两角和与差的正弦、余弦、正切公式说课稿 教案
- 格式:doc
- 大小:122.78 KB
- 文档页数:3
第三章第一节两角和与差的正弦、余弦和正切公式第三课时导入新课思路1。
(复习导入)让学生回忆上节课所学的六个公式,并回忆公式的来龙去脉,然后让一个学生把公式默写在黑板上或打出幻灯.教师引导学生回顾比较各公式的结构特征,说出它们的区别和联系,以及公式的正用、逆用及变形用,以利于对公式的深刻理解.这节课我们将进一步探究两角和与差的正弦、余弦、正切公式的灵活应用.思路2。
(问题导入)教师可打出幻灯,出示一组练习题让学生先根据上节课所学的公式进行解答.1.化简下列各式:(1)cos(α+β)cos β+sin(α+β)sin β;(2)错误!-错误!-sin x -cos x ;(3)sin α+βsin α-βsin 2αcos 2β+错误!。
答案:(1)cos α;(2)0;(3)1。
2.证明下列各式:(1)sin α+βcos α-β=错误!; (2)tan(α+β)tan(α-β)(1-tan 2αtan 2β)=tan 2α-tan 2β;(3)错误!-2cos(α+β)=错误!.答案:证明略.教师根据学生的解答情况进行一一点拨,并对上节课所学的六个公式进行回顾复习,由此展开新课.推进新课错误!错误!①请同学们回忆这一段时间我们一起所学的和、差角公式。
②请同学们回顾两角和与差公式的区别与联系,可从推导体系中思考.活动:待学生稍做回顾后,教师打出幻灯,出示和与差角公式,让学生进一步在直观上发现它们内在的区别与联系,理解公式的推导充分发挥了向量的工具作用,更要体会由特殊到一般的数学思想方法.教师引导学生观察,当α、β中有一个角为90°时,公式就变成诱导公式,所以前面所学的诱导公式其实是两角和与差公式的特例.在应用公式时,还要注意角的相对性,如α=(α+β)-β,错误!=(α-错误!)-(错误!-β)等.让学生在整个的数学体系中学会数学知识,学会数学方法,更重要的是学会发现问题的方法,以及善于发现规律及其内在联系的良好习惯,提高数学素养.sin(α±β)=sinαcosβ±cosαsinβ〔S(α±β)〕;cos(α±β)=cosαcosβ∓sinαsinβ〔C(α±β)〕;tan(α±β)=错误!〔T(α±β)〕.讨论结果:略.错误!思路1例1利用和差角公式计算下列各式的值.(1)sin72°cos42°-cos72°sin42°;(2)cos20°cos70°-sin20°sin70°;(3)错误!。
两角和与差的正弦、余弦、正切公式整体设计教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的. 三维目标1.在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.课时安排2课时教学过程第1课时导入新课思路 1.(旧知导入)教师先让学生回顾上节课所推导的两角差的余弦公式,并把公式默写在黑板上或打出幻灯片,注意有意识地让学生写整齐.然后教师引导学生观察cos(α-β)与cos(α+β)、sin(α-β)的内在联系,进行由旧知推出新知的转化过程,从而推导出C(α+β)、S(α-β)、S(α+β).本节课我们共同研究公式的推导及其应用.思路2.(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所学公式,又为本节新课作准备.若sinα=55,α∈(0,2π),cosβ=1010,β∈(0,2π),求cos(α-β),cos(α+β)的值.学生利用公式C (α-β)很容易求得cos (α-β),但是如果求cos (α+β)的值就得想法转化为公式C (α-β)的形式来求,此时思路受阻,从而引出新课题,并由此展开联想探究其他公式.推进新课新知探究提出问题①还记得两角差的余弦公式吗?请一位同学到黑板上默写出来.②在公式C (α-β)中,角β是任意角,请学生思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C (α-β)来推导cos(α+β)=?③分析观察C (α+β)的结构有何特征?④在公式C (α-β)、C (α+β)的基础上能否推导sin(α+β)=?sin(α-β)=? ,能否推导出tan(α-β)=?的结构特征如何? 教师打出课件,然后引导学生观察两角差的余弦公式,既然可以是任意角,是怎样任意的?你会有些什么样的奇妙想cos(α-β)与cos(α+β)中角的内在联系,学生β,所以α-(-β)=α+β〔也有的会根据加减运β)的形式〕.这时教师适时引导学生转移到公式我们称以上等式为两角和的余弦公式,记作C (α+β).对问题②,教师引导学生细心观察公式C (α+β)的结构特征,可知“两角和的余弦,等于这两角的余弦积减去这两角的正弦积”,同时让学生对比公式C (α-β)进行记忆,并填空:cos75°=cos(_________)==__________=___________.对问题③,上面学生推得了两角和与差的余弦公式,教师引导学生观察思考,怎样才能得到两角和与差的正弦公式呢?我们利用什么公式来实现正、余弦的互化呢?学生可能有的想到利用诱导公式⑸⑹来化余弦为正弦(也有的想到利用同角的平方和关系式sin 2α+cos 2α=1来互化,此法让学生课下进行),因此有sin(α+β)=cos[2π-(α+β)]=cos [(2π-α)-β] =cos(2π-α)cosβ+sin(2π-α)sinβ =sinαcosβ+cosαsinβ.在上述公式中,β用-β代之,则sin(α-β)=sin[α+(-β)]=sinαcos(-β)+cosαsin(-β)=sinαcosβ-cosαsinβ.因此我们得到两角和与差的正弦公式,分别简记为S (α+β)、S (α-β).对问题④⑤,教师恰时恰点地引导学生观察公式的结构特征并结合推导过程进行记忆,同时进一步体会本节公式的探究过程及公式变化特点,体验三角公式的这种简洁美、对称美.为强化记忆,教师可让学生填空,如sin(θ+φ)=___________,sin 75sin 72cos 75cos 72ππππ+=__________. 对问题⑥,教师引导学生思考,在我们推出了公式C (α-β)、C (α+β)、S (α+β)、S (α-β)后,自对问题⑥,让学生自己联想思考,两角和与差的正切公式中α、β、α±β的取值是任意的吗?学生回顾自己的公式探究过程可知,α、β、α±β都不能等于2π+kπ(k∈Z ),并引导学生分析公式结构特征,加深公式记忆.对问题⑦⑧,教师与学生一起归类总结,我们把前面六个公式分类比较可得C (α+β)、S (α+β)、T (α+β)叫和角公式;S (α-β)、C (α-β)、T (α-β)叫差角公式.并由学生归纳总结以上六个公式的推导过程,从而得出以下逻辑联系图.可让学生自己画出这六个框图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时教师应提醒学生注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ),在化简求值中就经常应用到,使解题过程大大简化,也体现了数学的简洁美.对于两角和与差的正切公式,当tanα,tanβ或tan(α±β)的值不存在时,不能使用T(α±β)处理某些有关问题,但可改用诱导公式或其他方法,例如:化简tan(2π-β),因为tan2π的值不存在,所以改用诱导公式tan(2π-β)=βββπβπsincos)2cos()2sin(=--来处理等.应用示例思路1例1 已知sinα=53-,α是第四象限角,求sin(4π-α),cos(4π+α),tan(4π-α)的值.活动:教师引导学生分析题目中角的关系,在面对问题时要注意认真分析条件,明确要求.再思考应该联系什么公式,使用公式时要有什么准备,准备工作怎么进行等.例如本题中,要先求出cosα,tanα的值,才能利用公式得解,本题是直接应用公式解题,目的是为了让学生初步熟悉公式的应用,教师可以完全让学生自己独立完成.解:由sinα=53-,α是第四象限角,得cosα=54)53(1sin122=--=-a.∴tanα=aacossin=43-.于是有sin(π-α)=sinπcosα-cosπsinα=,1027)53(225422=-⨯-⨯cos(4π+α)=cos4πcosα-sin4πsinα=,1027)53(225422=-⨯-⨯tan(α-4π)=4tantan14tantanππaa+-=aatan11tan+-=7)43(1143-=-+--.点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.变式训练1.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=42621222322-=⨯-⨯, tan105°=tan(60°+45°)= 311345tan 60tan 145tan 60tan -+=-+ =-(2+3). 2.设α∈(0,2π),若sinα=53,则2sin(α+4π)等于( ) A.57 B.51 C.27 D.4 答案:A例2 已知sinα=32,α∈(2π,π),cosβ=43-,β∈(π,23π). 求sin(α-β),cos(α+β),tan(α+β). 活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S (α-β)、C (α+β)、T (α+β)应先求出cosα、sinβ、tanα、tanβ的值,然后利用公式求值,但要注意解题中三角函数值的符号. 解:由sinα=32,α∈(2π,π),得 cosα=a 2sin 1--=-2)32(1--=35-,∴tanα=552-. 又由cosβ=31-,β∈(π,23π). sinβ=β2cos 1--=47)43(12-=---, ∴tanβ=7.∴sin(α-β)=sinαcosβ-cosαsinβ =32×(43-)-(12356)47()35(--=-⨯-. ∴cos(α+β)=cosαcosβ-sinαsinβ=(35-)×(43-)-32×(47-) =.127253+ ∴tan(α+β)=35215755637)552(137552tan tan 1tan tan ++-=⨯--+-=-+βαβα=17727532+-.点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解:设电视发射塔高CD=x 米,∠C AB =α,则sinα=6730, 在Rt△ABD 中,tan(45°+α)=3030+x tanα. 于是x=30tan )45tan(30-+αα , 又∵sinα=6730,α∈(0,2π),∴cosα≈6760,tanα≈21.11+55又∵cosB=135且45°<B<90°,∴sinB=1312. ∴sinC=sin[180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=53×135+54×1312=6563, cosC=cos [180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB =53×1312-54×135=6516. 点评:本题是利用两角和差公式,来解决三角形问题的典型例子,培养了学生的应用意识,也使学生更加认识了公式的作用,解决三角形问题时,要注意三角形内角和等于180°这一暗含条件.变式训练在△ABC 中,已知sin(A-B)cosB+cos(A-B)sinB≥1,则△ABC 是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰非直角三角形答案:C思路2例1 若sin(43π+α)=135,cos(4π-β)=53,且0<α<4π<β<43π,求cos(α+β)的值. 活动:本题是一个典型的变角问题,也是一道经典例题,对训练学生的运算能力以及逻辑思维能力很有价值.尽管学生思考时有点难度,但教师仍可放手让学生探究讨论,教师不可直接给出解答.对于探究不出的学生,教师可恰当点拨引导,指导学生解决问题的关键是寻找所求角与已知角的内在联系,引导学生理清所求的角与已知角的关系,观察选择应该选用哪个公式进行求解,同时也要特别提醒学生注意:在求有关角的三角函数值时,要特别注意确定准角的范围,准确判断好三角函数符号,这是解决这类问题的关键.学生完全理清思路后,教师应指导学生的规范书写,并熟练掌握它.对于程度比较好的学生可让其扩展本题,或变化条件,或变换所求的结论等.如教师可变换α,β角的范围,进行一题多变训练,提已知α,β∈(43π,π),sin(α+β)=53-,sin(β-4π)=1312, 求cos(α+4π)的值. 解:∵α,β∈(43π,π),sin(α+β)=53-,sin(β-4π)=1312, ∴23π<α+β<2π,2π<β-4π<43π. ∴cos(α+β)=54,cos(β-4π)=135-. ∴cos(α+4π)=cos [(α+β)-(β-4π)] =cos(α+β)cos(β-4π)+sin(α+β)sin(β-4π)=54×(135-)+(53-)×1312=6556-. 例2 化简.sin sin )sin(sin sin )sin(sin sin )sin(a a a a θθθβθβββ-+-+- 活动:本题是直接利用公式把两角的和、差化为两单角的三角函数的形式,教师可以先让学生自己独立地探究,然后进行讲评.解:原式=aa a a a a sin sin sin cos cos sin sin sin sin cos cos sin sin sin sin cos cos sin θθθθβθβθββββ-+-+- =a a a a a a a a sin sin sin sin sin cos cos sin sin sin sin sin sin cos sin cos sin sin sin sin sin sin sin cos sin cos sin βθβθβθθβθβθβθβθβαθβ-+-+-知能训练课本本节练习1—4.1.(1)426-,(2)426-,(3)426+,(4)2-3. 2.10334-. 3.263512- 4.-2.作业已知0<β<4π,4π<α<43π,cos(4π-α)=53,sin(43π+β)=135,求sin(α+β)的值. 解:∵4π<α<43π,∴2π-<4π-α<0.∴sin(4π-α)=2)53(1--=54-. 又∵0<β<4π,∴43π<43π+β<π,cos(43π+β)=2)135(1--=1312-. ∴sin(α+β)=-cos(2π+α+β)=-cos [(43π+β)-(4π-α)] =-cos(43π+β)cos(4π-α)-sin(43π+β)sin(4π-α) =-(1312-)×53135-×(54-)=6556. 课堂小结1.先由学生回顾本节课都学到了哪些数学知识和数学方法,有哪些收获与提高,在公式推导中你悟出了什么样的数学思想?对于这六个公式应如何对比记忆?其中正切公式的应用有什么条件限制?怎样用公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:我们本节课要理解并掌握两角和与差的正弦、余弦、正切公式及其推导,明白从已知推得未知,理解数学中重要的数学思想——转化思想,并要正确熟练地运用公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.第2课时导入新课思路 1.(复习导入)让学生回忆上节课所学的六个公式,并回忆公式的来龙去脉,然后让一个学生把公式默写在黑板上或打出幻灯.教师引导学生回顾比较各公式的结构特征,说出它们的区别和联系,以及公式的正用、逆用及变形用,以利于对公式的深刻理解.这节课我们将进一步探究两角和与差的正弦、余弦、正切公式的灵活应用.思路2.(问题导入)教师可打出幻灯,出示一组练习题让学生先根据上节课所学的公式进行解答.1.化简下列各式(1)cos (α+β)cosβ+sin (α+β)sinβ; (2)cos sin 1tan cos sin cos sin sin 22---+--x x x x x x x ; (3).tan tan cos sin )sin()sin(2222αββαβαβα+-+ 2.证明下列各式 (1);tan tan 1tan tan )cos()sin(βαβαβαβα++=-+(2)tan (α+β)tan (α-β)(1-tan 2tan 2β)=tan 2α-tan 2β;(3).sin sin )cos(2sin )2sin(αββααβα=+-+ 答案:1.(1)cosα;(2)0;(3)1.2.证明略.教师根据学生的解答情况进行一一点拨,并对上节课所学的六个公式进行回顾复习,由此展开新课.推进新课新知探究提出问题①请同学们回忆这一段时间我们一起所学的和、差角公式.②请同学们回顾两角和与差公式的区别与联系,可从推导体系中思考.活动:待学生稍做回顾后,教师打出幻灯,出示和与差角公式,让学生进一步在直观上发现它们内在的区别与联系,理解公式的推导充分发挥了向量的工具作用,更要体会由特殊到一般的数学思想方法.教师引导学生观察,当α、β中有一个角为90°时,公式就变成诱导公式,所以前面所学的诱导公式其实是两角和与差公式的特例.在应用公式时,还要注意角的相对性,如α=(α+β)-β,)2()2(2βαβαβα---=+等.让学生在整个的数学体系中学会数学知识,学会数学方法,更重要的是学会发现问题的方法,以及善于发现规律及其内在联系的良好习惯,提高数学素养.sin (α±β)=sinαcosβ±cosαsinβ〔S(α±β)〕;cos (α±β)=cosαcosβsinαsinβ〔C (α±β)〕;tan (α±β)=βαβαtan tan 1tan tan ±〔T (α±β)〕. 讨论结果:略.应用示例思路1例1 利用和差角公式计算下列各式的值.(1)sin72°cos42°-cos72°sin42°;(2)cos20°cos70°-sin20°sin70°; (3)15tan 115tan 1-+ 活动:本例实际上是公式的逆用,主要用来熟悉公式,可由学生自己完成.对部分学生,教师点拨学生细心观察题中式子的形式有何特点,再对比公式右边,马上发现(1)同公式S (α-β)的右边,(2)同公式C (α+β)右边形式一致,学生自然想到公式的逆用,从而化成特殊角的三角函数,并求得结果.再看(3)式与T (α+β)右边形式相近,但需要进行一定的变形.又因为tan45°=1,原式化为15tan 45tan 115tan 45tan -+,再逆用公式T (α+β)即可解得. 解:(1)由公式S (α-β)得原式=sin(72°-42°)=sin30°=21.(2)由公式C (α+β)得原式=cos(20°+70°)=cos90°=0. (3)由公式T (α+β)得原式=15tan 45tan 115tan 45tan -+=tan(45°+15°)=tan60°=3. 点评:本例体现了对公式的全面理解,要求学生能够从正、反两个角度使用公式.与正用相比,反用表现的是一种逆向思维,它不仅要求有一定的反向思维意识,对思维的灵活性要求也高,而且对公式要有更全面深刻的理解. 变式训练 1.化简求值:(1)cos44°sin14°-sin44°cos14°; (2)sin14°cos16°+sin76°cos74°;(3)sin(54°-x)cos(36°+x)+cos(54°-x)sin(36°+x). -. 解:∵f(x)为偶函数,∴f(-x)=f(x),即sin(-x+θ)+cos(-x-θ)=sin(x+θ)+cos(x -θ), 即-sinxcosθ+cosxsinθ+cosxcosθ-sinxsinθ =sinxcosθ+cosxsinθ+cosxcosθ+sinxsinθ. ∴sinxcosθ+sinxsinθ=0.∴sinx(sinθ+cosθ)=0对任意x 都成立.∴2sin(θ+4π)=0,即sin(θ+4π)=0. ∴θ+4π=kπ(k∈Z ).∴θ=kπ-4π(k∈Z ).又θ∈[0,2π),∴θ=43π或θ=47π.点评:本例学生可能会根据偶函数的定义利用特殊值来求解.教师应提醒学生注意,如果将本例变为选择或填空,可利用特殊值快速解题,作为解答题利用特殊值是不严密的,以此训练学生逻辑思维能力.活动:本题虽小但其意义很大,从形式上就可看出来,左边是两个函数,而右边是一个函数,教师引导学生给予足够的重视.对于此题的证明,学生首先想到的证法就是把等式右边利用公式S (α+β)展开,化简整理即可得到左边此为证法,这是很自然的,教师要给予鼓励.同时教师可以有目的的引导学生把等式左边转化为公式S (α+β)的右边的形式,然后逆用公式化简即可求得等式右边的式子,这种证明方法不仅仅是方法的变化,更重要的是把两个三角函数化为一个三角函数. 证明:方法一:右边=2(sin6πcosα+cos 6πsinα)=2(21cosα+23sinα)=cosα+3sinα=左边.方法二:左边=2(21cosα+23sinα)=2(sin 6πcosα+cos 6πsi nα)asinx+bcosx=22b a +sin(x+φ),通过引入辅助角φ,可以将asinx+bcosx 这种形式的三角函数式化为一个角的一个三角函数的形式.化为这种形式可解决asinx+bcosx 的许多问题,比如值域、最值、周期、单调区间等.教师应提醒学生注意,这种引入辅助角的变换思想很重要,即把两个三角函数化为一个三角函数,实质上是消元思想,这样就可以根据三角函数的图象与性质来研究它的性质.因此在历年高考试题中出现的频率非常高,是三角部分中高考的热点,再结合续内容的倍角公式,在解答高考物理试题时也常常被使用,应让学生领悟其实质并熟练的掌握它.例4 (1)已知α+β=45°,求(1+tanα)(1+tanβ)的值; (2)已知sin(α+β)=21,sin(α-β)=31,求.tan tan βα 活动:对于(1),教师可与学生一起观察条件,分析题意可知,α+β是特殊角,可以利用两角和的正切公式得tanα,tanβ的关系式,从而发现所求式子的解题思路.在(2)中,我们欲求.tan tan βα若利用已知条件直接求tanα,tanβ的值是有一定的困难,但细心观察公式S (α+β)、S (α-β)发现,它们都含有sinαcosβ和cosαsinβ,而.tan tan βα化切为弦正是βαβαsin cos cos sin ,由此找到解题思路.教学中尽可能的让学生自己探究解决,教师不要及早地给以提示或解答. 解:(1)∵α+β=45°,∴tan(α+β)=tan45°=1. 又∵tan(α+β)=,tan tan 1tan tan βαβα-+∴5121125sin cos cos sin tan tan ===βαβαβα点评:本题都是公式的变形应用,像(1)中当出现α+β为特殊角时,就可以逆用两角和的正切公式变形tanα+tanβ=tan(α+β)(1-tanαtanβ),对于我们解题很有用处,而(2)中化切为弦的求法更是巧妙,应让学生熟练掌握其解法. 课堂小结1.先让学生回顾本节课的主要内容是什么?我们学习了哪些重要的解题方法?通过本节的学习,我们在运用和角与差角公式时,应注意什么?如何灵活运用公式解答有关的三角函数式的化简、求值、恒等证明等问题.2.教师画龙点睛:通过本节课的学习,要熟练掌握运用两角和与差的正弦、余弦、正切公式解决三角函数式的化简、求值、恒等证明等问题,灵活进行角的变换和公式的正用、逆用、变形用等.推导并理解公式asinx+bcosx=22b a +sin(x+φ),运用它来解决三角函数求值域、最值、周期、单调区间等问题.。
《两角和与差的正弦、余弦和正切公式(第一课时)》教学设计1.经历探索两角差余弦公式的过程,发展学生逻辑推理素养.2.掌握公式()C αβ-,初步体会公式()C αβ-的意义,发展学生逻辑推理、数学运算素养. 教学重点:经历推导两角差余弦公式的过程,知道两角差余弦公式的意义. 教学难点:发现差角余弦公式与圆的旋转对称性间的联系.Geogebra 软件、PPT 课件.资源引用:【知识点解析】认识两角差的余弦公式【知识点解析】运用公式给角求值问题的一般思路(一)整体感知 引导语:本节我们主要的研究内容是:三角恒等变换,即在不改变含有三角函数的式子的值的前提下,对式子变形.三角恒等变形在求值、化简、证明中有着十分广泛的应用.之前我们学习过的同角三角关系和诱导公式,都是三角恒等变换的重要工具.今天我们在此基础上学习新的恒等变换公式.问题1:我们之前学习过诱导公式,它们的共同点是,等号左侧都是一个终边落在坐标轴上的特殊角与一个任意角的和或差,现在,我们希望将它们一般化,得到新的公式.你认为新公式应具备怎样的特点?预设的师生活动:学生思考并回答,教师进行引导并排除不合理的回答. 预设答案:新公式应该含有两个任意角的和或差.设计意图:对诱导公式进行梳理归纳,引出任意两个角的和与差,为后续的学习和研究指明方向.同时,指明了诱导公式与即将研究的和角、差角公式之间是特殊与一般的关系. 问题2:之前我们利用圆的对称性证明了诱导公式,你还记得当时我们证明诱导公式的思路和步骤吗?预设的师生活动:学生回顾并回答,教师可酌情引导学生复习回顾.预设答案:第一步,从“形”的角度出发,找到相互对称的两个角的终边关系;第二步,从“数”的角度考虑,写出单位圆上相互对称的的点的坐标;第三步,“数形”融合,将前两步的结果整合,得出结论.设计意图:回顾诱导公式的证明思路,可供随后探究差角余弦公式时参考借鉴.(二)新知探究问题3:先前我们在单位圆中利用圆的对称性推导出诱导公式,下面我们继续借助单位圆,采用同样的思路研究含有两个任意角,αβ的三角恒等变形公式.首先,我们考虑两个任意角终边不重合时的情形.如果已知任意角,αβ的正弦、余弦,那么cos()αβ-与它们有什么关系呢?设计意图:这个问题直接指向本课时的核心内容,但学生暂时难以解答,故通过以下追问引导学生逐步接近答案.追问1:首先我们从“形”的角度出发,你认为该问题中涉及到的基本角有哪些?请你将它们连同单位圆一起画在坐标系中,将重要的点标注出来,并观察图形,你能发现哪些可能有用的等量关系.预设答案:基本角为,,αβαβ-,重要的点包括三个角的终边与单位圆的交点(依次记为11,,P A P ),始边与单位圆的交点A .可能有用的等量关系是11PA PA =.师生活动:学生按照要求作图,并寻找等量关系,若寻找时遇到困难,教师演示动态几何图形,帮助并引导学生发现11PA PA =,或找多名同学展示他们作出的图形,让学生们根据多幅图形寻找共同规律.此外,学生可能在此环节得到其它“没用”的等量关系,教师亦可收集起来,与学生们探讨其是否“有用”,最终将其它“没用”的等量关系剔除掉.设计意图:引导学生发现导出公式()C αβ-的关键步骤:11PA PA =.追问2:你能证明这个等量关系吗?预设的师生活动:教师演示动态图形,验证猜想的正确性不会随着角,αβ终边位置的改变而改变.学生通过思考或交流,完成证明.如果必要的话,教师可以简单介绍圆的各种对称性(包括圆的旋转对称性在内)作为提示.预设答案:可以借助圆的旋转对称性证明11A P AP=,进而得到11A P AP =;可以借助圆的旋转对称性证明三角形OAP 与三角形11OA P 全等,进而得到11AP A P =;或者直接利用圆的旋转对称性证明线段11,A P 端点在旋转后分别与,A P 重合,从而11AP A P =.设计意图:引导学生借助圆的旋转对称性完成关键步骤11AP A P =的证明.追问3:接下来,我们从“数”的角度考虑,你能写出刚刚得到的几何等量关系式中出现过的点的坐标吗?预设的师生活动:学生按照要求写出坐标,教师演示动态图形,指出各点的坐标不会随着,αβ终边位置的变化而变化.预设答案:1(cos ,sin )P αα,1(cos ,sin )Aββ,(cos(),sin())P αβαβ--,(1,0)A . 设计意图:参照先前发现并证明诱导公式的思路,按部就班地进行操作.同时也在为将来学习平面解析几何提供预备性体验.追问4:已知平面直角坐标系任意两点111(,)P x y ,222(,)P x y ,则点12,P P 之间的距离d =.请你借助以上“两点间的距离公式”,融合以上“形”与“数”的探究,你能得到什么结论?预设的师生活动:教师可运用勾股定理对距离公式进行简单的推导.学生综合各方面信息进行演算,教师可指派若干学生对其结果进行交流展示.预设答案:根据两点间距离公式,结合11PA PA =,有= 整理得cos()cos cos sin sin αβαβαβ-=+ (*).设计意图:通过一系列追问作为引导,彻底完成问题2的解答.问题4:如果两个任意角终边重合,上述结论成立吗?预设答案:当,αβ终边重合时,cos cos ,sin sin αβαβ==,此时等式(*)左侧cos 2π1k ==,右侧22sin cos 1αα=+=,两侧的值相等,因此上述结论仍然成立.设计意图:完成公式另一种情况的论证,在这个过程中,也体现了分类与整合的数学思想,有利于培养学生严谨的思维习惯.教师讲解:综合问题3与问题4的结果,可知cos()cos cos sin sin αβαβαβ-=+对任意角,αβ均成立.此公式给出了任意角,αβ的正弦、余弦与其差角αβ-的余弦之间的关系,称为差角的余弦公式,简记作()C αβ-.★资源名称:【知识点解析】认识两角差的余弦公式★使用说明:本资源展现“认识两角差的余弦公式”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.例1 证明:(1)cos(π)cos x x -=-; (2)πcos sin 2x x ⎛⎫-= ⎪⎝⎭; (3)cos()cos x x -=; (4)cos(π)cos x x +=-.预设的师生活动:可以叫四位同学上黑板做,然后教师点评.预设答案:证明:(1)将公式()C αβ-中的,αβ分别替换为π,x ,得cos(π)cos πcos sin πsin cos x x x x -=+=-;(2)将公式()C αβ-中的,αβ分别替换为π,2x , 得πππcos cos cos sin sin sin 222x x x x ⎛⎫-=+= ⎪⎝⎭; (3)将公式()C αβ-中的,αβ分别替换为0,x ,得()cos 0cos0cos sin0sin cos x x x x -=+=;(4)将公式()C αβ-中的,αβ分别替换为π,x -,得cos(π+)cos[π()]cos πcos()sin πsin()cos x x x x x =--=-+-=-.设计意图:(1)(2)为公式()C αβ-的直接套用,可加强学生对公式的熟悉程度;(3)只需将x -看作0x -即可;(4)需将公式()C αβ-中的,αβ分别替换为π,x -,这为下一课时中公式()C αβ+的证明做好铺垫.以上诱导公式虽在之前已经证明,但在此由公式()C αβ-为出发点再次进行推证原因有二:一是新证法更加简捷明了,二是凸显出公式()C αβ-的重要意义.问题5:结合例1可见,两角差的余弦公式中,含有两个任意角,这与我们之前学习的诱导公式(含有一个任意角和一个特殊角)相比,具有更高的自由度.由此你能解读诱导公式与公式()C αβ-之间的关系吗?试一试.预设的师生活动:学生思考并交流后,交流展示,教师对学生们的回答进行梳理总结,最终形成比较完备的答案.预设答案:从区别与联系两个方面解读二者的关系:二者的区别是:第一,适用场合不同,二者涉及到的任意角的数量不同,因此适用的场合并不一样,诱导公式适用于关于一个特殊角与一个任意角代数和的恒等变换问题,差角余弦公式适用于关于两个任意角的差角的余弦值的恒等变换问题,第二,功能不同,诱导公式可以实现改变函数名称,将求任意角的三角函值转化为求锐角三角函数值的问题等功能,这些功能是()C αβ-不具备的,但公式()C αβ-具备求出两个任意角的差角的余弦值的功能,这是诱导公式不能完成的;二者的联系是:第一,差角余弦公式中含有两个任意角,将其中一个替换为特殊角,即可推导出部分诱导公式,因此()C αβ-是更上位的公式;第二,二者均为三角恒等变换的重要变形依据,它们均可以经由圆的对称性质推导得到.设计意图:对诱导公式和差角公式的关系进行梳理,帮助学生厘清关系,培养学生辩证分析问题的思维方式.例2 借助公式()C αβ-,解答以下题目:(1)计算cos15的值;(2)已知4sin 5α=,π,π2α⎛⎫∈ ⎪⎝⎭,5cos 13β=-,β是第三象限角,求cos()αβ-的值. 追问:(1)中的角度并不是差的形式,你打算如何借助()C αβ-完成计算?(2)中cos ,sin αβ并没有直接给出,我们如何借助公式()C αβ-求得cos()αβ-的值?★资源名称:【知识点解析】运用公式给角求值问题的一般思路★使用说明:本资源展现“运用公式给角求值问题的一般思路”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示讲解.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设答案:对于(1),我们可以把15化成我们熟悉的30,45,60等特殊角之中某两角的差的形式,再借助公式()C αβ-求解;对于(2),可以借助同角三角关系求出cos ,sin αβ,进而利用公式()C αβ-求解cos()αβ-.解:(1)(解法一)cos15=cos(4530)cos45cos30sin 45sin30-=+122224=+⋅=; (解法二)cos15=cos(6045)cos60cos45sin60sin 45-=+122224=⋅+=;(2)因为π,π2α⎛⎫∈ ⎪⎝⎭,故3cos 5α==-,因为β是第三象限角,故12sin 13β==-, 因此3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭. 设计意图:通过两个比较简单的求值问题,促使学生进一步熟悉公式()C αβ-,能借助公式()C αβ-解决简单的三角恒等变换问题.(三)归纳小结问题6:请你回顾本节课的内容,思考以下问题:本课时出现过的哪些性质、公式、定理,它们之间具有怎样的推出关系?叙述公式()C αβ-,你在使用公式解决问题时有哪些心得体会?此外你还有哪些感悟?预设的师生活动:学生进行归纳、思考并回答.预设答案:()C αβ-⎫⇒⇒⎬⇒⎭圆的旋转对称性诱导公式勾股定理两点间的距离公式. 使用()C αβ-时,由于,αβ均为任意角,故可以代换成任意值,包括零、特殊角、负角等等.cos()αβ-需要sin ,cos ,sin ,cos ααββ四个值齐备时方可算出,缺一不可,若有所缺,往往可以借助同角三角关系算出所缺的数值.公式()C αβ-中含有两个任意角,是诱导公式更上位的公式,可以推导出诱导公式;先从“形”的角度出发,再从“数”的角度考虑,最后融合“数”与“形”,似乎是一种探究数形关系的有效策略.设计意图:回顾反思,在头脑中形成思维网络.(四)作业布置教科书习题5.5第1,2,3题.(五)目标检测设计1.已知15sin 17θ=,θ是第二象限角,求πcos 3θ⎛⎫- ⎪⎝⎭的值. 2.已知π3ππ22αβ<<<<,且2sin 3α=,3cos 4β=-,求cos()αβ-的值.预设答案:1; 2设计意图:通过两个比较简单的求值问题,促使学生巩固同角三角关系及公式()C αβ-,提升数学运算素养.可对学生是否达到目标“能否运用公式()C αβ-解决简单的三角恒等变换问题”提供评测依据.。
《两角和与差的正弦、余弦和正切公式(第二课时)》教学设计1.经历借助()C αβ-公式推导()C αβ+,()S αβ±,()T αβ±公式的过程,进一步体会公式()C αβ-的意义,发展学生逻辑推理素养.2.掌握()C αβ+,()S αβ±,()T αβ±等公式,发展学生逻辑推理、数学运算素养. 教学重点:经历从公式()C αβ-出发推导其它和角、差角公式的过程,进一步体会()C αβ-的意义.教学难点:和角与差角的正弦公式的推导;逆用公式进行恒等变换.PPT 课件. 资源引用:【知识点解析】认识两角和与差的余弦公式【知识点解析】认识两角和与差的正弦公式【知识点解析】认识两角和与差的正切公式(一)整体感知 引导语:前一节课我们根据三角函数的定义及圆的旋转对称性,借助两点间距离的坐标公式推导出了公式()C αβ-,今天我们将继续探究如何用任意角,αβ的三角函数表示cos(),sin(),tan()αβαβαβ+±±.(二)新知探究问题1:你能依据αβ+与αβ-之间的联系,利用公式()C αβ-,推导出两角和的余弦公式吗?★资源名称:【知识点解析】认识两角和与差的余弦公式★使用说明:本资源展现“认识两角和与差的余弦公式”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示讲解.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设的师生活动:学生讲解其证明思路及具体证明过程,教师进行适当地点拨. 预设答案:cos()cos cos sin sin αβαβαβ+=-(简记为()C αβ+).设计意图:引导学生对解决目标与已学公式对比分析,寻找差异,获得新知.问题2:我们已经得到了两角和与差的余弦公式,那么怎样利用已推出公式得到正弦公式呢?以前学过的哪个公式可以实现正弦、余弦的转化呢?请你试一试.★资源名称:【知识点解析】认识两角和与差的正弦公式★使用说明:本资源展现“认识两角和与差的正弦公式”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示讲解.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设的师生活动:学生思考之后按自己的想法完成证明.教师巡视,对遇到困难的学生进行引导,收集学生们的不同证法,并找相应的学生展示其证法.预设答案:诱导公式五、六可以实现正弦与余弦的转化;证明如下:ππsin()cos ()cos 22αβαβαβ⎡⎤⎡⎤⎛⎫-=--=-+ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦ππcos cos sin sin 22sin cos cos sin αβαβαβαβ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭=- sin()sin cos cos sin αβαβαβ∴-=-(简记为()S αβ-).然后用β-替换上式中的β可得sin()sin cos cos sin αβαβαβ+=+(简记为()S αβ+).以上只是其中一种证法.设计意图:引导学生根据目前的公式与新目标之间的差异,制定方案,完成新公式的推导.问题3:你能根据正切函数与正弦函数、余弦函数的关系,从()()S ,C αβαβ±±出发,推导出用任意角,αβ的正切表示tan(),tan()αβαβ+-的公式吗?★资源名称:【知识点解析】认识两角和与差的正切公式★使用说明:本资源展现“认识两角和与差的正切公式”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂进行展示讲解.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设的师生活动:学生思考之后按自己的想法完成证明并展示.预设答案:证明顺序有两种,即先证和角正切公式,或先证差角正切公式;先证的公式直接由相应角的正弦与余弦相除即可,后证的公式除相除之外,还可以借助先证出的公式证明.如先证和角正切:sin()tan()cos()αβαβαβ++=+ sin cos cos sin sin cos cos sin cos cos cos cos cos cos sin sin cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβαβαβαβαβ++==--tan tan 1tan tan αβαβ+=-, tan tan tan()1tan tan αβαβαβ++=-(简记作()T αβ+). 随后将β替换为β-,即可得到tan tan()tan tan tan()1tan tan()1tan tan αβαβαβαβαβ+---==--+,tan tan tan()1tan tan αβαβαβ--=+ (简记作()T αβ-). 公式()S αβ+,()C αβ+,()T αβ+给出了任意角α,β的三角函数值与其和角αβ+的三角函数值之间的关系.为方便起见,我们把这三个公式都叫做和角公式.类似地,()S αβ-,()C αβ-,()T αβ-都叫做差角公式.设计意图:通过已推导出的公式获得更多的公式,在此过程中,学会用联系的思维方式,提升学生分析问题、解决问题的能力,发展逻辑推理素养.例1 已知sin α=−35,α是第四象限角,求sin (π4−α),cos (π4+α),tan (α−π4)的值. 追问1:题目中给出了几个条件?你能否由这些条件出发得到新的条件?为了得到题目要求出的三个数值,我们需要借助什么工具?需要哪些数据?这些数据是否已经出现在已知条件中或可由已知条件推出?预设答案:两个条件,即角α的正弦值与角α终边所在的象限.可以根据这些条件算出α的余弦值与正切值.为了求出所求数据,需借助和角公式与差角公式.需要的数据是α的正弦、余弦、正切值,以及π4的正弦、余弦正切值.这些数据均可从条件中轻易推出.解:由sin α=−35,α是第四象限角,得cos α=√1−sin 2α=√1−(−35)2=45, 所以tan α=sin αcos α=−3545=−34. 于是有sin (π4−α)=sin π4cos α-cos π4sin α=√22×45−√22×(−35)=7√210; cos (π4+α)=cos π4cos α-sin π4sin α=√22×45−√22×(−35)=7√210; tan (α−π4)=tan α−tan π41+tan αtan π4=tan α−11+tan α=−34−11+(−34)=-7.设计意图:本题目条件简单,问题明确,可加强学生对新学公式的认知程度.另外,本题目有利于培养学生分析问题和解决问题的良好思维习惯,即先认真分析条件,适度拓展条件,在明确任务,了解前进的方向,联想解决问题需要的工具(公式、定理等)、数据,再将这些所需的条件与已知条件及拓展条件相联系,逐步拉近已知条件与待求结论的距离.追问2:如果去掉“α是第四象限角”这个条件,则答案如何?预设答案:正确答案是,当α是第三象限角时,所求的三个三角函数值依次是17-;当α是第四象限角时,7.但有些学生可能会错误表达为sin (π4−α)的值为10-或10,cos (π4+α)的值为10-或10,tan (α−π4)的值为17-或7.这种错误的表述方式增加了搭配的可能性,解答的准确性大幅下降,教师若发现学生存在这样的表达方式,应及时指出.设计意图:对题目作简单的变式,一方面可以让学生巩固相关公式,对学生渗透分类与整合的数学思想,另一方面为培养学生表述问题的准确性提供了机会,同时也对追问3做了铺垫.追问3:观察追问2两种情况下的答案,你有什么发现?在本题条件下有sin (π4−α)=cos (π4+α).那么对于任意角α,此等式成立吗?若成立,你会用几种方法予以证明? 预设答案:等式对任意角α都成立.证明方法有多种,如等号左右两侧分别用()()S ,C αβαβ-+展开后比较;将π4α-或者π4α+换元,然后借助诱导公式即可证明. 设计意图:通过延伸,培养学生“观察现象——提出问题——解决问题”的科学思维品质,鼓励学生多观察,多思考,多提问.激发学生的发散性思维,一题多解.例2 利用和(差)角公式计算下列各式的值:(1)sin 72°cos 42°-cos 72°sin 42°;(2)cos 20°cos 70°-sin 20°sin 70°;(3)sin 66°sin 54°-sin 36°sin 24°;(4)1+tan 15°1−tan 15°.追问:以上4个问题有什么结构特征?你是否在某些公式中见到过这样的结构特征? 预设答案:前3个问题都含有四个三角函数值,其中两个的乘积与另外两个的乘积作差,在正弦、余弦的和角与差角公式的等号右侧有过类似的结构特征;第4个问题仅含正切值,为分式形式,且分母中有常数1,与和角正切公式结构相似.设计意图:引导学生发现题目的结构特征,并联想相关公式,为解决问题提供了方向与线索.解:(1)由公式S (α-β), sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°) =sin 30°=12; (2)由公式C (α+β),得cos 20°cos 70°-sin 20°sin 70°=cos(20°+70°) =cos 90°=0;(3)(方法一) sin 66°sin 54°-sin 36°sin 24°= cos24° cos 36°-sin 36°sin 24°,由公式C (α+β),原式=cos(36°+24°)=cos60°=12; (方法二) sin 66°sin 54°-sin 36°sin 24°= sin 66°cos36°-cos 66°sin 36°,由公式S (α-β),原式=sin(66°-36°)=sin 30°=12;(4)由公式T (α+β)及tan 45°=1,得1+tan 15°1−tan 15°=tan 45°+tan 15°1−tan 45°tan 15°=tan(45°+15°) =tan 60°=√3. 设计意图:本题目主要考察公式的逆用,即从公式的右侧出发,变形到左侧的恒等变换方式.适度训练之后,学生对公式会有更全面,更深刻的理解.本题目中的(1)(2)是简单的公式反用,(3)的灵活度更上了一个台阶,学生需要借助诱导公式,变更函数名称,以凑成公式右侧的形式,再加以解决,解答(4)时,需要以退为进,逆向化归,将1代换成tan 45,这个变形技巧在例3中出现过,已经作过了铺垫.(三)归纳小结问题4:这两节课的内容中出现了很多性质和公式,它们之间具有怎样的推出关系?你能画一个结构图来反映这种关系吗?你在使用这些公式解决问题时有哪些心得体会?预设的师生活动:学生进行归纳、思考并回答.预设答案:公式中的,αβ均为任意角,故可以代换成任意值,包括零、特殊角、甚至可以是两个任意角的和或差;公式()()S ,C αβαβ±±均需要sin ,cos ,sin ,cos ααββ四个值齐备时方可使用,缺一不可,必要时需要从公式的右侧变形化简成左侧的形式;公式()T αβ±中,若,αβ之中有一个是π4,则公式的结构会更简洁. 设计意图:回顾反思,在头脑中形成思维网络.(四)作业布置教科书习题5.5第4,5,6,13题.(五)目标检测设计1.(1)已知cos θ=−35,θ∈(π2,π),求sin (θ+π3)的值; (2)已知sin θ=−1213,θ是第三象限角,求cos (π6+θ)的值;(3)已知tan α=3,求tan (α+π4)的值. 2.求下列各式的值:(1)sin 72°cos 18°+cos 72°sin 18°; (2)cos 72°cos 12°+sin 72°sin 12°;(3)tan 12°+tan 33°1−tan 12°tan 33°; (4)cos 74°sin 14°-sin 74°cos 14°;(5)sin 34°sin 26°-cos 34°cos 26°; (6)sin 20°cos 110°+cos 160°sin 70°.3.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,求sin (β+5π4)的值. 预设答案:1.(1)4−3√310;(2)12−5√326;(3)-2. 2.(1)1;(2)12;(3)1;(4)−√32;(5)−12;(6)−1.3.7√2.10设计意图:通过若干题目,促使学生巩固和角公式与差角公式,并能从正用或者逆用两个方向着手运用公式解决问题,提升学生逻辑推理与数学运算素养.。
3.1.2 两角和与差的正弦、余弦、正切公式说课稿一.教材分析:两角和与差的正弦、余弦、正切公式是三角恒等变换的基础,同时,它又是后面学习倍角、半角等公式的“源头”. 它对于三角变换、三角恒等式的证明和三角函数式的化简,求值等三角问题的解决有着重要的支撑作用。
本课时主要以两角差的余弦公式为基础,结合诱导公式推导两角和与差的正、余弦及正切公式以及它们的简单应用。
二.教学目标:1.知识与技能:① 让学生学会用代换法,转化法推导公式 ;② 让学生初步学会公式的简单应用和公式的逆用等基本技能。
2.过程与方法:① 通过公式的推导,着重培养学生获取数学知识的能力和数学交流的能力;② 通过公式的灵活运用,培养学生的转化思想和变换能力。
3.情感、态度与价值观:课堂中,通过对问题的自主探究,培养学生的独立思考能力;小组交流中,培养合作意识;在解决问题时,培养学生解决问题抓主要矛盾的思想。
并唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。
三.教学重难点:教学重点:两角和与差的正弦、正切公式的推导过程及运用;教学难点:灵活运用所学公式进行求值、化简。
四.教学方法:由于新课程教学内容增多,传统教学已经不能满足教学需要,根据新课程教学理念,“将课堂还给学生,让课堂焕发出生命的活力” 是我进行教学的指导思想,基于本节课的特点,利用导学案和多媒体相结合让学生自主探究的模式实现学生从被动学习到主动学习的一个转变从而创造高效课堂。
五.教学过程:一、复习准备,提出问题:1.诱导公式:奇变偶不变,符号看象限。
如:cos(2) k πα+=, cos(90) oα-=, cos() α-=, sin() α-=2. 差角的余弦公式:cos()cos cos sin sin αβαβαβ-=+3.差角的余弦公式的应用:例如:求cos15o 的值,分析:15o = 30o-, 解:cos15cos( 30) o o =-=问题提出:如何求cos()αβ+的值呢?(设计目的:唤起学生已有的知识和解题技巧。
第三章三角恒等变换一、课标要求:本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.1. 了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;2. 理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;3. 运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.二、编写意图与特色1.本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的知识来予以证明,降低了难度,使学生容易接受;2.本章是以两角差的余弦公式作为基础来推导其它的公式;3.本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,强化运用数学思想方法指导设计变换思路的意识;4.本章在内容的安排上贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.三、教学内容及课时安排建议本章教学时间约8课时,具体分配如下:3.1两角和与差的正弦、余弦、和正切公式约3课时3.2简单的恒等变换约3课时复习约2课时§3.1 两角和与差的正弦、余弦和正切公式一、课标要求:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.二、编写意图与特色本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.三、教学重点与难点1.重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2.难点:两角差的余弦公式的探索与证明.两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处. 思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 3022224=+=-=⨯-=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯= 点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:α、β的象限,也就是符号问题,学会灵活运用.(五)作业:15012.P T T -。
《两角和与差的正弦余弦和正切公式》教学设计
《两角和与差的正弦余弦和正切公式》教学设计范文
三角函数式的化简
化简要求:
1)能求出值应求值?
2)使三角函数种类最少
3)项数尽量少
4)尽量使分母中不含三角函数
5)尽量不带有根号
常用化简方法:
线切互化,异名化同名,异角化同角,角的变换,通分,逆用三角公式,正用三角公式。
例1、
三角函数式给值求值:
给值求值是三角函数式求值的重点题型,解决给值求值问题关键:找已知式与所求式之间的角、运算以及函数的差异,角的变换是常用技巧,
给值求值问题往往带有隐含条件,即角的范围,解答时要特别注意对隐含条件的`讨论。
例2、
三角函数给值求角
此类问题是三角函数式求值中的难点,一是确定角的范围,二是选择适当的三角函数。
解决此类题的一般步骤是:
1)求角的某一三角函数值
2)确定角的范围
3)求角的值
例3.
总结:
解决三角函数式求值化简问题,要遵循“三看”原则:
①看角,通过角之间的差别与联系,把角进行合理拆分,尽量向特殊? 角和可计算角转化,从而正确使用公式。
②看函数名,找出函数名称之间的差异,把不同名称的等式尽量化成同名或相近名称的等式,常用方法有切化弦、弦化切。
③看式子结构特征,分析式子的结构特征,看是否满足三角函数公式,若有分式,应通分,可部分项通分,也可全部项通分。
“一看角,二看名,三是根据结构特征去变形”。
两角和与差的正弦、余弦、正切公式教案
三维教学目标
1.知识与技能
能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,了解公式间的内在联系. 能应用公式解决比较简单的有关应用的问题.
2.过程与方法
通过层层探究体会数学思维的形成特点.
3.情感目标与价值观
通过公式变形体会转化与化归的思想方法.
教学重点:推导两角和的余弦公式及两角和与差的正弦、正切公式,并能区别两角和与差的正弦、余弦、正切公式.
教学难点:两角和与差的正弦、余弦、正切公式的理解和灵活运用.
突破措施:学生在前面诱导公式及两角差的余弦公式的基础上,比较自然的推出
两角和的余弦公式,以及两角和与差的正弦、正切公式.
学情分析:三角函数是高考的重点内容,本节主要是公式的推导和应用,难度不大,要让学生加强记忆,且熟练应用.
教学设计:
=
cos15_____
情景导入
有了两角差的余弦公式,我们能解决一些问题,但范围有
限,因此自然想得到两角差的正弦、正切公式,以及两角和的
72cos 42cos72sin 42
-20cos70sin 20sin 70-;(3).1tan15
1tan15
+-
练习:求下列各式的值:
72
cos18cos72sin18
tan12tan 33tan12tan 33
++
34sin 26cos34cos 2620cos 40cos 20cos50
-+
)
131cos sin 22
x x - (2)cos x -
板书设计:。
2024年3月上半月㊀教学导航㊀㊀㊀㊀公式延续,思维拓展两角和与差的正弦㊁余弦㊁正切公式 教学设计◉江苏省宿迁中学㊀王嘉琨1教材分析两角和与差的正弦㊁余弦㊁正切公式 是高中数学新教材(人教A版)必修第一册5.5.1的第2课时,是在第1课时 两角差的余弦公式 基础上的延续与拓展,也为后续三角恒等变换公式体系奠定基础.2学情分析学生在前面已经学习了诱导公式㊁两角差的余弦公式等,初步具备了三角函数式中 变角 与 变名 思维,这都为本节课研究两角和与差的正弦㊁余弦㊁正切公式提供了知识㊁方法和思想上的准备.3教学目标(1)以两角差的余弦公式作为基础,自主发现推导两角和与差的正弦.余弦㊁正切公式,并理解这些公式之间的内在联系.(2)通过例题的训练,加深对公式的理解和应用.4重点㊁难点(1)教学重点:两角和与差的正弦㊁余弦㊁正切公式的推导及其应用.(2)教学难点:灵活运用公式进行三角函数式的化简㊁求值等.5教学过程(1)复习回顾,问题引入问题1㊀上一节课我们学习了两角差的余弦公式C(α-β),你能说出这个公式以及它的推导过程吗?利用圆的旋转不变性来推导的,具体步骤如下:第一步,在坐标系中画出角度α,β,α-β与单位圆,并标出终边与单位圆的交点;第二步,根据三角函数的定义写出各点的坐标;第三步,利用圆的旋转不变性得到等量关系;第四步,代入化简得到公式.问题2㊀除了公式C(α-β)外,你还能提出一些新的研究问题吗?你打算如何研究这些问题?师生活动:教师引导学生提出新的研究问题,学生思考研究新问题的方法.引导语:对于其他几个公式,也可以利用单位圆来研究.不过,本书不采用这这种研究方法,而是利用公式C(α-β)来推导其他公式.数学上把这种将新问题转化成已经解决的问题的方法叫作化归与转化的思想方法.设计意图:通过问题1帮助学生回顾利用圆的旋转不变性推导两角差的余弦公式的过程,明确研究公式C(α-β)的方法.(2)公式探究,发现问题问题3㊀你能利用公式C(α-β)推导出两角和的余弦公式吗?师生活动:先让学生独立思考,然后请学生回答推导思路,鼓励学生用多种方法解决.方案一:注意到α+β与α-β之间的关系,即α+β=α-(-β),再由公式C(α-β)推导;方案二:可以利用换元的观点来推导,用 -β 替换公式C(α-β)中的 β 也能获得公式c o s(α+β)=c o sαc o sβ-s i nαs i nβ.设计意图:从加减法的关系和整体代换的方法体现了数学中的化归与转化以及换元的数学思想方法.(3)深入拓展,公式推导问题4㊀由C(α+β)能推导出s i n(α+β)的公式吗?师生活动:学生独立思考后,教师可以根据学生的反应追问下列问题.思考1㊀如何建立正弦与余弦值之间的关系呢?预设答案:利用诱导公式五(或六),即可实现正弦㊁余弦之间的相互转化.思考2㊀如何得到s i n(α+β)的公式呢?预设答案:s i n(α+β)=c o sπ2-(α+β)éëêêùûúú=c o s(π2-α)-βéëêêùûúú=c o s(π2-α)c o sβ+s i n(π2-α) s i nβ=s i nαc o sβ+c o sαs i nβ.设计意图:利用两角和的余弦公式和诱导公式推导两角和的正弦公式.问题5㊀如何得到s i n(α-β)的公式呢?师生活动:学生独立完成,教师邀请学生展示和点评.预设答案:用 -β 来替换s i n(α+β)中的 β ,则有s i n(α-β)=s i nαc o s(-β)+c o sαs i n(-β)=s i nαc o sβ-c o sαs i nβ.72教学导航2024年3月上半月㊀㊀㊀引导语:把以上两角和的正弦公式和两角差的正弦公式分别记为S (α+β)和S (α-β).设计意图:通过整体化思维,以及化归与转化思想,利用两角和的正弦公式来推导两角差的正弦公式.问题6㊀已知任意角α,β的正切,你能推导出t a n (α+β)和t a n (α-β)吗?师生活动:学生独立完成,教师邀请学生展示和点评.预设答案:由正切与正弦㊁余弦的关系,可知t a n (α+β)=s i n (α+β)c o s (α+β)=s i n αc o s β+c o s αs i n βc o s αc o s β-s i n αs i n β,分子㊁分母同时除以c o s αc o s β,整理得t a n (α+β)=t a n α+t a n β1-t a n αt a n β.同理t a n (α-β)=t a n α-t a n β1+t a n αt a n β.引导语:把以上两角和的正切公式和两角差的正切公式分别记为T (α+β)和T (α-β).设计意图:利用正弦㊁余弦㊁正切之间的关系推导两角和与差的正切公式.问题7㊀和(差)角公式和我们以前学习的诱导公式之间有什么关系吗请用图示说明.师生活动:学生独立思考后,和同学交流自己的想法,教师展示图示,揭示它们之间的内在联系.诱导公式是和(差)角公式的特殊情况,如用S (α-β)推导诱导公式如图1所示.图1设计意图:比较和(差)角公式和诱导公式的异同,构建知识间的内在联系,加深对公式的理解.(4)公式应用,熟练掌握例1㊀已知s i n α=-35,α是第四象限的角,求s i n (π4-α),c o s (π4+α),t a n (α-π4)的值.思考1:你打算如何求解?请说说你的思维过程.思考2:如果去掉 α是第四象限的角 这个条件,结果和求解过程会有什么变化思考3:在以上解答中我们可以看到,在本题条件下,s i n(π4-α)=c o s (π4+α),那么对于任意角α,上式还成立吗你能想到几种方法来证明?预设答案:方案一:等式左右两边均使用和差公式展开.方案二:寻找π4-α与π4+α之间的内在联系,再结合诱导公式来转化与处理,即s i n (π4-α)=s i n π2-(π4+α)éëêêùûúú=c o s (π4+α).例2㊀利用和(差)角公式计算下列各式的值:①si n 72ʎc o s 42ʎ-c o s 72ʎs i n 42ʎ;②c o s 20ʎc o s 70ʎ-s i n 20ʎs i n 70ʎ;③1+t a n 15ʎ1-t a n 15ʎ.思考4:从例1和例2可以看出和(差)角公式有什么作用?(预设答案:求值或化简.)设计意图:例1步步递进,逐层深入,充分展示数学思维的发散性;例2强化公式的理解和应用,规范解题格式,训练有序思维和逆向思维.(5)系统归纳,总结提升问题8㊀你能用图式来回顾本节课5个和(差)角公式的推导过程吗?师生活动:学生独立完成(如图2)后与同学交流.图2问题9㊀在和(差)角公式的推导过程中用到了什么数学思想方法预设答案:化归与转化的思想整体代换的思想等.设计意图:用框图回顾推导过程,建立知识之间的内在联系,归纳总结本节课的数学思想方法等.6教学反思(1)公式延续,深入应用本节课以两角差的余弦公式为基础,利用角的变换和函数名之间的转换,将要推导的公式转化为熟悉的公式来解决.整个推导过程不但能够培养学生逻辑推理数学素养,还能让学生领悟知识之间的内在联系,初步体会三角恒等变换的特点以及转化与化归思想在数学研究中的应用价值.(2)关注应用,能力提升我们应该改变以往公式教学中 轻过程㊁重应用 的方式,在关注公式的理解和应用的同时,更应该让学生全程参与到公式的发现和推导中来,因为推导过程所承载的数学育人功能是不可能只通过 公式的应用 来实现的;还可以鼓励学生课后选择一个公式作为基础,采用不同的研究路径重新研究这一过程,再一次经历解决问题的过程.Z82。
两角和与差的正弦余弦正切公式教学案一、教学目标:1.知识与技能目标:掌握两角和与差的正弦、余弦、正切公式。
2.过程与方法目标:鼓励学生积极思考、合作学习,培养学生的逻辑推理能力。
3.情感与态度目标:培养学生的数学兴趣,增强对数学的自信心。
二、教学重、难点:1.教学重点:学习正弦、余弦、正切两角和与差的公式,能够正确地应用到解题中。
2.教学难点:正弦、余弦、正切两角和与差的公式的推导与应用。
三、教学准备:1.教师准备:教案、笔记、教辅资料、教学媒体等。
2.学生准备:学习笔记、作业本。
四、教学步骤:Step 1 引入新课1.教师展示一幅图形,引导学生观察图形中的三角形,并提问:对于一个任意的三角形ABC,如何求角A和角C的两角和与差的正弦、余弦和正切?2.引导学生思考,并提醒学生复习正弦、余弦、正切的定义和性质。
Step 2 探究与讨论1.教师以角A和角C的两角和为例,引导学生分析角A和角C的三角函数之间可能存在的关系,并引导学生探究和讨论。
2.学生合作讨论,提出各自的思考结果并互相交流。
Step 3 运用公式解题1.教师给出两具体的角A和角C的数值,并提问学生如何求其两角和与差的正弦、余弦和正切的值。
2.学生运用公式计算,并与他人交流讨论结果,互相纠正错误。
Step 4 归纳总结1.教师总结学生的讨论结果,整理归纳出正弦、余弦、正切两角和与差的公式。
2.指导学生将这些公式整理成归纳表格或表格。
Step 5 拓展应用1.教师给出一些拓展应用题目,要求学生利用所学知识解答。
2.学生独立完成练习题,并互相交流讨论。
Step 6 小结与反思1.教师对本节课的内容进行小结,并引导学生参与总结。
2.向学生征求反馈意见,以便以后教学改进。
五、教学评价:1.学生通过合作探究和讨论,积极参与课堂活动。
2.学生能够利用正弦、余弦、正切两角和与差的公式解决实际问题。
3.学生对角度与三角函数之间的关系有了更深入的了解。
4.学生对本节课的教学内容和方式进行评价。
两角和与差的余弦、正弦、正切教学目标知识目标:两角和的正切公式;两角差的正切公式能力目标:掌握T (α+β),T (α-β)的推导及特征;能用它们进行有关求值、化简情感态度:提高学生简单的推理能力;培养学生的应用意识;提高学生的数学素质 教学重点两角和与差的正切公式的推导及特征教学难点灵活应用公式进行化简、求值。
教学过程Ⅰ。
复习回顾首先,我们来回顾一下前面所推导两角和与差的余弦、正弦公式.(学生作答,老师板书)sin (α+β)=sin αcos β+cos αsin β(S (α+β))sin (α-β)=sin αcos β-cos αsin β(S (α-β))cos(α+β)=cos αcos β-sin αsin β(C (α+β))cos(α-β)=cos αcos β+sin αsin β(C (α-β))要准确把握上述各公式的结构特征.Ⅱ.讲授新课一、推导公式[师]上述公式结合同角三角函数的基本关系式,我们不难得出:当cos (α+β)≠0时tan (α+β)=βαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin(a -+=++ 如果cos αcos β≠0,即cos α≠0且cos β≠0,我们可以将分子、分母都除以cos αcos β,从而得到:tan (α+β)=βαβαtan tan 1tan tan -+ 不难发现,这一式子描述了两角α与β的和的正切与这两角的正切的关系。
同理可得:tan (α-β)=βαβαtan tan 1tan tan +- 或将上式中的β用-β代替,也可得到此式.这一式子又描述了两角α与β的差的正切与这两角的正切的关系。
所以,我们将这两式分别称为两角和的正切公式、两角差的正切公式,简记为T (α+β),T (α-β)。
但要注意:运用公式T (α±β)时必须限定α、β、α±β都不等于2π+k π(k ∈Z )。
《两角和与差的正弦、余弦和正切公式,二倍角公式》说课稿晋江市内坑中学 吴小明教材分析:1.教材的地位和作用:这是一节高三复习课,教材是高中数学新课程人教A 版(必修4),教辅是《世纪金榜》。
这一节的公式在三角函数里的比重很大,是进行三角恒等变换的重要公式,它们与诱导公式,同角三角函数公式一起组成了三角函数的主要公式。
2.教学重点与难点:(1) 重点:两角和与差、二倍角公式的正用、逆用和变用(2) 难点:“辅助角公式”,即形如)sin(cos .sin .22βααα++=+b a b a 的化简;“角的变换”,即用“已知角”表示“所求角”,要注意角的变换技巧和角的范围;当角的关系比较复杂时不仅要用“和、差、倍”公式,还要先用到诱导公式。
学情分析:这些学生大部分基础不够好,学习态度也不够积极,自主学习的意识和能力较弱,知识遗忘率高,只有小部分学生基础较好,但是动手解题能力也很弱。
教学目标:(1) 知识与技能目标:熟练掌握两角和与差的正弦、余弦和正切公式及二倍角公式的正用、逆用和变形使用,会用公式进行三角函数式的化简与求值。
(2) 过程与方法目标:通过提问、引导,调动学生的思维;通过归纳,明确解题方法。
(3) 情感、态度与价值观目标:通过公式之间角与角的关系,认识到事物是普遍联系的;教学方法:基于学情分析,应从细节入手,主要采用引导,提示,归纳,讲练结合的方法。
学法指导:从公式特征和题目特征选取适当的公式;有时要切化弦;注意观察所求角与已知角的关系。
教学过程:一.复习引入:通过提问)cos(βα-公式,开门见山的引入到公式的复习当中.二.复习公式:两角和与差的正弦、余弦和正切公式,二倍角公式及变形公式 和 “辅助角公式” 用小黑板展示所有公式,讲解公式时要体现公式之间的联系,比如,二倍角倍受公式可以在两角和的公式中令αβ=而得到.一边讲解公式的特征,帮助记忆,一边通过6道简单示例帮助理解。
1.两角和与差的正弦、余弦和正切公式βαβαβαβαsin sin cos cos )cos(:)( =±±Cβαβαβαβαsin cos cos sin )sin(:)(±=±±Sβαβαβαβαtan .tan 1tan tan )tan(:)( ±=±±T (Z ∉+≠±k k ,2,,ππβαβα) 简单示例: 000028sin 32sin 28cos 32cos -=21)2832cos(00=+ 2.二倍角公式α2S : αααcos sin 22sin =αααααα22222sin 211cos 2sin cos 2cos :-=-=-=C αααα22tan 1tan 22tan :-=T (Z ∉+≠k k ,22,ππαα) 简单示例: (1)0015cos 15sin = 4130sin 210= (2)112cos 22-π= 236cos =π(3)005.22tan 15.22tan -= =tan450=1 3.变形公式:正切和(或差):βαtan tan ±=)tan(βα±.(βαtan .tan 1 ) 降次扩角:22cos 1sin 2αα-=, 22cos 1cos 2αα+=, 简单示例: )28tan 1)(17tan 1(00++=000028tan .17tan 28tan 17tan 1+++ =1+00000028tan .17tan )28tan .17tan 1).(2817tan(+-+=24.形如ααcos sin b a +的化简(“辅助角公式”)ααcos sin b a +=)sin(22βα++b a ,其中22cos b a a+=β, 22sin b a b +=β简单示例: 12cosπ +3sin 12π=224sin 2)126sin(==+πππ 三.例题讲解通过两道例题来讲解公式的应用:例1.求下列各式的值:(1)0000167cos 43sin 77cos 43cos + (2) 0015cot 15tan + (3) 000040tan .20tan .340tan 20tan ++ (4) 12sin π+ cos12π 设计意图:让学生初步熟悉公式,掌握“和、差、倍公式”的逆用和变用。
§3.1.3 二倍角的正弦、余弦、正切公式一、教学目标:1.知识与技能:使学生能记住二倍角公式,会运用二倍角公式进行求值、化简,同时使学生懂得在运用当中所起到的用途。
2.过程与方法:培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊到化归的数学思想及问题转化的数学思想。
3.情感、态度与价值观:课堂中,通过对问题的自主探究,培养学生的独立思考能力;小组交流中,培养合作意识;培养学生认真参与,积极交流的主体意识。
锻炼学生善于发现问题的规律和及时解决问题的态度。
二.教学重难点:教学重点:记住二倍角公式,运用二倍角公式进行求值,化简。
教学难点:在运用当中如何正确恰当的运用所学公式进行求值、化简。
三.教学方法:“将课堂还给学生,让课堂焕发出生命的活力” 是我进行教学的指导思想,启发学生自主性学习,有效的渗透数学思想方法,提高学生素质。
基于本节课的特点,我采用“引导发现法”和“讲练结合法”。
四.教学过程知识回顾(你已做好知识准备了吗?你一定还记得以下知识吧!)回忆两角和与差的正弦、余弦、正切公式1. :)(βα±S =±)sin(βα:)(βα±C =±)cos(βα:)(βα±T =±)tan(βα2.填空:若βα,为第二象限角,且53cos ,53sin -==βα则()=+βαsin ; 问题探究1:若第二象限角α满足53sin =α,则=α2sin 。
新授课问题1:你能利用S (βα±)、C (βα±)、T (βα±)推导sin2α,cos2α,tan2α的公式吗?sin2α= ; (α2S )cos2α= ; (α2C )tan2α= 。
)(2αT注意:1.公式S 2α,C 2α中α为任意角,在T 2α中αZ k k k ∈≠+≠,24,2ππαππ+且 2.二倍角是相对的.如:4α是2α的二倍角,α是2α的二倍角等。
第五章三角函数5.5.1 两角和与差的正弦、余弦和正切公式(1)(1课时)【教学内容】两角差的余弦公式推导;两角差的余弦公式;两角差的余弦公式的应用.【教学目标】1.经历探索两角差余弦公式的过程.(数学抽象、逻辑推理、直观想象)2.熟记两角差的余弦公式的形式及符号特征,并能利用公式进行简单的化简、求值.(数学运算、数学建模)【教学重难点】教学重点:得到差角的余弦公式;公式的形式与符号的特征;公式的简单应用(正用).教学难点:发现差角余弦公式与圆的旋转对称性间的联系.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、引入本节我们主要的研究内容是:三角恒等变换,即在不改变含有三角函数的式子的值的前提下,对式子变形.三角恒等变形在求值、化简、证明中有着十分广泛的应用.之前我们学习过的同角三角关系和诱导公式,都是三角恒等变换的重要工具.今天我们在此基础上学习新的恒等变换公式.问题1:如何计算cos15︒?如何求cos(α-β) ?cos(α-β) = cosα- cosβ成立吗?利用单位圆推导cos(α-β) 的公式.二、新知探究问题2:首先在单位圆中画出角α、β、α-β,为了简便起见,我们首先不妨先看0 <β<α< 2π的情况.(x - x )2 + ( y - y )2 2 1 2 1 PA = P 1 A 1流程图:追问 1:由三角函数的定义,点 A ,P 1,A 1,P 的坐标如何表示? 答 案 :A (1, 0) , P 1(cos α,sin α) , A 1(cos β, s in β) ,P (cos(α- β), sin(α- β)) .追问 2:我们的目标是cos(α- β) = 点 P 的横坐标,已知的是点 A 、A 1、P 1 的坐标,如何用已知来表 示目标?——利用距离建立等式 AP = A 1P 1 .已知平面直角坐标系任意两点 P 1 ( x 1 , y 1 ) ,P 2 ( x 2 , y 2 ) ,则点 P 1 , P 2 之间的距离 P 1P 2 = .目标:cos(α- β) 定义 cos(α- β) = 点 P 的横坐标 能否利用已知点 A ,P 1,A 1的坐标来表示目标? 距离-α α+ α 追问 3:借助以上“两点间的距离公式”, 结合 AP = A 1P 1 ,你能得到什么结论?根据两点间距离公式,结合 P 1 A 1 = PA ,有 ,=整理得cos(α- β) = cos αcos β+ sin αsin β .当α,β的终边相同时,容易证明上式仍然成立.事实上,对于任意角都有 PA = P 1 A 1 ,从而对于任意角α,β有cos(α- β) = cos αcos β+ sin αsin β此公式给出了任意角α,β的正弦、余弦与其差角α- β的余弦之间的关系,称为差角的余弦公式,简记作C (α-β) = C αC β + S αS β .三、典型例题例1 利用公式C (α-β) 证明:(1) cos( π-α)= sin α; (2) cos(π-α)= - cos α2 证明:(1) cos( π π π)=cos cos sin sin 2 2 2= 0 + 1⨯ sin α= sin α.(2) cos(π-α)=cos πcos α+ sin πsin α= (-1) ⨯cos α+ 0= - cos α例 2 借助公式C (α-β) ,解答以下题目:(1) 计算cos15 的值; (2) 已知sin α= 4,α∈ ⎛ π , π ⎫ , cos β= - 5, β是第三象限角,求cos(α- β) 的值. 5 2 ⎪ 13⎝ ⎭(cos α- cos β)2 + (sin α-sin β)2[cos(α- β) -1]2 +[sin(α- β) - 0]22 3 2 6 + 2 2 3 2 2 + 6 1 1 cos ( + 答案:对于(1),我们可以把15 化成我们熟悉的30 , 45 , 60 等特殊角之中某两角的差的形式,再借助公式C (α-β) 求解;对于(2),可以借助同角三角关系求出 cos α, sin β,进而利用公式C (α-β) 求解 cos(α- β) .解:(1)(解法一) cos15 =cos(45 - 30 ) = cos 45 cos 30 + sin 45 sin 30= ⋅ + ⋅ = ; 2 2 2 2 4(解法二) cos15 =cos(60 - 45 ) = cos 60 cos 45 + sin 60 sin 45= ⋅ + ⋅ = ; 2 2 2 2 4 (2)因为α∈ ⎛ π , π ⎫ ,故cos α= - 1- sin 2 α = - 3 , 2 ⎪ 5⎝ ⎭ 因为β是第三象限角,故sin β= - 1- cos 2 β = - 12 , 13 因此cos(α- β) = cos αcos β+ sin αsin β= - 3 ⨯⎛ - 5 ⎫ + 4 ⨯⎛ - 12 ⎫ = - 33 . 5 13 ⎪ 5 13 ⎪ 65⎝ ⎭ ⎝ ⎭π 3 π 例 3 已知cos( +α)= 4 5 , 0 < α< ,求cos α的值. 2 π 解: 因为0 < α< ,故 π < π 3π +α< , 2 4 4 4π π 4所以sin( +α) = 1- 2 α) = , 4 4 5 π π π π π π 因此cos α= cos[( +α) - ] = cos( +α) cos + sin( +α) sin4 4 4 4 4 4= 3 ⨯ 2 + 4 ⨯ 2 = 7 25 2 5 2 10四、归纳小结1. 利用单位圆、三角函数定义、两点间的距离公式推导出cos(α- β) = cos αcos β+ sin αsin β公式.2. 已知一个角的正弦(或余弦)值,求该角的余弦 (或正弦)值时,要注意该角所在的象限,从而确定该角的三角函数值符号.3.熟悉角的拆分与组合,看到α+β,α,β想到凑角α=(α+β) -β,β=(α+β) -α等.五、答疑课程重点:得到差角的余弦公式;公式的形式与符号的特征;公式的简单应用(正用).难点:发现差角余弦公式与圆的旋转对称性间的联系.思想方法:整体代换思想,转化思想数学核心素养:1.经历探索两角差余弦公式的过程体现数学抽象、逻辑推理、直观想象;2. 熟记两角差的余弦公式的形式及符号特征,并能利用公式进行简单的化简、求值体现数学运算、数学建模.易错点:已知一个角的正弦(或余弦)值,求该角的余弦(或正弦)值时,要注意该角所在的象限,从而确定该角的三角函数值符号.六、作业【目标检测题】(见资源包)。
两角和与差的正弦、余弦、正切公式
一、教学目标
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
二、教学重、难点
1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;
2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
三、学法与教学用具
学法:研讨式教学
四、教学设想:
(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:
()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.
这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?
让学生动手完成两角和与差正弦和正切公式.
()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦
sin cos cos sin αβαβ=+.
()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手) ()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ
+++==+-. 通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ
++=-. 注意:,,()222k k k k z π
π
π
αβπαπβπ+≠+≠+≠+∈
以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?
()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-=
=⎡⎤⎣⎦--+ 注意:,,()222k k k k z π
π
π
αβπαπβπ+≠+≠+≠+∈.
(二)例题讲解
例1、已知3
sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭的值. 解:因为3sin ,5αα=-
是第四象限角,得4cos 5α===, 3
sin 35tan 4cos 4
5ααα-
===- , 于是有
43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=⨯--= ⎪ ⎪⎝⎭⎝⎭
43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=⨯-⨯-= ⎪ ⎪⎝⎭
⎝⎭ 两结果一样,我们能否用第一章知识证明?
3tan tan
144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭ 例2、利用和(差)角公式计算下列各式的值:
(1)、sin 72cos 42cos72sin 42-;(2)、cos 20cos70sin 20sin 70-;(3)、1tan151tan15
+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象. (1)、()1sin 72cos 42cos72sin 42sin 7242
sin 302-=-==; (2)、()cos 20cos70sin 20sin 70cos 2070cos900-=+==;
(3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15
++==+==--.
例3x x -
解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?
)()1
cos sin 30cos cos30sin 22sin 3022x x x x x x x ⎫-=-=-=-⎪⎪⎭
思考:是怎么得到的?=
分别等于1
2和2的.
小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.。