人教版初中数学七年级下册
- 格式:docx
- 大小:16.35 KB
- 文档页数:8
最新人教版七年级数学下册教案案例是教学理论的故乡。
一个典型的案例有时也能反应人类认识实践上的真谛,从众多的案例中,可以寻觅到理论假定的支持性或反对性论据,并避免地道从理论的研究进程中的偏差。
今天作者在这里整理了一些最新202X人教版七年级数学下册教案,我们一起来看看吧!最新202X人教版七年级数学下册教案1学习目标1.经历视察、操作、想像、推理、交换等活动,进一步发展推理能力和有条理表达能力.2.掌控直线平行的条件,领会归纳和转化的数学思想学习重难点:探索并掌控直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判定题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.三、挑选题1.如图3所示,下列条件中,不能判定AB∥CD的是( )A.AB∥EF,CD∥EFB.∠5=∠A;C.∠ABC+∠BCD=180°D.∠2=∠32.右图,由图和已知条件,下列判定中正确的是( )A.由∠1=∠6,得AB∥FG;B.由∠1+∠2=∠6+∠7,得CE∥EIC.由∠1+∠2+∠3+∠5=180°,得CE∥FI;D.由∠5=∠4,得AB∥FG四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判定直线a、b的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历视察、操作、想像、推理、交换等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理进程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的运用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习进程平行线的判定方法有几种?分别是什么?二.巩固练习:1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.(第1题) (第2题)2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.二、挑选题.1.如图,下列判定不正确的是( )A.由于∠1=∠4,所以DE∥ABB.由于∠2=∠3,所以AB∥ECC.由于∠5=∠A,所以AB∥DED.由于∠ADE+∠BED=180°,所以AD∥BE2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.最新202X人教版七年级数学下册教案2七年级数学下册二元一次方程组说课稿一、说教材分析1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
七下数学人教版内容
七年级下册的数学人教版内容主要包括以下几个部分:
1. 相交线:介绍两条直线相交形成4个角的情况,包括对顶角、同位角、内错角和同旁内角的概念。
2. 垂线:介绍两条直线垂直的情况,包括垂直的定义、垂足的概念以及点到直线的距离的测量方法。
3. 平行线:介绍两条直线平行的情况,包括平行的定义和判定方法。
4. 实数:介绍实数的概念,包括平方根、算术平方根等。
5. 平移:介绍平移的概念,即在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
这些内容是七年级下册数学人教版教材的主要知识点,旨在帮助学生掌握基本的数学知识和技能,提高数学思维能力。
七年级数学(下)知识点1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
4.平行线:在同一平面内,永不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.对顶角的性质:对顶角相等。
10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
注意:坐标轴上的点不在任何一个象限内。
第七章三角形一.知识框架二.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
新人教版七年级数学下册全册教案(新教材)特别说明:本教案为最新人教版教材(改版后)配套教案,各单元教学内容如下:第五章相交线与平行线第八章二元一次方程组5.1 相交线 8.1 二元一次方程组5.2 平行线及其判定 8.2 消元——解二元一次方程组5.3 平行线的性质 8.3 实际问题与二元一次方程组5.4 平移 8.4 三元一次方程组的解法第六章实数第九章不等式与不等式组6.1 平方根 9.1 不等式6.2 立方根 9.2 一元一次不等式6.3 实数 9.3 一元一次不等式组第七章平面直角坐标系第十章数据的收集、整理与描述7.1 平面直角坐标系 10.1 统计调查7.2 坐标方法的简单应用 10.2 直方图10.3 课题学习从数据谈节水12课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【自主学习】1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征?【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。
人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
人教版七年级数学下册教材分析一、教材概览人教版七年级数学下册教材是初中数学的重要教材之一,旨在进一步提高学生的数学素养,培养他们的数学思维能力、解决问题能力和创新能力。
本册教材主要包括数与代数、图形与几何、概率与统计等方面的内容,涉及的知识点较为广泛,难度逐渐加大。
二、知识结构本册教材的知识点主要包括整数、有理数、代数式、方程、三角形、四边形、圆等。
这些知识点被有机地整合在各个章节中,从简单到复杂,层层递进,形成了完整的知识结构体系。
在编排上,教材充分考虑了学生的认知规律,便于学生逐步掌握数学知识。
三、重点与难点本册教材的重点和难点主要体现在以下几个方面:1.有理数的运算:有理数是初中数学的基础之一,要求学生掌握其加、减、乘、除等基本运算,以及运算的法则和技巧。
2.代数式的变形:代数式是初中数学的重要知识点,要求学生掌握代数式的化简、变形等基本技能,能够进行简单的代数运算。
3.方程的求解:方程是初中数学的重要内容之一,要求学生掌握一元一次方程的求解方法,理解方程的基本性质和概念。
4.三角形的性质与判定:三角形是初中几何的重要内容之一,要求学生掌握三角形的基本性质和判定条件,能够解决与三角形相关的问题。
5.四边形的性质与判定:四边形是初中几何的重要内容之一,要求学生掌握四边形的基本性质和判定条件,能够解决与四边形相关的问题。
6.圆的性质与判定:圆是初中几何的重要内容之一,要求学生掌握圆的基本性质和判定条件,能够解决与圆相关的问题。
四、教学方法针对本册教材的特点和学生的实际情况,建议采用以下教学方法:1.实物操作法:通过实物操作,增强学生的感性认识,帮助他们更好地理解数学概念和性质。
2.讲解与示范法:教师通过讲解和示范,帮助学生掌握数学知识和技能,理解数学思想和方法的运用。
3.小组合作学习法:通过小组合作学习,培养学生的合作意识和协作能力,促进他们互相学习、互相帮助。
4.个性化学习法:针对不同学生的实际情况,采用个性化的学习方法和辅导方案,满足他们的学习需求。
人教版七年级下册数学教学设计5篇人教版七年级下册数学教学设计1一、教学内容分析1.2有理数1.2.2数轴。
这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。
同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。
日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。
通过问题情境类比得到数轴的概念,是这节课的主要学习方法。
同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
二、学生学习情况分析(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;(2)学生学习本节课的知识障碍。
学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
三、设计思想从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数伴以温度计为模型,引出数轴的概念。
教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。
直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。
例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗它是不是存在等。
初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。
具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。
其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。
二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。
其中,a和b可以是任意实数或代数式。
三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。
这意味着没有其他形式的二次多项式可以表示为完全平方。
展开性:完全平方公式可以展开为a²±2ab+b²的形式。
这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。
对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。
这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。
四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。
这两项代表了公式中的主要部分,它们决定了公式的整体形状。
乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。
这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。
正负号:完全平方公式中的正负号取决于中间项是正是负。
如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。
五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。
人教版数学七年级下册6.3《实数》教学设计一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数知识的基础上,进一步学习实数的定义、性质和运算。
本节内容是整个初中数学的重要基础,对学生来说是全新的概念。
教材从学生的实际出发,通过引入无理数的概念,让学生感受实数的广泛性,进而引入实数的概念,使学生对实数有一个直观的认识。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的知识,对数的运算、大小比较等有一定的基础。
但实数是一个全新的概念,与有理数有很大的区别。
学生在学习过程中,可能对无理数的概念、实数的性质和运算产生困惑。
因此,在教学过程中,要注重引导学生从实际出发,理解实数的定义,掌握实数的性质和运算。
三. 教学目标1.了解实数的定义,掌握实数的性质和运算。
2.能够运用实数解决实际问题,提高解决问题的能力。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算。
五. 教学方法1.情境教学法:通过生活实例,引导学生从实际出发,理解实数的定义和性质。
2.互动教学法:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
3.实践操作法:通过大量的练习,让学生掌握实数的运算方法。
六. 教学准备1.准备相关的生活实例,用于导入新课。
2.准备PPT,展示实数的性质和运算。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如计算房屋面积、身高、体重等,引导学生从实际出发,了解无理数的概念。
进而引出实数的概念,让学生对实数有一个直观的认识。
2.呈现(10分钟)通过PPT展示实数的性质和运算,让学生对实数有一个全面的认识。
主要包括实数的定义、性质(如正实数、负实数、零实数等)和运算(如加法、减法、乘法、除法等)。
3.操练(10分钟)让学生进行实数运算的练习,巩固所学知识。
可以设置一些具有挑战性的题目,让学生在解决问题过程中,加深对实数运算的理解。
人教版初中数学七年级下册篇一:人教版七年级下册数学目录人教版七年级下册数学目录篇二:最新人教版七年级数学下册全册教案5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学反思教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角. 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等).三、范例学习学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9 四、课堂小结学生活动:表格中的结论均由学生自己口答填出.五、布置作业:课本P3练习5.1.2垂线(第一课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线. 重点两条直线互相垂直的概念、性质和画法. 教学反思教学过程一、创设问题情境1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线??,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.篇三:人教版七年级数学下册教案年级:姓名:数学教案七年级数学下册数学教案(七年级下册)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角. 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等).三、范例学习学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9 四、课堂小结学生活动:表格中的结论均由学生自己口答填出.五、布置作业:课本P3练习教学后记:5.1.2垂线(第一课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线. 重点两条直线互相垂直的概念、性质和画法. 教学过程一、创设问题情境1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线??,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b 的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系? 教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。
如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。
4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB 垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图. 5.简单应用(1)学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例. (2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等; ③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补. 二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L 的垂线吗?能画几条?通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L 的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直. 教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质1:过一点有且只有一条直线与已知直线垂直.2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图: (1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线. 三、课堂小结本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?四、布置作业:课本P7练习,P9.3,4,5,9.。