =时,命题成立,即xkx a k sin cos =.当1+=k n 时,x k x a a k k )11sin(cos 1-+-=+xx kx x kx sin sin sin cos cos -=xx k sin )1cos(+=,∴1+=k n 时,命题也成立. 故n 为一切自然数时,xnx a n sin cos =成立.例3 已知数列{}n a 中,21=a ,341+=+n n a S ,求n a .分析 本题的递推关系,不是1n +a 与n a 的关系式,因此必须把341+=+n n a S 改变形式.利用n n n S S a -=++11导出1+n a 与n a ,1-n a 之间的关系,引入适当的辅助数列,使问题获解.解 ∵)34(34111+-+=-=-++n n n n n a a S S a )(41--=n n a a∴)2(2422111--+-=-=-n n n n n n a a a a a a .令n n n a a c 21-=+,则12-=n n c c ,而52121=-=a a c ,(∵211234a a a S +=+=,∴93312=+=a a )∴{}n c 是以51=c 为首项,公比2=q 的等比数列.故 125-⋅=n n c ,∴ 11252-+⋅=-n n n a a . 两边同除以12+n ,得 452211=-++n n n n a a . 故数列⎭⎬⎫⎩⎨⎧n n a 2是以121=a 为首项,45为公差的等差数列.从此可得 45)1(12-+=n a nn . ∴)15(2)45451(22-=-+=-n n a n n n例4 若数列{}n a 满足01=a ,12=a ,且nn n a a a 22312n =+-++,求?=n a解 由已知递推式,得()nn n n n a a a a 22)2(112=---+++,令nn n a a b 21-=+,则nn n b b 21=-+,所以∑∑=-=-==--n k nk k k k n b b b b 221112)(,()∑-=+-==-nk nk n a a b 21121222,即 1221-=-+nn n a a ,两边同除以n 2,得n n n n n a a 2112211-=--+, 所以 ∑∑⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=-=-+11111121122n k n k k k kk k a a , ∑∑-+==-=-1-n 1k 111121122n k k n n a a )211()1(01----+=n n 121)2(-+-=n n .所以 12)2(1+-=-n n n a .例5 在数列{}n a 中,11=a ,31n +=+n na a a .求n a .解 由31n +=+n na a a 取倒数,得nn n n a a a a 31311+=+=+,⎪⎪⎭⎫ ⎝⎛+=++21132111n n a a . 所以数列⎭⎬⎫⎩⎨⎧+211n a 是以3为公比的等比数列,其首项为232112111=+=+a ,故nn a 3213232111n ⋅=⋅=+-. 所以131n -=n a .例6 若数列{}n a 满足51=a ,且3131+--=+n n n a a a ,,,2,1Λ=n 求n a . 解令1n +=n b a ,则111+=++n n b a ,2233)1(1)1(311+-+=++--+=++n n n n n b b b b b ,2412231+-=-+-+=+n n n n n b b b b b ,412111-=+n n b b . 再令nn b C 1=,则41211-=+n n C C .变形为)21(21211+=++n n C C .数列⎭⎬⎫⎩⎨⎧+21n C 是以211+C 即43为首项,以21为公比的等比数列,由等比数列通项公式,有1214321-⎪⎭⎫ ⎝⎛⋅=+n n C ,11223212143+--=-⎪⎭⎫ ⎝⎛=n nn n C ,所以nn n b 2321-=+,nn n n n n a 23322123211-+-=+-=++. 三、用特征根法求二阶线形递推数列通项求二阶线性齐次递推数列通项的一般方法.为了研究的方便,我们把递推式11-++=n n n qx px x 写成如下形式:011=---+n n n qx px x(Ⅰ)其中p 、q 为非零实常数. 定义1 方程02=--q pr r (Ⅱ)称为(Ⅰ)对应的特征根.定义2 如果一个数列满足递推公式(Ⅰ),则称这个数列为(Ⅰ)的一个解.定理1 若r 是(Ⅱ)的一个根,则}{nr 是(Ⅰ)的一个解.证明:因为r 是(Ⅱ)的一个根,所以02=--q pr r ,两边同乘以1-n r ,得011=---+n nn qr pr r .所以}{nr 是(Ⅰ)的一个解.定理 2 若}{nr 为(Ⅰ)的一个解,则{}ncr 也是(Ⅰ)的一个解,其中c 为任意常数;若{}nr 1与{}n r 2是(Ⅰ)的解,则{}n n r c r c 2211+也是(Ⅰ)的解.其中1c 、2c 为任意常数.证明:若{}nr 为(Ⅰ)的一个解,则011=---+n nn qrpr r两边同乘以c ,得011=---+n n n qcrpcr cr.所以, {}ncr 也是(Ⅰ)的一个解. 若{}n r 1与{}n r 2是(Ⅰ)的解,则011111=---+n n n qr pr r①012212=---+n n n qr pr r②21c c ⨯+⨯②①,得()()(221112211122111+-+-+-++n n n n n r c rc q rc rc p rc rc所以{}nn r c r c 2211+也是(Ⅰ)的解.定义3 含有两个任意常数1c 、2c 的解{}n nr c r c 2211+称为(Ⅰ)的通解;当给出两个初始值b x a x ==21,(b a ,为常数)以后,可以确定常数1c 及2c ,得到满足(Ⅰ)的一个解,这个解称为(Ⅰ)的一个特解.二阶递推数列的递推公式的通解含有两个任意常数,k 阶递推数列的递推公式的通解含有k 个任意常数,即通解所含任意常数的个数与递推数列的阶数相同.下面再来介绍特征根法.由递推公式(Ⅰ)的初始值b x a x ==21,(b a ,为常数)确定的二阶线性递推数列的通项可以这样来求:先写出(Ⅰ)对应的特征方程02=--q pr r ,然后根据特征根的三种情况,分别构造出(Ⅰ)的通解.(1)若方程(Ⅱ)的判别式042>+q p ,则特征方程有两个相异的实根1r 、2r ,这时所求通项由n n n r c r c x 2211+=给出,其中1c 、2c 由初始值b x a x ==21,确定.根据定理1、定理2与定义3,很容易得出这个结论.(2)若方程(Ⅱ)的判别式042=+q p ,则特征方程有两个相同的实根r r r ==21,这时,所求的通项由n n n nr c r c x 21+=给出,其中1c 、2c 由初始值b x a x ==21,(b a ,为常数)确定.因为r r r p 221=+=,所以()02212=⎪⎭⎫ ⎝⎛-+--+p r r q pr r nr n n . 所以 ()()01212=-+-+++n n n qnr r n p r n . 即{}n nr 也是(Ⅰ)的一个解.所以, {}nn nr c r c 21+是(Ⅰ)的通解.(3) 若方程(Ⅱ)的判别式042<+q p ,则特征方程02=--q pr r 有一对共轭虚根.设()θθθi rei r x ±=±=sin cos 2,1. 这时,所求的通项由()θθn c n c r x n n sin cos 21±=给出,其中21,c c 由初始值b x a x ==21,(b a ,为常数)确定.因为通项可写为θθin n in n n e Br e Ar x -+=的形式,令221i c c A -=,221i c c B +=. 其中21,c c 为任意常数,则θθin n in n n e r i c c e r i c c x -++-=222121()θθn c n c r n sin cos 21+=.上面的讨论可以列成下表:)θn 到此,我们可得到用特征根法求二阶线性递推数列通项的步骤:(i )由递推式011=---+n n n qx px x 写出对应的特征方程02=--q pr r ;(ii )求特征方程的根;(iii )按特征根的不同情况,写出通项的一般表达式;(iv )用初始值b x a x ==21,确定待定常数21,c c ,得出所求的通项.特征根法的特点是具有普遍性,同时又简便,易于掌握.由递推式求通项,转化为特征方程的根.四、非线性递归数列化归为线性递归数列的常见技巧在数学竞赛中,常常遇到一些具有一定难度的非线性递归数列,对这类问题有时不妨将其化归为线性递归数列,然后用特征根方法求解.1 因式分解例11 已知数列{}n a 中,1,2,1321-===a a a ,n n n n a a a a 1124+++=116-+-n n a a na 9+216n n a a --.求n a .分析:该递归数列是非线性齐次递归数列,不能直接用特征根方法.注意到递归式是二次齐次式,可通过因式分解将其化为一次齐次式.解:因为1111264-++++-=n n n n n n a a a a a a 2169nn n a a a -+- ()()113232-+--=n n n n a a a a , 则()3232321112311112⎪⎪⎭⎫ ⎝⎛-==⎪⎪⎭⎫ ⎝⎛-=-----+++n a a a a a a a a a n n n n n n Λ. 故n n n a a a 3212+-=++.其特征根方程为322+-=x x ,解得3,121-==x x .设()n n B A a 3-+=,代入初始值有()()⎪⎩⎪⎨⎧==⇒⎩⎨⎧=-+=-+.121,45231321B A B A B A所以,()n n a 312145-+=. 2 递推作差例12 已知数列{}n a 中,1321===a a a ,1213+=+++n n n n a a a a .求21212322+-+-n n n a a a .分析:该递归数列是非齐次非线性的,思考将其转化为齐次线性递归数列.为消去常数,可递推一步作差消去常数使其齐次化,再通过换元使其线性化.解:1213+=+++n n n n a a a a ①13214+=++++n n n n a a a a② ①②-得2132314+++++++-=-n n n n n n n n a a a a a a a a ,即n n n n n n n n a a a a a a a a 3322114++++++++=+.故()()n n n n n n a a a a a a +=++++++23241. 从而,24321++++++=+n n n n n n a a a a a a . 令nn n n a a a b +=++21,则2+=n n b b . 又211321=+=a a a b ,24=a ,312432=+=a a a b ,所以,21531====Λb b b ,31642====Λb b b .因此,当n 为奇数时,2121=+=++n n n n a a a b ,则.212n n n a a a -=++当n 为偶数时,3121=+=++n n n n a a a b ,则.312n n n a a a -=++ 故21212322+-+-n n n aa a ()()1221212122222-+-++---=n n n n n n a a a a a a 122122222+-+-=n n n n a a a a()12212222+-+-=n n n n a a a a212=⨯=.例13 设数列{}n a 和{}n b 满足0,100==b a ,且⎩⎨⎧-+=-+=++47836711n n n n n n b a b b a a ②①()Λ,2,1,0=n .证明:()Λ,2,1,0=n a n 是完全平方数.分析:这是一个二元非齐次线性递归数列,可先将二元降为一元,再递归作差将非齐次线性递归数列化为齐次线性递归数列,朝着用特征根方法的方向转化.证明:由式①得6731n n n a a b -+=+. 代入式②得467378673112--+⨯+=-++++n n n n n a a a a a .即 61412--=++n n n a a a ③ 用1+n 代换③中的n 得614123--=+++n n n a a a . ④③④-整理得n n n n a a a a +-=+++1231515. ⑤因10=a ,由00=b 及673010a a b -+=,得41=a . 由式②得4478001=-+=b a b .又由41=b 及673121a a b -+=,得492=a .式⑤的特征根方程是1151523+-=x x x ,即()()011412=+--x x x .解得.347,347,1321-=+==x x x 设()()nn n C B A a 347347-+++=. 将49,4,1210===a a a 代入解得41,21===C B A . 故()()n n n a 347413474121-+++=. 又()232347±=±, 则()()2134********+-++=n n n a()[]()[]{}232324122+-++=n n ()[]()()([{232323223241n n n -+-+++= ()()232213221⎥⎦⎤⎢⎣⎡-++=n n . 由二项式展开式得()()n n 32213221-++∑==-n k k k n k n C 023221()∑-+=-n k k k k n k n C 0231221 ∑⨯=≤≤-nm m m n m n C 202232212+≤≤-∈∑=N C nm m m n m n 202232.因此,n a 为完全平方数.说明:形如“p a A a A a A a n k k n k n k n ++++=-+-++Λ2211()()也为常数为常数,p ,,2,1k i A i Λ=”的递归数列或通过变形可化为该类型的递归数列,常常采用递归作差法.例如:1、数列{}n a 满足()N n a a a a nn n ∈-+==+236457,1210.证明:(1)对任意N n ∈,n a 为正整数;(2)对任意N n ∈,11-+n n a a 为完全平方数.2、已知数列{}()0≥n a n 满足00=a ,对于所有非负整数n ,有()51113021+++=+n n n n a a a a .求{}n a 的通项公式.3 取对数例14已知数列{}n a 中,5,121==a a ,且满足121211++=--+n nn n n aa a a a①求n a .分析:该递归数列是非线性的分式型且分母比分子复杂,可先平方取倒数,再因式分解、换元,然后取对数化归为齐次线性递归数列.解:式①平方后取倒数得212212211111--+++=n n n n n a a a a a 11111212-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=-n n a a . 从而,⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=+-+11111121221n n n a a a . 令112+=nn a b ,则11-+=n n n b b b ,2526,221==b b .易知0>n b .对11-+=n n n b b b 两边取常用对数得11lg lg lg -++=n n n b b b .令nn b F lg =,于是,11-++=n n n F F F ,2526lg ,2lg 21==F F ,这就是斐波那契数列,其特征根方程为012=--x x .解得251,25121-=+=x x . 设nn n B A F ⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+=251251.由2526lg ,2lg 21==F F ,进一步求得n F .从而,nF n b 10=,即nF na 10112=+.所以,1101-=nF n a .说明:取对数往往适用于乘积式递归数列,但必须为正项数列.不妨试试下题:已知数列{}n a 中,+∈R a n ,且,10,121==a a ()Λ,4,3103122==--n aa a n n n.求n a . 4 待定系数法例15 设数列{}n a 和{}n b 满足0,100==b a ,且⎩⎨⎧-+=-+=++47836711n n n n n n b a b b a a ②① ()Λ,2,1,0=n .证明:()Λ,2,1,0=n a n 是完全平方数.(同例13)证明:由式①得6731nn n a a b -+=+.代入式②得467378673112--+⨯+=-++++nn n n n a a a a a .即 61412--=++n n n a a a .(同例13)设()()p a p a p a n n n ---=-++1214(p 待定).展开比较系数知21=p .故⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=-++2121142112n n n a a a . 令21-=n n a c ,则nn n c c c -=++1214,27,4,21110===c a c .其特征根方程是01142=+-x x .解得347,34721-=+=x x . 所以,()()nnn B A c 347347-++=.由27,2110==c c ,得41==B A .故()()213474134741+-++=nn n a .以下同例13.说明:形如形如“p a A a A a A a n k k n k n k n ++++=-+-++Λ2211()()也为常数为常数,p ,,2,1k i A i Λ=”的递归数列,常常采用待定系数法,构造形如“{}()为常数u u a n +”或“{}()为待定常数、v u v un a n ++”的齐次线性递归数列.例16 已知数列{}n a 满足121==a a ,且()+++∈++=N n a a a nn n n 218312.求n a .分析:该递归数列是非线性递归数列,不能采用递推一步作差的方法化归为线性递归数列,可以利用待定系数的方法将其转化为线性递归数列.解:设222++⋅-n n A a ()()nnn n A aA a2182311⋅-+⋅-=++()待定A .展开比较系数知201-=A .则222201++⋅+n n a⎪⎭⎫ ⎝⎛⋅++⎪⎭⎫ ⎝⎛⋅+=++n n n n a a 2201182201311.令nn n a b 2201⋅+=,则n n n b b b 18312+=++.易知56,101121==b b .由特征根方程法有()nnn B A b 36-+⋅=.将56,101121==b b 代入得51,121-==B A .从而,()53126n n n b --=.所以,()20253126n n n n a ---=.说明:形如“nn k k n k n k n ma A a A a A a ++++=-+-++Λ2211()()也为常数为常数,m ,,2,1k i A i Λ=”的递归数列,常常采用待定系数法构造形如“{}()为常数u um a n +”的齐次线性递归数列.5 不动点方法例17 已知无穷数列{}n a 满足,,10y a x a ==()Λ,2,11111=++=--+n a a a a a n n n n n . (1)对于怎样的实数x ,y ,总存在正整数0n ,使当0n n ≥时,n a 恒为常数?(2)求数列{}n a 的通项公式. 分析:这是一个分式型递归数列,很容易想到不动点方法,通过变形转化为()+-+∈=Nn b b b n n n 11.在迭代的过程中可以发现指数与斐波那契数列有关,由此作为切入点,将非线性转化为线性问题.解:由递归方程()x xx x f =+=212,得不动点1±=x .由不动点方法111111111111+++-++=+-----++n n n n n n n n n n a a a a a a a a a a 111111----+++--+=n n n n n n n n a a a a a a a a ()()()()111111++--=--n n n n a a a a 111111+-⋅+-=--n n n n a a a a .令11+-=n n n a a b ,则()+-+∈=N n b b b n n n 11.易知110+-=x x b ,111+-=y y b .注意到()23221-----==n n n n n n b b b b b b。
数列递推公式的九种方法1.等差数列递推公式:在等差数列中,相邻两项之间存在相同的差。
如果已知等差数列的首项为a1,公差为d,可以求得递推公式为an = a1 + (n-1)d,其中n为第n项。
2.等比数列递推公式:在等比数列中,相邻两项之间的比值相同。
如果已知等比数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。
3. 几何数列递推公式:几何数列是一种特殊的等比数列,其公比是常数项。
如果已知几何数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。
4. 斐波那契数列递推公式:斐波那契数列是一种特殊的数列,每一项都是前两项的和。
斐波那契数列的递推公式为an = an-1 + an-2,其中n为第n项,a1和a2为前两项。
5. 回型数列递推公式:回型数列是一种特殊的数列,它的每一项都是由周围的四个数字决定的。
回型数列的递推公式为an = an-1 + 8 * (n-1),其中n为第n项,a1为第一项。
6. 斯特恩-布洛特数列递推公式:斯特恩-布洛特数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的约数个数决定的。
斯特恩-布洛特数列的递推公式为an = 2 * an-1 - an-2,其中n为第n项,a1和a2为前两项。
7. 阶乘数列递推公式:阶乘数列是一种特殊的数列,它的每一项都是前一项的阶乘。
阶乘数列的递推公式为an = n * (n-1) * ... * 3 * 2 * 1,其中n为第n项,a1为第一项。
8. 斯特林数列递推公式:斯特林数列是一种特殊的数列,它的每一项都是由前一项和当前项之积的和决定的。
斯特林数列的递推公式为an = an-1 * n + 1,其中n为第n项,a1为第一项。
9. 卡特兰数列递推公式:卡特兰数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的乘积决定的。
卡特兰数列的递推公式为an = (4*n - 2) / (n + 1) * an-1,其中n为第n项,a1为第一项。
递推数列求通项公式的典型方法1、 a n+1=a n +f (n )型 累加法:a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =f (n-1)+f (n-2)+…f (1)+ a1例1 已知数列{a n }满足a 1=1,a n+1=a n +2n (n ∈N *), 求a n 解: a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =2n-1+2n-2+…+21+1=2n -1(n ∈N *)例 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n则,211112-+=a a 312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=2、)(1n g a ann =+型累积法:112211.....a a aa a a a a n n n n n ---=所以()()()()11...321a g n g n g n g a n ---=∴例2:已知数列{a n }满足()*1N n n a ann ∈=+,.11=a 求n a解:112211...a a aa a a a a n n n n n ---==()()()()!11...321-=---n n n n ()()+∈-=∴N n n a n !1例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题). 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 3.q pa a n n +=+1型(p,q 为常数)方法:(1)⎪⎪⎭⎫⎝⎛-+=-++111p q a p p q a n n ,再根据等比数列的相关知识求n a . (2)()11-+-=-n n n n a a p a a 再用累加法求n a .(3)111++++=n n n n n p qp a p a ,先用累加法求n n p a 再求n a 例3.已知{}n a 的首项a a =1(a 为常数),()2,21≥∈=+-n N n a a n n ,求n a解 设()λλ-=--12n n a a ,则1-=λ ()1211+=+∴-n n a a{}1+∴n a 为公比为2的等比数列。
数列的几种递推公式数列是指按照一定规律排列的一组数。
在数学中,数列可以通过递推公式来定义,并通过这些公式推导出数列中的每一项。
一、等差数列等差数列是指数列中的每一项与它前一项之差都相等的数列。
递推公式为:an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。
等差数列常用的公式有:1. 前n项和公式:Sn = n/2 * (a1 + an) = n/2 * (2a1 + (n-1)d)2.等差数列的通项公式:an = a1 + (n-1)d二、等比数列等比数列是指数列中的每一项与它前一项之比都相等的数列。
递推公式为:an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。
等比数列常用的公式有:1.前n项和公式(当,r,<1时):Sn=a1*(1-r^n)/(1-r)2.当,r,>=1时,等比数列的通项公式无法表示为简单的形式,但可以利用对数函数求出。
三、斐波那契数列斐波那契数列是指数列中的每一项都是前两项之和的数列。
递推公式为:an = an-1 + an-2,其中a1=1,a2=1或a1=0,a2=1、斐波那契数列的特点是前两项都是1,从第三项开始,每一项均等于它前面两个数之和。
斐波那契数列的递推公式不是一个通式,但可以通过递归方式计算任意项。
四、等差-等比混合数列等差-等比混合数列是指数列中的每一项既满足等差数列的递推公式,又满足等比数列的递推公式。
递推公式为:an = (a1 + (n-1)d) * r^(n-1),其中an为第n项,a1为首项,d为等差公差,r为等比公比。
等差-等比混合数列的前n项和公式比较复杂,一般通过将混合数列分解为等差数列和等比数列,再分别求和的方式计算。
五、三角数列三角数列是一种特殊的数列,其中每一项都是等差数列的前n项和。
递推公式为:an = n(n+1) / 2,其中an为第n项。
六、幂指数数列幂指数数列是一种特殊的数列,其中每一项都是常数a的指数幂的形式。
递推数列的概念与性质数列是数学中重要的概念之一,而递推数列是数列中常见的一种形式。
本文将介绍递推数列的概念与性质,并通过例子来说明其应用。
一、递推数列的概念递推数列是一种由前一项或前多项推出后一项的数列。
其基本形式可以表示为:给定数列的首项$a_1$和递推关系$f(n)$,则数列的通项公式可以表示为:\[ a_n = f(a_{n-1}) \]其中$n$表示数列的位置。
递推数列常见的表示方法有三种:显式表示、隐式表示和递归定义。
显式表示是通过给定递推公式得到数列项的直接表达式,而隐式表示是通过给定递推公式得到数列项的关系式。
递归定义则是通过给定数列的首项和递推关系逐步推导后一项。
二、递推数列的性质1. 有界性:递推数列可以是有界或无界的。
有界数列是指存在一个实数$M>0$,使得对于所有的$n\in\mathbb{N}$,都有$|a_n|\leq M$。
无界数列则是相反的情况。
2. 单调性:递推数列可以是单调递增或单调递减的。
单调递增数列是指对于所有$n\in\mathbb{N}$,都有$a_n\leq a_{n+1}$。
单调递减数列则是相反的情况。
3. 整体性:递推数列可以是整体有序或整体无序的。
整体有序数列是指对于所有的$m,n\in\mathbb{N}$,如果$m<n$,则有$a_m\leq a_n$。
整体无序数列则是相反的情况。
4. 极限性:递推数列可以是收敛或发散的。
收敛数列是指存在一个有限的实数$L$,使得数列中的所有项都无限接近$L$。
发散数列则是相反的情况。
三、递推数列的应用举例1. 斐波那契数列斐波那契数列是一个经典的递推数列,其前两项为1,从第三项开始,每一项都是前两项之和。
其显式表示为:\[ a_n = a_{n-1} + a_{n-2} \]2. 几何数列几何数列是一个常见的递推数列,其首项$a_1$和公比$q$确定后,每一项都是前一项乘以公比。
其显式表示为:\[ a_n = a_{n-1} \cdot q \]递推数列在数学中有着广泛的应用,例如在金融领域的复利计算、物理学中的运动学问题等。
递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。
一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。
例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。
解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。
答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。
解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
geogebra递推数列(原创实用版)目录1.Geogebra 简介2.递推数列概念3.Geogebra 制作递推数列的方法4.递推数列的应用案例5.总结正文【1.Geogebra 简介】Geogebra 是一款免费的数学软件,主要用于几何、代数和数据等方面的教学。
它提供了丰富的工具和功能,便于用户进行数学实验和探究。
在 Geogebra 中,用户可以创建点、线、圆、函数等数学对象,并进行相应的操作和变换。
【2.递推数列概念】递推数列是指一个数列,其中每一项的值都依赖于它前面的项。
递推数列通常用 a1, a2, a3,...表示,其中 a1 是首项,a2 是第二项,以此类推。
递推数列的通项公式可以用来计算数列中的任意一项。
【3.Geogebra 制作递推数列的方法】在 Geogebra 中制作递推数列,可以通过以下步骤实现:(1)创建一个函数。
在 Geogebra 中,用户可以创建自定义函数来表示递推数列。
例如,创建一个表示斐波那契数列的函数。
(2)输入函数的递推关系式。
在 Geogebra 的函数编辑器中,输入表示递推关系的式子。
例如,输入斐波那契数列的递推关系式:a(n) =a(n-1) + a(n-2)。
(3)生成数列。
在 Geogebra 中,用户可以输入一个整数 n,表示要求数列的前 n 项。
然后,Geogebra 会自动计算出数列的前 n 项,并将它们以列表的形式展示出来。
【4.递推数列的应用案例】递推数列在数学中有广泛的应用,例如斐波那契数列、等差数列、等比数列等。
在 Geogebra 中,用户可以利用递推数列功能探究各种数列的性质和规律。
例如,用户可以创建一个表示斐波那契数列的函数,并观察数列的前若干项。
通过这种方式,用户可以更好地理解斐波那契数列的性质,如数列的增长速度、数的分布等。
【5.总结】Geogebra 是一款实用的数学软件,它提供了丰富的功能和工具,便于用户进行数学实验和探究。
递 推 数 列高一数学第三章《数列》专题讲座之三我们把数列连续若干项之间的等量关系称为数列的递推关系,由递推关系及初始值可以确定的数列叫递推数列,常见的递推数列是线性递推数列(或称循环数列,线性递归数列).一、推数列通项公式的基本求法1形如()n f a a n n +=+1的递归式,其通项求法为()()()123121--++-+-+=n n n a a a a a a a a =()()()1211-++++n f f f a例1已知211=a ,1121-+=-n a a n n ,(n ≥2),求n a 解:()()()123121--++-+-+=n n n a a a a a a a a =21+()11223++-n n n =()()21122≥++-n n n n 2形如()n n a n f a =+1型的递归式,其通项求法为()()()()21211≥-=n n f f f a a n例2设数列{}n a 中,11=a ,且n n a n S 2=,求n a .解:当n ≥2时,1--=n n n S S a ,依题意,有n n a n S 2=,()1211---=n n a n S 两式相减得:()1221---=n n n a n a n a ,故111-+-=n n a n n a ,∴()11+-=n n n f , ∴()12342132111111+=---+-=+-=-n n a n n n n n n a n n a n n ,由于11=a 满足上式∴()12+=n n a n3形如()11≠+=+p q pa a n n 型的一阶递推式,可化为()1111≠⎪⎪⎭⎫⎝⎛--=--+p p q a p p q a n n 的形式,()11111≠⎪⎪⎭⎫ ⎝⎛--+-=-p p p q a p q a n n 求解 例3设数列{}n a 中,11=a ,且431-=-n n a a ,(n ≥2),求n a . 解:()2321-=--n n a a ,()11322--+=n n a a =132--n4形如()()11≠+=+p n q pa a n n 型的递推式,两边同除以1+n p ,得()111++++=n n n n n pn q p a p a 转化为第一种形式求解.例4.设数列{}n a 中,11=a ,且nn n a a 5321⋅+=-,(n ≥2),求n a .解:两边同除以n2得,nnn n n n a a 2532211⋅+=--,令n n n b a =2,则1112---=n n n b a , ∴()()()123121--++-+-+=n n n b b b b b b b b =⎪⎪⎭⎫ ⎝⎛+++nn252532122 =12255-⎪⎭⎫⎝⎛n∴11235++⋅-=n n n a ,本题也可以将原式两边同除以n5得,3552511+⋅=--n n n n a a ,令n nnb a =5,则1115---=n n n b a ,则原式变为3521+=-n n b b 再按一阶递推数列的求法也可求出. 5特征方程:对于二阶线性递推数列{}n x ,满足012=++++n n n bx ax x , ①其中a,b 是常数,且0≠b .若有等比数列{}n x 满足公式①,则x 必满足相应的方程02=++b ax x ②; 反之,特征方程②有一个实根α,则等比数列{}n α必满足递推公式①;当042>-b a ,方程②有两个不相等的实根α,β,则数列{}nα,{}nβ均是①的解,并且对任意常数21,c c ,有{}n n c c βα21+也是①的解.如果给出初始条件,则可以求出通项公式.例5已知数列{}n a 中,21=a ,32=a ,且06512=+-++n n n a a a ,求n a .解:解法1,(特征根法)对于相应的特征根方程0652=+-x x 有两个不等的实根2,3,则它的通解为n n n c c a 3221+=,把21=a ,32=a 代入得32221c c +=,2221323c c +=,231=c ,312-=c ,故所求的通解是:11323---⋅=n n n a 解法2:(待定系数法)设6,5=⋅=+βαβα,即3,2==βα,则数列{}n a 的递推公式可以改写成()063212=++-++n n n a a a ,即:()n n n n a a a a 232112-=-+++ =()1223--n n a a =…=()nn a a 32312-=-①()n n n n a a a a 323112-=-+++=()1232--n n a a =…=()n n a a 233212⋅-=-②由①、②得11323---⋅=n n n a6韦达定理法:例如已知1245,0210++==+n n n a a a a ,求通项n a ,通过去根号,整理得:01102112=-+-++n n n n a a a a ,以()1-n 代替上式中的n 得:01102112=-+---n n n n a a a a ,这样1+n a 与1-n a 是二次方程011022=-+-n n a x a x 的两根,由韦达定理知n n n a a a 1011=+-+,再仿照5特征根法求解.7简单的分式数列:设()()0,0≠-≠++=bc ad c dcx bax x f ,{}n a 满足递推关系()1-=n n a f a ,其中n ≥2,且初始值()11a f a ≠.若方程dcx bax x ++=有两个不等的实根p,q,则q a p a k q a p a n n n n --⋅=----11,这里qc a pc a k --=,即⎭⎬⎫⎩⎨⎧--q a p a n n 是以qc a pca k --=的等比数列;若 方程d cxb ax x ++=有唯一的实根p,则k p a p a n n +-=--111,这里d a c k +=2,即⎭⎬⎫⎩⎨⎧-p a n 1是以k 为公差的等差数列.例7已知数列{}n a 中,41=a ,4231++=+n n n a a a ,求{}n a 的通项公式.解:解方程423++=x x x 得,有两个不等的实根1和—2,21522111+-⋅=+---n n n n a a a a 1115221-⎪⎭⎫⎝⎛+-=n a a15221-⎪⎭⎫ ⎝⎛=n ,21112552-----+=n n n n n a 8可转化为等差(比)的数列:例8若数列{}n a 中,11=a ,1->n n a a ,且()21114-+=++n n n n a a a a n ≥1,求{}n a 通项公式.解:显然数列各项均为不小于1的正值,开方得1211-+=++n n n na a a a ,配方有()121=-+nn a a ,因为1->n n a a ,所以11=-+n n a a ,故{}na 是等差数列,得n a n =,2n a n =. 例9已知{}n a 中,61=a ,()1121≥+=+n a a a n nn ,求{}n a 的通项公式.解:由条件得2111=--n n a a ,所以数列⎭⎬⎫⎩⎨⎧n a 1是等差数列,()6111212611-=-+=n n a n ,11126-=n a n .例10已知21=a ,且()12221≥+=+n a a a nn n ,求{}n a 的通项公式.解:解方程x x x 222+=得,有两解2±,由此可得()n nn a a a 22221+=++,()nn n a aa 22221-=-+,两式相除有:2112222⎪⎪⎭⎫⎝⎛-+=-+++n n n n a a a a ,两边取对数得22lg222lg11-+=-+++n n n n a a a a ,所以数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+22lgn n a a 是等比数列,所以12111112222lg 22lg 222lg -⎪⎪⎭⎫ ⎝⎛-+=-+=-+-++n a a a a n n n ,12222222-⎪⎪⎭⎫⎝⎛-+=-+n n n a a ,本题也可以反复迭代得2112222⎪⎪⎭⎫ ⎝⎛-+=-+++n nn n a a a a =…=121122-⎪⎪⎭⎫⎝⎛-+n a a =122222-⎪⎪⎭⎫⎝⎛-+n 由此解出:()()()()11112222222222222------+-++=n n n n n a。