高二数学下学期期末考试试题 理(扫描版)
- 格式:doc
- 大小:1.07 MB
- 文档页数:7
2021年高二数学下学期期末考试试题理(答案不全)考试时间:120分钟满分:150分一、选择题(12小题,每小题5分,共60分)1.设复数z满足(1-i)z=2 i,则z= ()A. -1+i B.-1-i C. 1+i D.1-i2.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为:()A. B. C. D.3.若S1=,S2=,S3=,则S1,S2,S3的大小关系为( )A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S14.随机变量服从二项分布~,且则等于()A. B. 1 C. D. 05.如果随机变量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4 ,则P(ξ>2)等于:A.0.1 B.0.2 C.0.3 D.0.46.已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=A. -4B. -2C. -1D. 07.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有:A.210种B.420种C.630种D.840种8.某考察团对全国10大城市职工的人均平均工资与居民人均消费进行统计调查, 与具有相关关系,回归方程 (单位:千元),若某城市居民的人均消费额为7.5千元,估计该城市人均消费额占人均工资收入的百分比为()A. 66%B. 72.3%C. 75%D. 83%9.若,则等于()A.-2 B.-4 C.2 D.010.已知抛物线,和抛物线相切且与直线平行的的直线方程为()A. B. C. D.11.曲线与坐标轴所围成图形面积是( )A.4 B.2 C.3 D.12.已知函数有极大值和极小值,则的取值范围为( )A.-12 B.-36 C.-1或2 D.-3或6二、填空题(4个小题,每小题5分,共20分)13.已知正态分布总体落在区间(0.2,+∞)的概率为0.5,那么相应的正态曲线f(x)在x= 时达到最高点.14.某射手射击1次,击中目标的概率是0.9。
2021年高二数学下学期期末考试卷 理(含解析)请点击修改第I 卷的文字说明一、选择题(题型注释)1.下面四个命题中正确命题的个数是( ).①;②任何一个集合必有两个或两个以上的子集;③空集没有子集;④空集是任何一个集合的子集.A.0个B.1个C.2个D.3个【答案】B【解析】试题分析:①是不含有任何元素的集合,含有元素0,故错误;②含有个元素的集合共有个子集,而,故错误;③空集是它本身的子集,故错误;④空集是任何一个集合的子集,故正确.考点:命题真假的判定.2.函数的定义域为( ).A. B. C. D.【答案】A【解析】试题分析:要使有意义,则,即,解得;即函数的定义域为.考点:函数的定义域.3.已知集合,,则( ).A .B .C .D .【答案】B【解析】试题分析:因为{}{}11|0)1)(1(|>-<=>+-=x x x x x x B 或,所以.考点:集合的运算.4.函数的零点所在的区间是( ).A .B .C .D .【答案】B【解析】试题分析:011)(,012ln )2(,02)1(>-<-=<-=ee f f f ,,所以在区间上存在零点. 考点:零点存在定理.5.设f(x)是定义在R上的奇函数,当时,则=( ).A. B.-1C.1D.【答案】C【解析】试题分析:由题意得,因为是奇函数,所以.考点:函数的奇偶性.6.设,则的大小关系是().A. B. C. D.【答案】A【解析】试题分析:,,即,,.考点:函数的比较大小.7.已知命题p:x∈R,x2+x-60,则命题P是()A.x∈R,x2+x-6>0 B.x∈R.x2+x-6>0C.x∈R,x2+x-6>0 D.x∈R.x2+x-6<0【答案】B【解析】试题分析:命题p:x∈R,x2+x-60,Px∈R.x2+x-6>0,因此命题p:x∈R,x2+x-60,命题P:x∈R.x2+x-6>0.符合题意,选B。
智才艺州攀枝花市创界学校一中、石门、顺德一中、国华纪中四校二零二零—二零二壹高二数学下学期期末考试试题理〔含解析〕一、选择题:此题一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。
()211z a a i =-+-〔i 为虚数单位〕是纯虚数,那么复数13zi=+〔〕 A.3155i + B.3155i - C.3155i -+ D.3155i -- 【答案】D 【解析】 【分析】通过复数z 是纯虚数得到1a =-,得到z ,化简得到答案. 【详解】复数()211z a a i =-+-〔i 为虚数单位〕是纯虚数故答案选D【点睛】此题考察了复数的计算,属于根底题型.2.某班有50人,从中选10人均分2组〔即每组5人〕,一组清扫教室,一组清扫操场,那么不同的选派法有〔〕A.1055010CC⋅ B.10550102C C ⋅C.105250102C C A ⋅⋅D.55250452C C A ⋅⋅【答案】A 【解析】 【分析】根据先分组,后分配的原那么得到结果.【详解】由题意,先分组,可得10550102C C ⋅,再一组清扫教室,一组清扫操场,可得不同的选派法有1052105501025010A =2C C C C ⋅⋅⋅. 应选:A .【点睛】不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③局部均匀分组.注意各种分组类型中,不同分组方法的求解.3.组织同学参加社会调查,某小组一共有5名男同学,4名女同学。
现从该小组中选出3位同学分别到A ,B ,C 三地进展社会调查,假设选出的同学中男女均有,那么不同安排方法有〔〕A.70种B.140种C.420种D.840种【答案】C 【解析】 【分析】将情况分为2男1女和2女1男两种情况,相加得到答案. 【详解】2男1女时:213543240C C A ⨯⨯=2女1男时:123543180C C A ⨯⨯=一共有420种不同的安排方法 故答案选C【点睛】此题考察了排列组合的应用,将情况分为2男1女和2女1男两种情况是解题的关键.4.一辆汽车在平直的公路上行驶,由于遇到紧急情况,以速度()201241vt t t =-++〔t 的单位:s ,v 的单位:/m s 〕紧急刹车至停顿.那么刹车后汽车行驶的路程〔单位:m 〕是〔〕 A.1620ln 4+ B.1620ln5+ C.3220ln 4+D.3220ln5+【答案】B 【解析】 【分析】先计算汽车停顿的时间是,再利用定积分计算路程.【详解】当汽车停顿时,()2012401vt t t =-+=+,解得:4t =或者2t =-〔舍去负值〕, 所以()()442002012412220ln 11s t dt t t t t ⎛⎫=-+=-++ ⎪+⎝⎭⎰1620ln5=+. 故答案选B【点睛】此题考察了定积分的应用,意在考察学生的应用才能和计算才能. 5.将三枚骰子各掷一次,设事件A 为“三个点数都不一样〞,事件B 为“至少出现一个6点〞,那么概率(A |B)P 的值是〔〕A.6091B.12C.518D.91216【答案】A 【解析】考点:条件概率与HY 事件.分析:此题要求条件概率,根据要求的结果等于P 〔AB 〕÷P〔B 〕,需要先求出AB 同时发生的概率,除以B 发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果. 解:∵P〔A|B 〕=P 〔AB 〕÷P〔B 〕,P 〔AB 〕=3606=60216P 〔B 〕=1-P 〔B 〕=1-3356=1-125216=91216∴P〔A/B 〕=P 〔AB 〕÷P〔B 〕=6021691216=6091 应选A .()210,0.1N 〔单位:kg 〕现抽取500袋样本,X表示抽取的面粉质量在()10,10.2kg 的袋数,那么X的数学期望约为〔〕 附:假设()2,ZN μσ,那么()0.6872P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈A.171B.239C.341D.477【答案】B 【解析】 【分析】根据正态分布中特殊区间上的概率得到面粉质量在()10,10.2上的概率为0.47725,然后根据0(500,).47725XB 可求出X 的数学期望.【详解】设每袋面粉的质量为Z kg ,那么由题意得()210,0.1Z N ,∴()()()111010.29.810.2220.4772522PZ P Z P Z μσμσ<≤=<≤=-<≤+≈. 由题意得0(500,).47725X B ,∴0.4772()500238.6255239E X =⨯=≈. 应选B .【点睛】此题考察正态分布中特殊区间上的概率,解题时注意把所求概率转化为三个特殊区间上的概率即可.另外,由于面粉供应商所供应的某种袋装面粉总数较大,所以可认为X的分布列近似于二项分布,这是解题的关键.()21001121002a a x a x a x x +++=+-,那么0123102310a a a a a ++++⋅⋅⋅+=〔〕A.10B.-10C.1014D.1034【答案】C 【解析】 【分析】先求出0a ,对等式两边求导,代入数据1得到答案. 【详解】()21001121002a a x a x a x x +++=+-取10.002xa =⇒=对等式两边求导1231902923110(2)0a a a x x x x a +++⋅⋅⋅+⇒--=取1x =1231001231023102310140110a a a a a a a a a +++⋅⋅⋅+++++⋅⋅⋅+=⇒-=⇒故答案为C【点睛】此题考察了二项式定理,对两边求导是解题的关键.8.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取岀一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取岀的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,以下结论中不正确的选项是.......〔〕 A.事件B 与事件1A 不互相HYB.1A ,2A ,3A 是两两互斥的事件C.()35PB =D.()17|11PB A =【答案】C 【解析】 【分析】依次判断每个选项得到答案.【详解】A.乙罐取出的球是红球的事件与前面是否取出红球相关,正确 B.1A ,2A ,3A 两两不可能同时发生,正确C.()5756131011101122PB =⨯+⨯=,不正确 D.()11117()7211|1()112P BA P B A P A ⨯===,正确 故答案选C【点睛】此题考察了HY 事件,互斥事件,条件概率,综合性强,意在考察学生的综合应用才能和计算才能.9.*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,假设992M N -=,那么展开式中x 的系数为〔〕A.-250B.250C.-500D.500【答案】A 【解析】 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数.【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式获得1x =到4n M=二项式系数之和为2n N=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=-取3r =值为-250故答案选A【点睛】此题考察了二项式定理,计算出n 的值是解题的关键.10.针对时下的“抖音热〞,某校团委对“学生性别和喜欢抖音是否有关〞作了一次调查,其中被调查的女生人数是男生人数的12,男生喜欢抖音的人数占男生人数的16,女生喜欢抖音的人数占女生人数23,假设有99%的把握认为是否喜欢抖音和性别有关,那么男生至少有〔〕参考公式:()()()()()22n ad bc K a b c d a c b d -=++++A.12人B.18人C.24人D.30人【答案】B 【解析】 【分析】设男生人数为x ,女生人数为2x,完善列联表,计算2 6.635K >解不等式得到答案. 【详解】设男生人数为x ,女生人数为x男女人数为整数 故答案选B【点睛】此题考察了HY 性检验,意在考察学生的计算才能和应用才能. 11.在复平面内,复数(),za bi a Rb R =+∈∈对应向量OZ 〔O 为坐标原点〕,设OZ r =,以射线Ox 为始边,OZ 为终边逆时针旋转的角为θ,那么()cos sin z r i θθ=+,法国数学家棣莫弗发现棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,那么()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理导出了复数乘方公式:()()cos sin cos sin nn n z r i r n i n θθθθ=+=+⎡⎤⎣⎦,那么()101-+=〔〕A.1024-B.1024-+C.512-D.512-+【答案】D 【解析】 【分析】 将复数化为()1111cos sin z r i θθ=+的形式,再利用棣莫弗定理解得答案.【详解】()10101010222020112(cos sin )2(cos sin )2()51233332i i ππππ⎛⎫-+=+=+=-+=-+ ⎪⎝⎭【点睛】此题考察复数的计算,意在考察学生的阅读才能,解决问题的才能和计算才能.()xae f x x=,[]1,2x ∈,且[]12,1,2x x ∀∈,12x x ≠,()()12121f x f x x x -<-恒成立,那么实数a的取值范围是〔〕A.24,e ⎛⎤-∞ ⎥⎝⎦B.24,e ⎡⎫+∞⎪⎢⎣⎭C.(],0-∞D.[)0,+∞【答案】A 【解析】 【分析】 构造函数()()F x f x x =-,根据函数的单调性得到()'0F x ≤在[]1,2上恒成立,参数别离得到()()21x x a g x e x ≤=-,计算()g x 的最小值得到答案.【详解】不妨设12x x <,()()12121f x f x x x -<-,可得:()()1122f x x f x x ->-.令()()Fx f x x =-,那么()F x 在[]1,2单调递减,所以()'0F x ≤在[]1,2上恒成立,()()21'10x ae x F x x-=-≤, 当1x =时,a R ∈,当(]1,2x ∈时,()()21x x a g x e x ≤=-,那么()()()2222'01xx x x g x e x --+=<-, 所以()gx 在[]1,2单调递减,是()()2min 42g x g e ==,所以24,a e ⎛⎤∈-∞ ⎥⎝⎦. 【点睛】此题考察了函数的单调性,恒成立问题,构造函数()()F x f x x =-是解题的关键.二、填空题:此题一共4小题,每一小题5分,一共20分。
高二下学期期末考试数学试卷和答案一、 选择题:(每题4分,共48分) 将答案填图在答题卡上.1.复数31ii--等于( ) A .i 21+ B.12i - C.2i + D.2i - 2.=-⎰π20)sin (dx x ( )A .0 C.-23.若复数i i z -=1,则=|z |( )A .21B .22C .1D .24.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x 轴上的点的个数是( )A .100 B .90 C .81 D .725.若函数3()33f x x bx b =-+在(0,1)内有极小值,则( ) A .01b <<B .1b <C .0b >D .12b <6.在二项式5)1(xx -的展开式中,含x 3的项的系数是( )7.若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( ).A .B .C .D .8.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x (θ为参数),直线的方程为⎩⎨⎧-=-=1612t y t x (t 为参数),则直线与圆的位置关系是( )。
A. 相交过圆心B.相交而不过圆心C.相切D.相离9.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A 、3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A 的球,则在第二号盒子中任取一个球;若第一次取得标有字母B 的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为( ) A . B . C . D .y y y10.设31(3)n x x+的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P +S =272,则n 为( )A .4B .5C .6D .811.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为( )A.p B.2(1)p p -C.(1)p p -- D.(1)p p -天津市大港一中08—09学年高二下学期期末考试(数学理)12.参数方程⎪⎩⎪⎨⎧-==1112t t y t x (t 为参数)所表示的曲线是( )。
2021-2022学年第二学期高二年级数学(理)期末卷一、选择题(本大题共12道小题,每小题5分,共60分)1. 已知集合,,则(){}2320M x x x =-+≤∣{0}N x x =>∣A. B. N M ⊆M N⊆C. D. M N ⋂=∅M N R= 【答案】B 【解析】【分析】先运用一元二次不等式的解法,求得集合M ,再运用集合间的包含关系,集合的交集、并集运算可得选项.【详解】因为,解不等式得,且,{}2320M x x x =-+≤∣{12}M x x =≤≤∣{0}N x x =>∣所以,,.M N ⊆{}12M N x x ⋂=≤≤≠∅{}M N x x ⋃=>故选:B.【点睛】本题考查了集合的交集、并集运算,集合的包含关系,意在考查学生的计算能力和应用能力,属于基础题.2. 命题“,”的否定是( )00x ∃>001ln 1x x <-A. ,B. ,0x ∀≤1ln 1x x <-0x ∀>1ln 1x x ≥-C. ,D. ,0x ∀≤1ln 1x x≥-0x ∀>1ln 1x x<-【答案】B 【解析】【分析】利用特称命题的否定可得出结论.【详解】由特称命题的否定可知,命题“,”的否定是“,”.00x ∃>001ln 1x x <-0x ∀>1ln 1x x ≥-故选:B.3. 已知向量,若,则()()()1,2,2,a b m ==-a b ⊥m =A. 1B.C. 4D. 1-4-【答案】A 【解析】【分析】根据向量垂直的坐标公式求解即可【详解】因为,故,故a b ⊥ ()1220m ⨯-+=1m =故选:A4. 某学校高一、高二、高三3个年级共有1080名学生,其中高一年级学生540名,高二年级学生360名,为了解学生身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为( )A. 54 B. 48C. 32D. 16【答案】D 【解析】【分析】先求得样本容量,再根据分层抽样的比例,即可求得答案.【详解】由题意可知,抽取的样本容量为 ,32108096360⨯=则样本中高三学生有 人,108054036096161080--⨯=故选:D5. 设为虚数单位,若,则它的共轭复数对应的点位于( )i 1i34i i z -=+-z A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】【分析】根据复数的除法与模长公式可得,再根据共轭复数的定义与几何意义判定即可4i z =-【详解】∵,∴,1i (1i)i|34i |54i i i i --=+-=+=-⋅z 4i z =+则在复平面内对应的点的坐标为,位于第一象限.z ()4,1故选:A.6. 若幂函数没有零点,则实数m 的值为()()()223265m f x m m x -=-+A. 1B. 1或2C. 2D. 0【答案】A 【解析】【分析】根据幂函数的定义求得的值,在分别检验对应函数是否有零点即可得出答案.m 【详解】解:由幂函数,()()223265m f x m m x -=-+可得,解得或2,22651m m -+=1m =当时,,令,无解,符合题意,1m =()1f x x =10x =当时,,令,则,不符题意,2m =()f x x =()0f x x ==0x =所以.1m =故选:A.7. 为了得到函数的图象,只要把的图象( )sin 3 4y x π⎛⎫=- ⎪⎝⎭sin y x =A. 向右平移个单位长度,然后纵坐标不变,横坐标伸长为原来的倍4π3B. 向左平移个单位长度,然后纵坐标不变,横坐标缩短为原来的倍4π13C. 纵坐标不变,横坐标缩短为原来的倍,再向右平移个单位长度134πD. 纵坐标不变,横坐标缩短为原来的倍,再向右平移个单位长度1312π【答案】D 【解析】【分析】先化,再由三角函数的图象变换原则,即可得出结果. sin 3i 312s n 4x y x ππ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎛⎫=-=⎭⎣ ⎪⎦⎝【详解】,纵坐标不变,横坐标缩短为原来的倍,可得;sin y x =13 sin3y x =再向右平移个单位,可得.12πsin 312sin 34y x x ππ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎛⎫==- ⎪⎝⎭⎦故选:D.A. B. C. D.【答案】C 【解析】【分析】根据函数的奇偶性排除AB ,再根据趋近于时的值判断即可x +∞()()x f x f x ---==-()3x x f x +.()()()()220225054222log 42f f f f =⨯+==-==故选:D .11. 四棱锥的外接球O 的半径为2,平面ABCD ,底面ABCD 为矩形,,P ABCD -PA ⊥2PA AB ==则平面PAD 截球O 所得的截面面积为( )A. B. C. D. 4π3π2ππ【答案】B 【解析】【分析】根据外接球的球心到所有顶点距离相等,故可得球心为的中点,即可根据截面的性质求解O PC 截面圆半径.【详解】由题意可知,球心为的中点,因为,所以平面O PC ,,CD AD CD PA AD PA A ⊥⊥= CD ⊥,为的中点,故到平面的距离为,故截面圆的半径为,截面面积为PAD O PC O PAD 112CD =221=3-()2π3=3π故选:B12. 已知,,,则,,的大小关系为( )ln 33a =1e b =ln 55c =a b c A. B. a b c >>c a b >>C. D. b c a >>b a c>>【答案】D 【解析】【分析】构造函数,利用导数确定其单调性,由单调性比较大小可得.ln ()xf x x =【详解】设,则,时,,是减函数,ln ()x f x x =21ln ()xf x x -'=e x >()0f x '<()f x 又,所以,即,e 35<<(e)(3)(5)f f f >>1ln 3ln 5e 35>>故选:D .二、填空题(本大题共4道小题,每小题5分,共20分)13. 从10件产品(其中次品3件)中,一件一件不放回地任意取出4件,则4件中恰有1件次品的概率为______.【答案】##0.512【解析】【分析】用计数原理计算出基本事件总数,并确定4件中恰有1件次品的事件数,利用古典概型及其概率计算公式求解.【详解】解:一件一件不放回地抽取4件,可以看成一次抽取4件,故共有种可能的结果,事件A 含410C 有种结果.∴.1337C C ⨯()1337410C C 1C 2P A ⨯==故答案为:.1214. 当时,的值有正也有负,则实数a 的取值范围是______.11x -≤≤21y ax a =++【答案】113a -<<-【解析】【分析】设,根据可求出结果.()21f x ax a =++(1)(1)0f f -⋅<【详解】设,()21f x ax a =++依题意可得,所以,(1)(1)0f f -⋅<(21)(21)0a a a a -++++<所以,得.(1)(31)0a a ++<113a -<<-故答案为:113a -<<-15. 边长为的等边三角形中,设,则___________.3ABC ,,AB c BC a CA b === a b b c c a ⋅+⋅+⋅= 【答案】##-4.592-【解析】【分析】利用平面向量的数量积的定义求解.【详解】解:在边长为的等边三角形中,因为,3ABC ,,AB c BC a CA b ===所以,a b b c c a ⋅+⋅+⋅,33cos12033cos12033cos120=⨯⨯+⨯⨯+⨯⨯ ,92=-故答案为:92-16. 的内角,的对边分别为 ,若,则的面积为ABC ,,A B C ,,a b c 1,sin sin ,234A B C a π===ABC _______【答案】33【解析】【分析】由正弦定理可以化简,利用面积公式求出的面积.1sin sin 4B C =ABC 【详解】由正弦定理得,4343sin sin ,sin sin sin 3sin 3a a b B B c C C A A ====所以,从而.164sin sin 33bc B C ==13sin 23ABC S bc A ==△【点睛】本题考查了正弦定理、面积公式,正确使用公式是解题的关键.三、解答题17. 已知.()231sin 2cos ,22f x x x x R =--∈⑴化简并求函数的最小正周期⑵求函数的最大值,并求使取得最大值的的集合()f x ()f x x 【答案】(1),最小正周期()sin(2)16f x x π=--T π=(2)max ,,()03x x x k k Z f x ππ⎧⎫∈=+∈=⎨⎬⎩⎭【解析】【分析】(1)由倍角公式,将函数化简,然后得其最小正周期;()f x (2)由(1)得知函数,根据正弦函数的性质,求得的最值以及此时的取值.()f x x 【详解】(1)由题()23131sin 2cos sin 2cos 21sin 2122226f x x x x x x π⎛⎫=--=--=-- ⎪⎝⎭所以函数的最小正周期22T ππ==(2)由(1)可知,当是,即时,函数取最大值,最大22,62x k k Zπππ-=+∈,3x k k Zππ=+∈()f x 值为1-1=0,所以,当max ,,()03x x x k k Z f x ππ⎧⎫∈=+∈=⎨⎬⎩⎭【点睛】被踢考查了三角函数的性质,解题的关键是利用三角恒等变化对函数进行化简,再利用性质,属于基础题.18. 的内角A ,B ,C 的对边分别为a ,b ,c ,已知.ABC cos cos 2cos a C c A b B +=(1)求B ;(2)若,的面积为,求的周长.23b =ABC 23ABC 【答案】(1);(2)3B π=623+【解析】【分析】(1)根据正弦定理以及两角和的正弦公式即可求出,进而求出;1cos 2B =B (2)根据余弦定理可得到,再根据三角形面积公式得到 ,即可求出()2312a b ab +-=8ab =,进而求出的周长.6a b +=ABC 【详解】解:(1),cos cos 2cos a C c A b B += 由正弦定理得:,sin cos sin cos 2sin cos A C C A B B +=整理得:,()sin 2sin cos sin A C B B B+==∵在中,,ABC 0B π<<∴,sin 0B ≠即,2cos 1B =∴,1cos 2B =参考公式:((11n i i n i x b ==-=∑∑(1)在给定的坐标系中画出表中数据的散点图;y(2),()12345 3.54x =+++=,42154i i x==∑4152.5ii i x y ==∑252.54 3.5 3.50.7544 3.5b -⨯⨯∴==-⨯(3)20.73 1.05 3.15ˆy=⨯+= 2223 3.150.1ˆˆ5ey y ∴=-=-=-当代入回归直线方程,得(小时)10x =0.710 1.058.05y =⨯+=加工10个零件大约需要8.05个小时∴【点睛】本题考查线性回归直线,考查学生的运算能力,属于基础题.21. 2022年6月5日神舟十四号发射升空,神舟十四号任务期间,将全面完成以天和核心舱、问天实验舱和梦天实验舱为基本构型的太空空间站建造等多项科研任务,并将继续开展天宫课堂.某校“航空航天”社团针对学生是否有兴趣收看天宫课堂进行了一项调查,获得了如下数据:感兴趣不感兴趣合计男生人数29332女生人数21728合计501060(1)是否有95%的把握认为“是否有兴趣收看天宫课堂与性别有关”?(2)从不感兴趣的10人中随机抽取两人做进一步宣传,设抽到的女生人数为X ,求X 的概率分布.参考公式:独立性检验统计量,其中.()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++临界值表:20()P x χ≥0.150.100.050.0250.0100.0050.0010x 2.072 2.706 3.841 5.0246.6357.87910.828【答案】(1)没有95%的把握认为“是否有兴趣收看天宫课堂与性别有关”(2)答案见解析【解析】【分析】(Ⅰ)求出,从而没有的把握认为“是否有兴趣收看天宫课堂与性别有2 2.625 3.841K ≈<95%关”;(Ⅱ)从不感兴趣的女生人数的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布X X 列和数学期望.【小问1详解】解:提出假设:是否有兴趣收看天宫课堂与性别无关0H 根据列联表中的数据,可以求得()226029732121 2.625501032288χ⨯-⨯===⨯⨯⨯因为.而,()2 3.8410.05P χ≥= 2.625 3.841<所以没有95%的把握认为“是否有兴趣收看天宫课堂与性别有关” .【小问2详解】解:依题意,随机变量X 的可能取值为0,1,2,()()()211373221010272107170,1,2151155C C C P X P X P X C C C C =========随机变量X 的概率分布表如下:X012P 11571571522. 已知,的导数是.()ln x f x x =()f x ()f x '(1)求在的切线方程;()f x x e =(2)求在上的最大值.()f x ()0,∞+【答案】(1);(2).1y e =()max 1f x e =【解析】【分析】(1)根据导数的几何意义,求得在的切线斜率,根据点斜式即可得解;x e =(2)根据导数在研究函数中的应用,求得可得单调性,根据单调性即可求得最值.【详解】(1)由题意得, ;()'21ln x f x x -=0x >;∴()'0f e =又()1f e e=在处的切线方程为;∴()f x x e =1y e =(2)令得;令得()'0f x >0<<x e ()'0f x <>x e 于是在单调递增;在单调递减()f x ()0,e (),e +∞.∴()()max 1f x f e e ==。
2014年春期南阳市期末质量检测高二数学(理科)答案一、选择题(共12个小题,每小题5分)1—5 BADCA 6—10 BBDDC 11—12 DA二、填空题(共4小题,每题5分) 13.2π 14. q 15. (][),16 2.-∞-+∞ 16. ①③三、解答题17. 解:(1)2532150330m m m m m m ⎧==-⎧--=⇒⎨⎨≠-+≠⎩⎩或 ∴Z 是实数时,m=5.……………………………………(5分)(2)222150303260m m m m m m m ⎧--≠⎪+≠⇒==-⎨⎪--=⎩或 3m ∴=当,=12Z i -;当2m =-时,=7Z i - ……………………………………(10分)18. 解:(1)由抽样调查阅读莫言作品在50篇以上的概率为111812131510795050100+++++=+ ,据此估计该校学生阅读莫言作品超过50篇的概率为79100P = ………………(6分) (2)非常了解 一般了解 合计 男生30 20 50 女生25 25 50 合计55 45 100根据列表数据得 ()2210030252025 1.010 1.32350505545K ⨯⨯-⨯=≈<⨯⨯⨯, 所以,没有75%的把握人物对莫言作品的了解程度与性别有关.…………(12分)19. 解:假设存在一次函数()()0g x kx b k =+≠,使得 ()()12311n n a a a a g n a -++++=-对2n ≥的一切自然数都成立,则当n=2时有,()()1221a g a =-,又()1211,1,222a a g ==+∴=即22kb +=……①. 当n=3时有,()()12331a a g a +=-,又1221111,1,1,223a a a ==+=++()33g ∴=,即33k b +=……②,由①②可得1,0k b ==,所以猜想:()g x x =,…………………………(5分) 下面用数学归纳法加以证明:(1)当n=2时,已经得到证明;……………………………………(6分)(2)假设当n=k (2,k k N ≥∈)时,结论成立,即存在()g k k =,使得()()12311k k a a a a g k a -++++=-对2k ≥的一切自然数都成立,则当1n k =+时,()1231231+k k k a a a a a a a a a -++++=++++ ()()=11k k k k a a k a k -+=+-,……………………(8分) 又11111112311k k a a k k k +=+++++=+++,111k k a a k -∴=-+, ()()()1231111111k k k a a a a k a k k a k ++⎛⎫∴++++=+--=+- ⎪+⎝⎭, ∴当1n k =+时,命题成立.………………………………………………(11分) 由(1)(2)知,对一切n ,(2,n n N *≥∈)有()g n n =,使得()()12311n n a a a a g n a -++++=-都成立.…………………………(12分) 20. 解:(1)()2212'1a a f x x x -=+-,依题意有:()'20f =,即21104a a -+-= 解得:32a = 检验:当32a =时,()()()2222122332'1=x x x x f x x x x x ---+=+-= 此时:函数()f x 在()1,2上单调递减,在()2,+∞上单调递增,满足在2x =时取得极值 综上:32a = ……………………………………(6分) (2)依题意:()0f x ≥对任意[)1,+x ∈∞恒成立等价转化为()min 0f x ≥在[)1,+x ∈∞恒成立的必要条件是(1)0f ≥ ,即220a -≥,所以1a ≤………………(8分)因为()()()()()2222211221212'1x a x x ax a a a f x x x x x ----+--=+-== 令()'0f x =得:121x a =-,21x = …………………………………………(10分)1a ≤∴211a -≤,此时,函数()'0f x ≥在[)1,+∞恒成立,则()f x 在[)1,+∞单调递增,于是()()min =1220f x f a =-≥,解得:1a ≤,此时:1a ≤综上所述:实数a 的取值范围是1a ≤ …………………………………………………(12分).21. 解:(1)设“选出的3种商品中至少有一种是日用类商品”为事件A ,则方法一:()1221345454393742C C C C C P A C ++==; 方法二:()353937142C P A C =-=. 即选出的3种商品中至少有一种是日用类商品的概率为3742.……………………(6分) (2)ξ的可能取值为0,,2,3x x x ,则()111101112228P ξ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2131131228P x C ξ⎛⎫==⨯⨯-= ⎪⎝⎭, ()22311321228P x C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ()111132228P x ξ==⨯⨯=, ∴ ξ的分布列为 ξ 0 x 2x 3x P 18 3838 18故13313=02388882E x x x x ξ⨯+⨯+⨯+⨯=(元) 根据题意,得31802x ≤,解得120x ≤, 即x 至多为120元时,此促销方案使商场不会亏本。
2021年高二数学下学期期末考试试卷理(含解析)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设复数z=(i为虚数单位),则z的虚部为( )A.﹣i B.i C.﹣1 D.1考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,化简复数z,可得它的虚部.解答:解:∵复数z====1﹣i,故该复数的虚部为﹣1,故选:C.点评:本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i 的幂运算性质,属于基础题.2.若P=,Q=(a≥0),则P,Q的大小关系为( )A.P>Q B.P=QC.P<Q D.由a的取值确定考点:不等式比较大小.专题:不等式的解法及应用.分析:平方作差即可比较出大小.解答:解:∵a≥0,∴a2+7a+12>a2+7a+10.∴Q2﹣P2=﹣()=>0.∴P<Q.故选:C.点评:本题考查了平方作差可比较两个数的大小方法,属于基础题.3.以下各点坐标与点不同的是( )A.(5,﹣)B.C.D.考点:极坐标刻画点的位置.专题:综合题;坐标系和参数方程.分析:利用排除法,结合终边相同的角,从而得出正确选项.解答:解:点M的极坐标为(﹣5,),由于和﹣是终边相同的角,故点M的坐标也可表示为(﹣5,﹣),排除D;再根据和或是终边在反向延长线的角,故点M的坐标也可表示为(5,),(5,﹣),排除B,C.故选:A.点评:本题考查点的极坐标、终边相同的角的表示方法,是一道基础题.4.有一段“三段论”推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中( )A.大前提错误B.小前提错误C.推理形式错误D.结论正确考点:演绎推理的基本方法.专题:阅读型.分析:在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.解答:解:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f (x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x=x0附近的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故选A.点评:本题考查的知识点是演绎推理的基本方法,演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.5.已知是复数z的共轭复数,z++z•=0,则复数z在复平面内对应的点的轨迹是( ) A.圆B.椭圆C.双曲线D.抛物线考点:轨迹方程.专题:综合题;数系的扩充和复数.分析:设出复数z的代数形式,代入z++z•=0,整理后即可得到答案.解答:解:设z=x+yi(x,y∈R),则,代入z++z•=0,得:,即x2+y2+2x=0.整理得:(x+1)2+y2=1.∴复数z在复平面内对应的点的轨迹是圆.故选:A.点评:本题考查了轨迹方程,考查了复数模的求法及复数相等的条件,是中档题.6.若函数f(x)=,则f′(x)是( )A.仅有最小值的奇函数B.仅有最大值的偶函数C.既有最大值又有最小值的偶函数D.非奇非偶函数考点:简单复合函数的导数.专题:导数的概念及应用.分析:先求导,转化为二次函数型的函数并利用三角函数的单调性求其最值,再利用函数的奇偶性的定义进行判断其奇偶性即可.解答:解:∵函数f(x)=,∴f′(x)=cos2x+cosx=2cos2x+cosx﹣1=,当cosx=时,f′(x)取得最小值;当cosx=1时,f′(x)取得最大值2.且f′(﹣x)=f′(x).即f′(x)是既有最大值,又有最小值的偶函数.故选C.点评:熟练掌握复合函数的导数、二次函数型的函数的最值、三角函数的单调性及函数的奇偶性是解题的关键.7.用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2…(2n﹣1)(n∈N+)时,从“n=k 到n=k+1”时,左边应增添的式子是( )A.2k+1 B.2k+3 C.2(2k+1)D.2(2k+3)考点:数学归纳法.专题:证明题;点列、递归数列与数学归纳法.分析:分别求出n=k时左边的式子,n=k+1时左边的式子,用n=k+1时左边的式子,除以n=k时左边的式子,即得所求.解答:解:当n=k时,左边等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),当n=k+1时,左边等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故从“k”到“k+1”的证明,左边需增添的代数式是=2(2k+1),故选:C.点评:本题考查用数学归纳法证明等式,用n=k+1时,左边的式子除以n=k时,左边的式子,即得所求.8.以下命题正确命题的个数为( )(1)化极坐标方程ρ2cosθ﹣ρ=0为直角坐标方程为x2+y2=0或y=1(2)集合A={x||x+1|<1},B=,则A⊆B(3)若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则的值为2f′(x0)(4)若曲线y=e x+a与直线y=x相切,则a的值为0(5)将点P(﹣2,2)变换为P′(﹣6,1)的伸缩变换公式为.A.1 B.2 C.3 D.4考点:命题的真假判断与应用.专题:简易逻辑.分析:由极坐标方程ρ2cosθ﹣ρ=0可得ρ=0或ρcosθ﹣1=0,化为直角坐标方程,可判断(1);解绝对值不等式求出A,求函数的定义域,求出B,可判断(2);根据导数的定义,求出的值,可判断(3);利用导数法,求出满足条件的a值,可判断(4);根据伸缩变换公式,可判断(5).解答:解:由极坐标方程ρ2cosθ﹣ρ=0可得ρ=0或ρcosθ﹣1=0,即x2+y2=0或x=1,故(1)错误;解|x+1|<1得:A=(﹣2,0),由2x﹣x2≥0得,B=[0,2],则A⊈B,故(2)错误;若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则==f′(x0),故=2f′(x0),故(3)正确;∵y=e x+a的导数y′=e x,若曲线y=e x+a与直线y=x相切,则切点坐标为(0,0),即y=e x+a的图象经过原点,故a=﹣1,故(4)错误;将点P(﹣2,2)变换为P′(﹣6,1)的伸缩变换公式为,故(5)错误.故正确的命题个数为1个,故选:A点评:本题考查的知识点是命题的真假判断与应用,本题综合性强,难度中档.9.下列积分值等于1的是( )A.xdx B.(﹣cosx)dxC.dx D.dx考点:定积分.专题:导数的概念及应用.分析:根据积分公式直接进行计算即可.解答:解:xdx==,(﹣cosx)dx=﹣sinx═﹣2,dx表式以原点为圆心以2为半径的圆的面积的一半,故dx=×4π=2π,=lnx=1.故选:D.点评:本题主要考查积分的计算,要求熟练掌握常见函数的积分公式,比较基础.10.给出下列四个命题:①f(x)=x3﹣3x2是增函数,无极值.②f(x)=x3﹣3x2在(﹣∞,2)上没有最大值③由曲线y=x,y=x2所围成图形的面积是④函数f(x)=lnx+ax存在与直线2x﹣y=0垂直的切线,则实数a的取值范围是.其中正确命题的个数为( )A.1 B.2 C.3 D.4考点:命题的真假判断与应用.专题:函数的性质及应用;导数的概念及应用.分析:分析函数f(x)=x3﹣3x2的图象和性质,可判断①②;求出曲线y=x,y=x2所围成图形的面积,可判断③;求出函数f(x)=lnx+ax导函数的范围,结合与直线2x﹣y=0垂直的切线斜率为,求出实数a的取值范围,可判断④.解答:解:①若f(x)=x3﹣3x2,则f′(x)=3x2﹣6x,当x∈(0,2)时,f′(x)<0,函数为减函数,当x∈(﹣∞,0)或(2,+∞)时,f′(x)>0,函数为增函数,故当x=0时,函数取极大值,当x=2时,函数取极小值,故①错误;②错误;③由曲线y=x,y=x2所围成图形的面积S=∫01(x﹣x2)dx=(x2﹣x3)|01=﹣=,故③正确;④函数f(x)=lnx+ax,则f′(x)=+a>a,若函数f(x)存在与直线2x﹣y=0垂直的切线,则a,则实数a的取值范围是,故④正确;故正确的命题的个数是2个,故选:B点评:考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.11.已知点列如下:P1(1,1),P2(1,2),P3(2,1),P4(1,3),P5(2,2),P6(3,1),P7(1,4),P8(2,3),P9(3,2),P10(4,1),P11(1,5),P12(2,4),…,则P60的坐标为( )A.(3,8)B.(4,7)C.(4,8)D.(5,7)考点:数列的应用.专题:计算题.分析:设P(x,y),分别讨论当x+y=2,3,4时各有几个点,便可知当x+y=n+1时,第n 行有n个点,便可得出当x+y=11时,已经有55个点,便可求得P60的坐标.解答:解:设P(x,y)P1(1,1),﹣﹣x+y=2,第1行,1个点;P2(1,2),P3(2,1),﹣﹣x+y=3,第2行,2个点;P4(1,3),P5(2,2),P6(3,1),﹣﹣x+y=4,第3行,3个点;…∵1个点+2个点+3个点+…+10个点=55个点∴P55为第55个点,x+y=11,第10行,第10个点,P55(10,1),∴P56(1,11),P57(2,10),P58(3,9),P59(4,8),P60(5,7).∴P60的坐标为(5, 7),故选D.点评:本题表面上是考查点的排列规律,实际上是考查等差数列的性质,解题时注意转化思想的运用,考查了学生的计算能力和观察能力,同学们在平常要多加练习,属于中档题.12.已知函数f(x)=a(x﹣)﹣2lnx(a∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使f(x0)>g(x0)成立,则实数a的范围为( )A.[λ,+∞)B.(0,+∞)C.[0,+∞)D.(G(x),+∞)考点:函数恒成立问题.专题:函数的性质及应用.分析:由题意,不等式f(x)>g(x)在[1,e]上有解,即>在[1,e]上有解,令h(x)=,求出h(x)的导数,由此利用导数性质能求出a的取值范围.解答:解:由题意,不等式f(x)>g(x)在[1,e]上有解,∴ax>2lnx,即>在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴>h(1)=0,∴a>0.∴a的取值范围是(0,+∞).故选:B.点评:本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=11.考点:函数在某点取得极值的条件.专题:计算题.分析:对函数进行求导,根据函数f(x)在x=﹣1有极值0,可以得到f(﹣1)=0,f′(﹣1)=0,代入求解即可解答:解:∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n依题意可得联立可得当m=1,n=3时函数f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3=3(x+1)2≥0函数在R上单调递增,函数无极值,舍故答案为:11点评:本题主要考查函数在某点取得极值的性质:若函数在取得极值⇒f′(x0)=0.反之结论不成立,即函数有f′(x0)=0,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.14.已知函数y=f(x)的图象在M(1,f(1))处的切线方程是+2,f(1)+f′(1)=3.考点:导数的运算.分析:先将x=1代入切线方程可求出f(1),再由切点处的导数为切线斜率可求出f'(1)的值,最后相加即可.解答:解:由已知切点在切线上,所以f(1)=,切点处的导数为切线斜率,所以,所以f(1)+f′(1)=3故答案为:3点评:本题主要考查导数的几何意义,即函数在某点的导数值等于以该点为切点的切线的斜率.15.已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为(1,).考点:点的极坐标和直角坐标的互化;参数方程化成普通方程.专题:选作题;坐标系和参数方程.分析:化参数方程为普通方程,联立即可求得交点坐标解答:解:把(0≤θ<π)利用同角三角函数的基本关系消去参数,化为直角坐标方程为+y2=1(y≥0),把(t∈R),消去参数t,化为直角坐标方程为y2=x两方程联立可得x=1,y=.∴交点坐标为(1,).故答案为:(1,).点评:本题考查参数方程化成普通方程,考查学生的计算能力,比较基础.16.若函数f(x)=x3+3x对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,则x∈(﹣2,).考点:利用导数研究函数的单调性;函数单调性的性质.专题:函数的性质及应用.分析:先利用定义、导数分别判断出函数的奇偶性、单调性,然后利用函数的性质可去掉不等式中的符号“f”,转化具体不等式,借助一次函数的性质可得x的不等式组,解出可得答案.解答:解:∵f(﹣x)=(﹣x)3+3(﹣x)=﹣(x3+3x)=﹣f(x),∴f(x)是奇函数,又f'(x)=3x2+3>0,∴f(x)单调递增,f(mx﹣2)+f(x)<0可化为f(mx﹣2)<﹣f(x)=f(﹣x),由f(x)递增知mx﹣2<﹣x,即mx+x﹣2<0,∴对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,等价于对任意的m∈[﹣2,2],mx+x﹣2<0恒成立,则,解得﹣2<x<,故答案为:(﹣2,).点评:本题考查恒成立问题,考查函数的奇偶性、单调性的应用,考查转化思想,考查学生灵活运用知识解决问题的能力.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在直角坐标系xOy中,圆O的参数方程为,(θ为参数,r>0).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l的极坐标方程为.写出圆心的极坐标,并求当r为何值时,圆O上的点到直线l的最大距离为3.考点:简单曲线的极坐标方程;圆的参数方程.专题:计算题.分析:将直线和圆的方程化为直角坐标方程,利用直线和圆的位置关系求解.解答:解:圆的直角坐标方程为(x+)2+(y+)2=r2,圆心的直角坐标(﹣,﹣)极坐标.直线l的极坐标方程为即为x+y﹣1=0,圆心到直线的距离.圆O上的点到直线的最大距离为,解得.点评:本题考查极坐标、参数方程与普通方程互化的基础知识,考查点到直线距离公式等.18.已知函数f(x)=x2+alnx的图象与直线l:y=﹣2x+c相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线l的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)求导数,利用导数的几何意义求直线方程.(2)利用导数求函数的单调区间.(3)将不等式转化为最值恒成立,然后利用导数求函数的最值.解答:解:(1)因为,所以﹣2=f'(1)=2+a,所以a=﹣4所以f(x)=x2﹣4lnx…所以f(1)=1,所以切点为(1,1),所以c=3所以直线l的方程为y=﹣2x+3…(2)因为f(x)的定义域为x∈(0,+∞)所以由得…由得…故函数f(x)的单调减区间为,单调增区间为…(3)令g(x)=f(x)﹣2x,则得x>2所以g(x)在(0,2]上是减函数,在[2,+∞)上是增函数…g(x)min=g(2)=﹣4ln2,所以m≤g(x)min=﹣4ln2…所以当f(x)≥2x+m在f(x)的定义域内恒成立时,实数m的取值范围是(﹣∞,﹣4ln2]…点评:本题主要考查导数的综合应用,要求熟练掌握函数的单调性、最值和极值与导数的关系.19.已知函数f(x)=alnx﹣2ax+3(a≠0).(I)设a=﹣1,求函数f(x)的极值;(II)在(I)的条件下,若函数(其中f'(x)为f(x)的导数)在区间(1,3)上不是单调函数,求实数m的取值范围.考点:利用导数研究函数的极值;函数的单调性与导数的关系.专题:计算题.分析:(I)先求函数的导函数f′(x),再解不等式f′(x)>0,得函数的单调增区间,解不等式f′(x)<0得函数的单调减区间,最后由极值定义求得函数极值(II)构造新函数g(x),把在区间(1,3)上不是单调函数,即函数g(x)的导函数在区间(1,3)不能恒为正或恒为负,从而转化为求导函数的函数值问题,利用导数列出不等式,最后解不等式求得实数m的取值范围解答:解:(Ⅰ)当a=﹣1,f(x)=﹣lnx+2x+3(x>0),,…∴f(x)的单调递减区间为(0,),单调递增区间为(,+∞)…,∴f(x)的极小值是.…(Ⅱ),g′(x)=x2+(4+2m)x﹣1,…∴g(x)在区间(1,3)上不是单调函数,且g′(0)=﹣1,∴ …∴ 即:﹣.故m的取值范围…点评:本题考查了函数的定义域、单调性、极值,以及导数在其中的应用,由不等式恒成立问题与最值问题求解参数的取值范围的方法20.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.考点:参数方程化成普通方程;点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:(Ⅰ)把曲线C的极坐标方程、直线l的参数方程化为普通方程即可;(Ⅱ)把直线l的参数方程代入曲线C的直角坐标方程中,得关于t的一元二次方程,由根与系数的关系,求出t1、t2的关系式,结合参数的几何意义,求出a的值.解答:解:(Ⅰ)曲线C的极坐标方程ρsin2θ=acosθ(a>0),可化为ρ2sin2θ=aρcosθ(a>0),即y2=ax(a>0);直线l的参数方程为(t为参数),消去参数t,化为普通方程是y=x﹣2;(Ⅱ)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,得;设A、B两点对应的参数分别为t1,t2,则;∵|PA|•|PB|=|AB|2,∴,即;∴,解得:a=2,或a=﹣8(舍去);∴a的值为2.点评:本题考查了参数方程与极坐标的应用问题,也考查了直线与圆锥曲线的应用问题,解题时应先把参数方程与极坐标化为普通方程,再解答问题,是中档题.21.给出定义在(0,+∞)上的三个函数:f(x)=lnx,g(x)=x2﹣af(x),,已知g(x)在x=1处取极值.(1)确定函数h(x)的单调性;(2)求证:当1<x<e2时,恒有成立.考点:利用导数研究函数的单调性.专题:综合题.分析:(1)由题设,知g(x)=x2﹣alnx,则.由g'(1)=0,知a=2于是,由此能确定h (x)的单调性.(2)当1<x<e2时,0<f(x)<2,所以 2﹣f(x)>0,欲证,只需证x[2﹣f(x)]<2+f(x),即证.由此能够证明当1<x<e2时,.解答:解:(1)由题设,g(x)=x2﹣alnx,则.…由已知,g'(1)=0,即2﹣a=0⇒a=2.…于是,则.由,…所以h(x)在(1,+∞)上是增函数,在(0,1)上是减函数.…(2)当1<x<e2时,0<lnx<2,即0<f(x)<2,所以 2﹣f(x)>0…欲证,只需证x[2﹣f(x)]<2+f(x),即证.设,则.…当1<x<e2时,φ'(x)>0,所以φ(x)在区间(1,e2)上为增函数.从而当1<x<e2时,φ(x)>φ(1)=0,即,故.…点评:本题考查函数单调性的确定和不等式的证明,具体涉及到导数的性质和应用、函数的单调性、不等式的等价转化等基本知识.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是xx届高考的重点.解题时要认真审题,仔细解答.22.已知函数.(a∈R)(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.考点:利用导数求闭区间上函数的最值.专题:计算题.分析:(1)求出函数的导函数判断出其大于零得到函数在区间[1,e]上为增函数,所以f (1)为最小值,f(e)为最大值,求出即可;(2)令,则g(x)的定义域为(0,+∞).证g(x)<0在区间(1,+∞)上恒成立即得证.求出g′(x)分区间讨论函数的增减性得到函数的极值,利用极值求出a的范围即可.解答:解(Ⅰ)当a=1时,,.对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数.∴,精品文档实用文档 (Ⅱ)令,则g (x )的定义域为(0,+∞). 在区间(1,+∞)上,函数f (x )的图象恒在直线y=2ax 下方等价于g (x )<0在区间(1,+∞)上恒成立.∵.①若,令g'(x )=0,得极值点x 1=1,.当x 2>x 1=1,即时,在(x 2,+∞)上有g'(x )>0.此时g (x )在区间(x 2,+∞)上是增函数,并且在该区间上有g (x )∈(g (x 2),+∞),不合题意;当x 2<x 1=1,即a≥1时,同理可知,g (x )在区间(1,+∞)上,有g (x )∈(g (1),+∞),也不合题意;②若,则有2a ﹣1≤0,此时在区间(1,+∞)上恒有g'(x )<0.从而g (x )在区间(1,+∞)上是减函数要使g (x )<0在此区间上恒成立,只须满足.由此求得a 的范围是[,].综合①②可知,当a ∈[,]时,函数f (x )的图象恒在直线y=2ax 下方.点评:考查学生利用导数求函数在闭区间上的最值的能力.以及综合运用函数解决数学问题的能力. T 40836 9F84 龄40390 9DC6 鷆36371 8E13 踓[38519 9677 陷-20828 515C 兜 (22530 5802 堂31737 7BF9 篹39497 9A49 驉。
2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤34.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=15.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 76.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>18.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2} 11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 812.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°考点:直线的参数方程.专题:直线与圆.分析:设直线的倾斜角为α,则α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.可得直线的斜率,即可得出.解答:解:设直线的倾斜角为α,α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.∴直线的斜率,则直线的倾斜角α=150°.故选D.点评:本题考查了把直线的参数方程化为普通方程、直线的斜率与倾斜角的关系,属于基础题.2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:因为“x2﹣x>0”可以求出x的X围,再根据充分必要条件的定义进行求解;解答:解:∵x2﹣2x<0⇔0<x<2,若0<x<2可得0<x<4,反之不成立.∴“x2﹣2x<0”是“0<x<4”的充分非必要条件,故选B.点评:此题主要考查一元二次不等式的解法,以及充分必要条件的定义,是一道基础题;3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤3考点:特称命题.分析:根据所给的特称命题写出其否定命题:任意实数x,使x2+ax+1≥0,根据命题否定是假命题,得到判别式大于0,解不等式即可.解答:解:∵命题“存在x∈R,使x2+(a﹣1)x+1<0”的否定是“任意实数x,使x2+ax+1≥0”命题否定是真命题,∴△=(a﹣1)2﹣4≤0,整理得出a2﹣2a﹣3≤0∴﹣1≤a≤3故选D.点评:本题考查命题的否定,解题的关键是写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况.4.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=1考点:简单曲线的极坐标方程;圆的切线方程.专题:直线与圆.分析:利用圆的极坐标方程和直线的极坐标方程即可得出.解答:解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.点评:正确理解圆的极坐标方程和直线的极坐标方程是解题的关键》5.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 7考点:基本不等式.专题:计算题.分析:将x用y表示出来,代入3x+27y+1,化简整理后,再用基本不等式,即可求最小值.解答:解:由x+3y﹣2=0得x=2﹣3y代入3x+27y+1=32﹣3y+27y+1=+27y+1∵,27y>0∴+27y+1≥7当=27y时,即y=,x=1时等号成立故3x+27y+1的最小值为7故选D.点评:本题的考点是基本不等式,解题的关键是将代数式等价变形,构造符合基本不等式的使用条件.6.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]考点:绝对值不等式的解法.专题:综合题.分析:本题为含有参数的分式不等式,若直接求解,比较复杂,可直接由条件2∉M出发求解.2∉M即2不满足不等式,从而得到关于a的不等关系即可求得a的取值X围.解答:解:依题意2∉M,即2不满足不等式,得:||≤a,解得a≥,则a的取值X围为[,+∞).故选B.点评:本题考查绝对值不等式的解法和等价转化思想,属于基础题.7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>1考点:绝对值不等式的解法.专题:函数的性质及应用.分析:利用绝对值的意义求得|x﹣3|+|x﹣4|的最小值为1,再结合条件求得实数a的取值X围.解答:解:|x﹣3|+|x﹣4|表示数轴上的x对应点到3、4对应点的距离之和,它的最小值为1,故a>1,故选:D.点评:本题主要考查绝对值的意义,属于基础题.8.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再与半径比较大小即可得出.解答:解:圆ρ=2cosθ即ρ2=2ρcosθ,化为x2+y2=2x,配方为(x﹣1)2+y2=1,∴圆心C (1,0),半径r=1.直线2ρcos(θ+)=﹣1展开为=﹣1,化为x﹣y+1=0.∴圆心C到直线的距离d==1=r.∴直线与圆相切.故选:B.点评:本题考查了把极坐标方程化为直角坐标方程的方法、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题考点:命题的真假判断与应用.专题:简易逻辑.分析:由指数函数的单调性和命题的否命题,即可判断A;由含有一个量词的命题的否定,即可判断B;运用对数函数的单调性和充分必要条件的定义,即可判断C;由复合命题的真假,结合真值表,即可判断D.解答:解:A.命题“若x>y,则2x>2y”的否命题是“若x≤y,则2x≤2y”是真命题,故A错;B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1≥0”,故B错;C.设x,y为实数,x>1可推出lgx>lg1=0,反之,lgx>0也可推出x>1,“x>1”是“lgx>0”的充要条件,故C正确;D.若“p∧q”为假命题,则p,q中至少有一个为假命题,故D错.故选C.点评:本题主要考查简易逻辑的基础知识:四种命题及关系、命题的否定、充分必要条件和复合命题的真假,注意否命题与命题的否定的区别,是一道基础题.10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2}考点: Venn图表达集合的关系及运算.专题:计算题;新定义.分析:利用函数的定义域、值域的思想确定出集合A,B是解决本题的关键.弄清新定义的集合与我们所学知识的联系:所求的集合是指将A∪B除去A∩B后剩余的元素所构成的集合.解答:解:依据定义,A#B就是指将A∪B除去A∩B后剩余的元素所构成的集合;对于集合A,求的是函数的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1};依据定义,借助数轴得:A#B={x|0≤x≤1或x>2},故选D.点评:本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确定.11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 8考点:平均值不等式.专题:计算题;转化思想.分析:利用题设中的等式,把n+的表达式转化成++后,利用平均值不等式求得最小值.解答:解:∵n+=++∴n+=++(当且仅当n=4时等号成立)故选C点评:本题主要考查了平均值不等式求最值.注意把握好一定,二正,三相等的原则.12.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P考点:基本不等式.专题:不等式的解法及应用.分析:由于a+b>c,a+c>b,c+b>a,可得ac+bc>c2,ab+bc>b2,ac+ab>a2,可得SP >S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,可得S≥P,即可得出.解答:解:∵a+b>c,a+c>b,c+b>a,∴ac+bc>c2,ab+bc>b2,ac+ab>a2,∴2(ac+bc+ab)>c2+b2+a2,∴SP>S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,∴S≥P>0.∴P≤S<2P.故选:D.点评:本题考查了基本不等式的性质、三角形三边大小关系,考查了变形能力与计算能力,属于中档题.二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为{x|﹣1<x<1} .考点:绝对值不等式的解法.专题:计算题;转化思想.分析:首先分析题目求不等式|2x﹣1|﹣|x﹣2|<0的解集,可以考虑平方去绝对的方法,先移向,平方,然后转化为求解一元二次不等式即可得到答案.解答:解:|2x﹣1|﹣|x﹣2|<0移向得:丨2x﹣1丨<丨x﹣2丨两边同时平方得(2x﹣1)2<(x﹣2)2即:4x2﹣4x+1<x2﹣4x+4,整理得:x2<1,即﹣1<x<1故答案为:{x|﹣1<x<1}.点评:此题主要考查绝对值不等式的解法的问题,其中涉及到平方去绝对值的方法,对于绝对值不等式属于比较基础的知识点,需要同学们掌握.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为 3 .考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.解答:解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.点评:本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为{﹣1,0,1} .考点:集合的包含关系判断及应用.专题:阅读型.分析:根据B⊆A,利用分类讨论思想求解即可.解答:解:当a=0时,B=∅,B⊆A;当a≠0时,B={﹣}⊆A,﹣=1或﹣=﹣1⇒a=1或﹣1,综上实数a的所有可能取值的集合为{﹣1,0,1}.故答案是{﹣1,0,1}.点评:本题考查集合的包含关系及应用.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为[2,4] .考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先求出命题p,q的等价条件,然后利用p是¬q的必要非充分条件,建立条件关系即可求出m的取值X围.解答:解:∵log2|1﹣|>1;∴:|x﹣3|≤2,即﹣2≤x﹣3≤2,∴1≤x≤5,设A=[1,5],由:(x﹣m+1)(x﹣m﹣1)≤0,得m﹣1≤x≤m+1,设B=[m﹣1,m+1],∵¬p是¬q的充分而不必要条件,∴q是p的充分而不必要条件,则B是A的真子集,即,∴,即2≤m≤4,故答案为:[2,4].点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题p,q的等价条件是解决本题的关键.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,代入两个圆的极坐标方程,化简后可得⊙O1和⊙O2的直角坐标方程;(2)把两个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为极坐标方程.解答:解:(1)∵圆O1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,∴化为直角坐标方程为(x﹣2)2+y2=4,∵圆O2的极坐标方程ρ=﹣sinθ,即ρ2=﹣ρsinθ,∴化为直角坐标方程为 x2+(y+)2=.(2)由(1)可得,圆O1:(x﹣2)2+y2=4,①圆O2:x2+(y+)2=,②①﹣②得,4x+y=0,∴公共弦所在的直线方程为4x+y=0,化为极坐标方程为:4ρcosθ+ρsinθ=0.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求直线的极坐标方程,属于基础题.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.考点:带绝对值的函数.专题:计算题;证明题;函数的性质及应用.分析:(I)利用绝对值不等式即可证得f(x)≥1;(II)利用基本不等式可求得≥2,要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2即可.解答:解:(Ⅰ)证明:由绝对值不等式得:f(x)=|x﹣1|+|x﹣2|≥|(x﹣1)﹣(x﹣2)|=1 …(5分)(Ⅱ)∵==+≥2,∴要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2,即,或,或,解得x≤,或x≥.故x的取值X围是(﹣∞,]∪[,+∞).…(10分)点评:本题考查带绝对值的函数,考查基本不等式的应用与绝对值不等式的解法,求得≥2是关键,属于中档题.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.考点:参数方程化成普通方程;直线与圆的位置关系.专题:直线与圆.分析:(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.解答:解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识点是参数方程与普通方程,直线与圆的位置关系,极坐标,熟练掌握极坐标方程与普通方程之间互化的公式,及直线参数方程中参数的几何意义是解答的关键.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.考点:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.专题:计算题.分析:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.解答:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.点评:此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)原不等式可化为|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,从而求得a的值.(2)由题意可得|n﹣1|+|2n﹣1|+2≤m,构造函数y=|n﹣1|+|2n﹣1|+2,求得y的最小值,从而求得m的X围.解答:解:(1)原不等式可化为|2x﹣a|≤6﹣a,∴,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,∴a=1.(2)∵f(x)=|2x﹣1|+1,f(n)≤m﹣f(﹣n),∴|n﹣1|+1≤m﹣(|﹣2n﹣1|+1),∴|n﹣1|+|2n﹣1|+2≤m,∵y=|n﹣1|+|2n﹣1|+2,当n≤时,y=﹣3n+4≥,当≤n≤1时,y=n+2≥,当n≥1时,y=3n≥3,故函数y=|n﹣1|+|2n﹣1|+2的最小值为,∴m≥,即m的X围是[,+∞).点评:本题主要考查绝对值不等式的解法,带有绝对值的函数,体现了转化的数学思想,属于中档题.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.考点:简单曲线的极坐标方程;轨迹方程.专题:坐标系和参数方程.分析:设出点M的极坐标(ρ,θ),表示出OP、PB,列出的极坐标方程,再化为普通方程,求出点M的轨迹长度即可.解答:解:设M(ρ,θ),θ∈(0,),则OP=2cosθ,PB=2sinθ;∴ρ=OP+PM=OP+PB=2cosθ+2sinθ,∴ρ2=2ρcosθ+2ρsinθ;化为普通方程是x2+y2=2x+2y,∴M的轨迹方程是(x﹣1)2+(y﹣1)2=2(x>0,y>0);∴点M的轨迹长度是l=×2π×=π.点评:本题考查了极坐标的应用问题,解题时应根据题意,列出极坐标方程,再化为普通方程,从而求出解答来,是基础题.。