【精编】2015-2016年湖北省襄阳市襄城区九年级(上)数学期中试卷和参考答案
- 格式:doc
- 大小:516.50 KB
- 文档页数:28
2015-2016学年湖北省襄阳市襄城区九年级(上)期中数学试卷一、选择题(每小题3分,共计36分)1.(3分)下列方程中是一元二次方程的是()A.2x+1=0 B.y2+x=1 C.x2+1=0 D.x2=12.(3分)一元二次方程x2﹣5x+2=0的两根为a,b时,则a+b﹣ab的值是()A.7 B.3 C.﹣3 D.﹣73.(3分)如果关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k<1且k≠0 C.k>1 D.k≤1且k≠04.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.线段B.等边三角形C.五角星D.等腰梯形5.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°6.(3分)如图,A,B,C,D为⊙O上四点,若∠BOD=110°,则∠A的度数是()A.110°B.115°C.120° D.125°7.(3分)若⊙O的半径为4,圆心O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定8.(3分)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位9.(3分)如图,当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处读数如图所示,那么该圆的半径长为()A.B.C.5 D.310.(3分)下列说法中正确的是()A.三点确定一个圆B.垂直于弦的直径平分弦C.相等的圆心角所对弧相等D.三角形的外心是这个三角形三条角平分线的交点11.(3分)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm12.(3分)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共计15分)13.(3分)一元二次方程x2﹣2x=0的解是.14.(3分)已知点M(2a﹣b,3)与点N(﹣6,a+b)关于原点中心对称,则a ﹣b=.15.(3分)若A(﹣4,y l),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y l,y2,y3的大小关系是.(用<号连接)16.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是.17.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论是.(只填序号)三、解答题(共9小题,共69分)18.(5分)解下列方程:5x2﹣3x=x+1.19.(5分)已知m是方程x2+2x﹣5=0的一个根,求2m3+4m2﹣10m﹣9的值.20.(6分)某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?21.(6分)如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.(1)求此桥拱线所在抛物线的解析式.(2)桥边有一浮在水面部分高4m,最宽处12m的渔船,试探索此船能否开到桥下?说明理由.22.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.23.(7分)如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.24.(12分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?25.(10分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C 为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.26.(12分)如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.2015-2016学年湖北省襄阳市襄城区九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计36分)1.(3分)下列方程中是一元二次方程的是()A.2x+1=0 B.y2+x=1 C.x2+1=0 D.x2=1【解答】解:A、2x+1=0未知数的最高次数是1,故错误;B、y2+x=1含有两个未知数,故错误;C、x2+1=0是一元二次方程,正确;D、是分式方程,故错误.故选:C.2.(3分)一元二次方程x2﹣5x+2=0的两根为a,b时,则a+b﹣ab的值是()A.7 B.3 C.﹣3 D.﹣7【解答】解:∵一元二次方程x2﹣5x+2=0的两根为a,b,∴a+b=5,ab=2,∴a+b﹣ab=5﹣2=3.故选:B.3.(3分)如果关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k<1且k≠0 C.k>1 D.k≤1且k≠0【解答】解:根据题意得:4﹣4k>0且k≠0,解得:k<1且k≠0.故选:B.4.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.线段B.等边三角形C.五角星D.等腰梯形【解答】解:A、线段既是轴对称图形又是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、五角星是轴对称图形,不是中心对称图形,故此选项错误;D、等腰梯形是轴对称图形,不是中心对称图形,故此选项错误;故选:A.5.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.6.(3分)如图,A,B,C,D为⊙O上四点,若∠BOD=110°,则∠A的度数是()A.110°B.115°C.120° D.125°【解答】解:∵A,B,C,D为⊙O上四点,∠BOD=110°,∴∠C=∠BOD=55°,∴∠A=180°﹣∠C=125°.故选:D.7.(3分)若⊙O的半径为4,圆心O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定【解答】解:根据圆心到直线的距离5大于圆的半径4,则直线和圆相离.故选:C.8.(3分)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2+2x+3向右移1个单位,再向下平移2个单位.故选:D.9.(3分)如图,当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处读数如图所示,那么该圆的半径长为()A.B.C.5 D.3【解答】解:设切点为C,连接OC交AB于点D,由题意可得:AB=6,则BD=3,设BO=x,则OD=x﹣3,在Rt△ODB中,x2=(x﹣3)2+32,解得:x=3,则该圆的半径长为3cm.故选:D.10.(3分)下列说法中正确的是()A.三点确定一个圆B.垂直于弦的直径平分弦C.相等的圆心角所对弧相等D.三角形的外心是这个三角形三条角平分线的交点【解答】解:A、不共线的三点确定一个圆,故此选项错误;B、垂直于弦的直径平分弦,并且平分弦所对的两条弧,故此选项正确;C、在同圆或等圆中,相等的圆心角所对弧相等,故此选项错误;D、三角形的外心是这个三角形三边的中垂线的交点,故此选项错误;故选:B.11.(3分)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.12.(3分)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A.B.C.D.【解答】解:∵AE=BF=CG,且等边△ABC的边长为2,∴BE=CF=AG=2﹣x;∴△AEG≌△BEF≌△CFG.在△AEG中,AE=x,AG=2﹣x,∵S△AEG=AE×AG×sinA=x(2﹣x);∴y=S△ABC ﹣3S△AEG=﹣3×x(2﹣x)=(x2﹣x+1).∴其图象为二次函数,且开口向上.故选:C.二、填空题(每小题3分,共计15分)13.(3分)一元二次方程x2﹣2x=0的解是x1=0,x2=2.【解答】解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.(3分)已知点M(2a﹣b,3)与点N(﹣6,a+b)关于原点中心对称,则a ﹣b=5.【解答】解:∵点M(2a﹣b,3)与点N(﹣6,a+b)关于原点中心对称,∴,解得:,则a﹣b=1﹣(﹣4)=5.故答案为:5.15.(3分)若A(﹣4,y l),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y l,y2,y3的大小关系是y2<y1<y3.(用<号连接)【解答】解:∵y=x2+4x﹣5=(x+2)2﹣9,∴抛物线开口向上,对称轴为x=﹣2,∵A、B、C三点中,B点离对称轴最近,C点离对称轴最远,∴y2<y1<y3.故本题答案为:y2<y1<y3.16.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(﹣2,0)或(2,10).【解答】解:因为点D(5,3)在边AB上,所以AB=BC=5,BD=5﹣3=2;(1)若把△CDB顺时针旋转90°,则点D′在x轴上,OD′=2,所以D′(﹣2,0);(2)若把△CDB逆时针旋转90°,则点D′到x轴的距离为10,到y轴的距离为2,所以D′(2,10),综上,旋转后点D的对应点D′的坐标为(﹣2,0)或(2,10).故答案为:(﹣2,0)或(2,10).17.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论是③④.(只填序号)【解答】解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣=1,即2a+b=0.故①错误;②根据图示知,当x=1时,y<0,即a+b+c<0.故②错误;③∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a.故③正确;④∵△ADB为等腰直角三角形.所以AD=BD=设D(1,a+b+c),又b=﹣2a,c=﹣3a,故D(1,﹣4a);列方程求解得a=或a=﹣(舍去)∴只有a=时三角形ABD为等腰直角三角形故④正确;⑤要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.故⑤错误.综上所述,正确的结论是③④.故答案是:③④.三、解答题(共9小题,共69分)18.(5分)解下列方程:5x2﹣3x=x+1.【解答】解:整理,得5x2﹣4x﹣1=0因式分解,得(5x+1)(x﹣1)=0于是得5x+1=0或x﹣1=0,则,x2=119.(5分)已知m是方程x2+2x﹣5=0的一个根,求2m3+4m2﹣10m﹣9的值.【解答】解:∵m是方程x2+2x﹣5=0的一个根,∴m2+2m﹣5=0,∴2m3+4m2﹣10m﹣9=2m(m2+2m﹣5)﹣9=2m×0﹣9=﹣9.20.(6分)某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?【解答】解:设每期减少的百分率为x,根据题意得:450×(1﹣x)2=288,解得:x1=1.8(舍去),x2=0.2解得x=20%.答:每期减少的百分率是20%.21.(6分)如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.(1)求此桥拱线所在抛物线的解析式.(2)桥边有一浮在水面部分高4m,最宽处12m的渔船,试探索此船能否开到桥下?说明理由.【解答】解:(1)设抛物线为y=ax2+bx+c由题意得:A(﹣12,0),B(12,0),C(0,8).C点坐标代入得:c=8,A,B点坐标代入得:,解得.所求抛物线为y=﹣x2+8;(2)能开到桥下,理由:当y=4时得,解得:高出水面4m处,拱宽>12m(船宽)所以此船在正常水位时可以开到桥下.22.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.【解答】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.23.(7分)如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.【解答】(1)证明:由旋转的性质可知:∠DBE=∠ABC=60°,BD=AB,∴△ABD为等边三角形,∴∠DAB=60°,∴∠DAB=∠ABC,∴DA∥BC;(2)猜想:DF=2AF,证明如下:如图,在DF上截取DG=AF,连接BG,由旋转的性质可知,DB=AB,∠BDG=∠BAF,在△DBG和△ABF中,,∴△DBG≌△ABF(SAS),∴BG=BF,∠DBG=∠ABF,∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°,又∵BG=BF,∴△BGF为等边三角形,∴GF=BF,又∵BF=AF,∴FG=AF,∴DF=DG+FG=AF+AF=2AF.24.(12分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【解答】解:(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,故z与x之间的函数解析式为z=﹣2x2+136x﹣1800;(2)由z=440,得440=﹣2x2+136x﹣1800,解这个方程得x1=28,x2=40所以,销售单价定为28元或40元,(3)∵厂商每月的制造成本不超过540万元,每件制造成本为18元,∴每月的生产量为:小于等于=30万件,y=﹣2x+100≤30,解得:x≥35,又由限价40元,得35≤x≤40,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为:510万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.25.(10分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C 为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.26.(12分)如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.【解答】解:(1)如图1,∵A(﹣3,0),C(0,4),∴OA=3,OC=4.∵∠AOC=90°,∴AC=5.∵BC∥AO,AB平分∠CAO,∴∠CBA=∠BAO=∠CAB.∴BC=AC.∴BC=5.∵BC∥AO,BC=5,OC=4,∴点B的坐标为(5,4).∵A(﹣3,0)、C(0,4)、B(5,4)在抛物线y=ax2+bx+c上,∴解得:∴抛物线的解析式为y=﹣x2+x+4.(2)如图2,设直线AB的解析式为y=mx+n,∵A(﹣3,0)、B(5,4)在直线AB上,∴解得:∴直线AB的解析式为y=x+.设点P的横坐标为t(﹣3≤t≤5),则点Q的横坐标也为t.∴y P=t+,y Q=﹣t2+t+4.∴PQ=y Q﹣y P=﹣t2+t+4﹣(t+)=﹣t2+t+4﹣t﹣=﹣t2++=﹣(t2﹣2t﹣15)=﹣[(t﹣1)2﹣16]=﹣(t﹣1)2+.∵﹣<0,﹣3≤t≤5,∴当t=1时,PQ取到最大值,最大值为.∴线段PQ的最大值为.(3)①当∠BAM=90°时,如图3所示.抛物线的对称轴为x=﹣=﹣=.∴x H=x G=x M=.∴y G=×+=.∴GH=.∵∠GHA=∠GAM=90°,∴∠MAH=90°﹣∠GAH=∠AGM.∵∠AHG=∠MHA=90°,∠MAH=∠AGM,∴△AHG∽△MHA.∴.∴=.解得:MH=11.∴点M的坐标为(,﹣11).②当∠ABM=90°时,如图4所示.∵∠BDG=90°,BD=5﹣=,DG=4﹣=,∴BG===.同理:AG=.∵∠AGH=∠MGB,∠AHG=∠MBG=90°,∴△AGH∽△MGB.∴=.∴=.解得:MG=.∴MH=MG+GH=+=9.∴点M的坐标为(,9).综上所述:符合要求的点M的坐标为(,9)和(,﹣11).赠送初中数学几何模型【模型三】双垂型:图形特征:运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
2015-2016学年湖北省襄阳市枣阳市钱岗中学九年级(上)期中数学试卷一、选择题(每题3分)1.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)下列方程中是一元二次方程的是()A.xy+2=1 B.x2=0 C.ax2+bx+c=0 D.x2+﹣9=03.(3分)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1) B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)4.(3分)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是()A.①③B.①③④C.①②③D.②④5.(3分)如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°6.(3分)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x﹣2)2+3 C.y=3(x+2)2﹣3 D.y=3(x﹣2)2﹣37.(3分)直线m上一点P与O点的距离是3,⊙O的半径是3,则直线m与⊙O的位置关系是()A.相离B.相切C.相交或相切D.相交或相离8.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.09.(3分)已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠110.(3分)如L是⊙O的切线,要判定AB⊥L,还需要添加的条件是()A.AB经过圆心O B.AB是直径C.AB是直径,B是切点D.AB是直线,B是切点11.(3分)如图所示,抛物线y=ax2+bx+c(a≠0)经过(﹣1,2)且与x轴点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0 ②2a﹣b<0;③abc<0,④b2>4ac中,正确的有()个.A.1 B.2 C.3 D.412.(3分)在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤二、填空题(每题3分)13.(3分)方程x(x﹣5)=x﹣5的解是.14.(3分)飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.5t2.飞机着陆后滑行秒才能停下来.15.(3分)如图,将矩形ABCD绕点A顺时针旋转到AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=120°,则∠α=.16.(3分)如图,弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数是.17.(3分)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.三、解答题18.(6分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?19.(6分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.如图,当AB∥CB′时,设A′B′与CB相交于点D.求证:△A′CD是等边三角形.20.(6分)求证:无论k为何值,方程x2﹣2(2k﹣1)x+4k(k﹣1)+3=0都没有实数根.21.(9分)如图,A、P、B、C是⊙O上四点,∠APC=∠CPB=60°.(1)判断△ABC的形状并证明你的结论;(2)当点P位于什么位置时,四边形PBOA是菱形?并说明理由.(3)求证:PA+PB=PC.22.(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值并求出最大值.=)(参考公式:二次函数y=ax2+bx+c(a≠0),当x=﹣时,y最大(小)值23.(7分)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A.(1)求证:BC为⊙O的切线;(2)求∠B的度数.24.(7分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD 延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.26.(12分)如图,直径为5的⊙M圆心在x轴正半轴上,⊙M和x轴交于A、B两点,和y轴交于C、D两点且CD=4,抛物线y=ax2+bx+c经过A、B、C三点,顶点为N﹒(1)求A、B、C三点坐标;(2)求经过A、B、C三点的抛物线解析式;(3)直线NC与x轴交于点E,试判断直线CN与⊙M的位置关系并说明理由.2015-2016学年湖北省襄阳市枣阳市钱岗中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分)1.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.2.(3分)下列方程中是一元二次方程的是()A.xy+2=1 B.x2=0 C.ax2+bx+c=0 D.x2+﹣9=0【解答】解:A、不是一元二次方程,故此选项错误;B、是一元二次方程,故此选项正确;C、当a=0时,不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:B.3.(3分)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1) B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【解答】解:由y=2(x﹣3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1).故选:A.4.(3分)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是()A.①③B.①③④C.①②③D.②④【解答】解:①直径相等的两个圆是等圆,正确,是真命题;②长度相等的弧是等弧,错误,是假命题;③圆中最长的弦是通过圆心的弦,正确,是真命题;④一条弦把圆分成两条弧,这两条弧不可能是等弧,错误,是假命题.故选:A.5.(3分)如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°【解答】解:∵DC是⊙O直径,弦AB⊥CD于F,∴点D是优弧AB的中点,点C是劣弧AB的中点,A、=,正确,故本选项错误;B、AF=BF,正确,故本选项错误;C、OF=CF,不能得出,错误,故本选项符合题意;D、∠DBC=90°,正确,故本选项错误;故选:C.6.(3分)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x﹣2)2+3 C.y=3(x+2)2﹣3 D.y=3(x﹣2)2﹣3【解答】解:由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选:A.7.(3分)直线m上一点P与O点的距离是3,⊙O的半径是3,则直线m与⊙O的位置关系是()A.相离B.相切C.相交或相切D.相交或相离【解答】解:∵⊙O的半径为3,直线m上有一动点P,OP=3,∴直线与⊙O相切或相交.故选:C.8.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.0【解答】解:根据题意将x=0代入方程可得:a2﹣1=0,解得:a=1或a=﹣1,∵a﹣1≠0,即a≠1,∴a=﹣1,故选:B.9.(3分)已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.10.(3分)如L是⊙O的切线,要判定AB⊥L,还需要添加的条件是()A.AB经过圆心O B.AB是直径C.AB是直径,B是切点D.AB是直线,B是切点【解答】解:根据切线的判定方法,则这里的AB是直径,且一端是切点.故选:C.11.(3分)如图所示,抛物线y=ax2+bx+c(a≠0)经过(﹣1,2)且与x轴点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0 ②2a﹣b<0;③abc<0,④b2>4ac中,正确的有()个.A.1 B.2 C.3 D.4【解答】解:由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=﹣>﹣1,且c>0;①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;③∵a<0,﹣<0,∴b<0.∵抛物线交y轴与正半轴,∴c>0.∴abc>0,故③错误.;④由于抛物线与x轴有两个交点,所以b2﹣4ac>0,即b2>4ac,故④正确;因此正确的结论是①②④.故选:C.12.(3分)在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤【解答】解:∵△ABC绕点B顺时针旋转α度,得到△A1BC1,∴BA=BC=BA1=BC1,∠ABA1=∠CBC1=α,∠C=∠C1,而∠CFD=∠C1FB,∴∠CDF=∠C 1BF=α,所以①正确;∵∠A=∠A1=∠C1,BA=BC1,∠ABE=∠C1BF,∴△ABE≌△CBF,∴BE=BF,∴A1E=CF,所以②正确;∵∠CDF=α,而∠C不一定等于α,∴DF与FC不一定相等,所以③错误;∵BA1=BC,∠A1BF=∠CBE,BF=BE,∴△A1BF≌△CBE,∴A1F=CE,所以④正确.故选:A.二、填空题(每题3分)13.(3分)方程x(x﹣5)=x﹣5的解是1或5.【解答】解:x(x﹣5)﹣(x﹣5)=0(x﹣1)(x﹣5)=0x=1或x=5故答案为:1或514.(3分)飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.5t2.飞机着陆后滑行20秒才能停下来.【解答】解:由题意,s=60t﹣1.5t2=﹣1.5t2+60t=﹣1.5(t2﹣40t+400﹣400)=﹣1.5(t﹣20)2+600,即当t=20秒时,飞机才能停下来.15.(3分)如图,将矩形ABCD绕点A顺时针旋转到AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=120°,则∠α=30°.【解答】解:如图,由对顶角相等得,∠2=∠1=120°,在四边形中,∠BAD′=360°﹣90°×2﹣∠2=360°﹣180°﹣120°=60°,所以,∠DAD′=90°﹣60°=30°,即旋转角∠α=∠DAD′=30°.故答案为:30°.16.(3分)如图,弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数是30°或150°.【解答】解:在优弧上取点C,连接AC,BC,在劣弧AB上取点D,连接AD,BD,∵弦AB的长等于⊙O的半径,∴△OAB是等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°,∴∠ADB=180°﹣∠ACB=150°,∴弦AB所对的圆周角的度数是:30°或150°.故答案为:30°或150°.17.(3分)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=6.【解答】解:设x2+y2=t(t≥0).则t2﹣5t﹣6=0,即(t﹣6)(t+1)=0,解得,t=6或t=﹣1(不合题意,舍去);故x2+y2=6.故答案是:6.三、解答题18.(6分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?【解答】解:设前4个月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.19.(6分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.如图,当AB∥CB′时,设A′B′与CB相交于点D.求证:△A′CD是等边三角形.【解答】证明:∵在△ABC中,∠ACB=90°,∠ABC=30°,∴∠A=60°,∵将△ABC绕顶点C顺时针旋转,∴∠B=∠B′=30°,∠A′CB′=∠ACB=90°,∠A=∠A′=60°,∵AB∥CB′,∴∠BCB′=∠B=30°,∴∠A′CD=90°﹣30°=60°,即∠A′=∠A′CD=60°,∴△A′CD是等边三角形.20.(6分)求证:无论k为何值,方程x2﹣2(2k﹣1)x+4k(k﹣1)+3=0都没有实数根.【解答】解:由题意可知:△=4(2k﹣1)2﹣4(4k2﹣4k+3)=4(4k2﹣4k+1)﹣4(4k2﹣4k+3)=16k2﹣16k+4﹣16k2+16k﹣12=﹣8所以该方程无论k为何值,都没有实数根21.(9分)如图,A、P、B、C是⊙O上四点,∠APC=∠CPB=60°.(1)判断△ABC的形状并证明你的结论;(2)当点P位于什么位置时,四边形PBOA是菱形?并说明理由.(3)求证:PA+PB=PC.【解答】解:(1)证明:(1)△ABC是等边三角形.证明如下:在⊙O中,∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)当点P位于中点时,四边形PBOA是菱形,连接OP,∵∠AOB=2∠ACB=120°,P是的中点,∴∠AOP=∠BOP=60°又∵OA=OP=OB,∴△OAP和△OBP均为等边三角形,∴OA=AP=OB=PB,∴四边形PBOA是菱形;(3)如图2,在PC上截取PD=AP,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP.22.(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值并求出最大值.(参考公式:二次函数y=ax2+bx+c(a≠0),当x=﹣时,y=)最大(小)值【解答】解:(1)由题意,得S=AB•BC=x(32﹣2x),∴S=﹣2x2+32x.(2)∵a=﹣2<0,∴S有最大值.∴x=﹣=﹣=8时,有S===128.最大∴x=8时,S有最大值,最大值是128平方米.23.(7分)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A.(1)求证:BC为⊙O的切线;(2)求∠B的度数.【解答】(1)证明:连结OA、OB、OC,如图,∵AB与⊙O切于A点,∴OA⊥AB,即∠OAB=90°,∵四边形ABCD为菱形,∴BA=BC,在△ABO和△CBO中,∴△ABO≌△CBO(SSS),∴∠BCO=∠BAO=90°,∴OC⊥BC,∴BC为⊙O的切线;(2)解:连接BD,∵△ABO≌△CBO,∴∠ABO=∠CBO,∵四边形ABCD为菱形,∴BD平分∠ABC,DA=DC,∴点O在BD上,∵∠BOC=2∠ODC,而CB=CD,∴∠OBC=∠ODC,∴∠BOC=2∠OBC,∵∠BOC+∠OBC=90°,∴∠OBC=30°,∴∠ABC=2∠OBC=60°.24.(7分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD 延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【解答】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.25.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.【解答】(1)证明:连接OD;∵AD是∠BAC的平分线,∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.∴∥AC.∴∠ODB=∠ACB=90°.∴OD⊥BC.∴BC是⊙O切线.(2)解:过点D作DE⊥AB,∵AD是∠BAC的平分线,∴CD=DE=3.在Rt△BDE中,∠BED=90°,由勾股定理得:,∵∠BED=∠ACB=90°,∠B=∠B,∴△BDE∽△BAC.∴.∴.∴AC=6.26.(12分)如图,直径为5的⊙M圆心在x轴正半轴上,⊙M和x轴交于A、B两点,和y轴交于C、D两点且CD=4,抛物线y=ax2+bx+c经过A、B、C三点,顶点为N﹒(1)求A、B、C三点坐标;(2)求经过A、B、C三点的抛物线解析式;(3)直线NC与x轴交于点E,试判断直线CN与⊙M的位置关系并说明理由.【解答】解:(1)连接DM,∵⊙M的直径5,∴DM=,∵CD=4,∴OD=OC=2,∴C点的坐标为(0,﹣2),∴OM==,∴OA=﹣=1,∴OB=5﹣OA=4,∴点A的坐标为(﹣1,0),点B的坐标为(4,0)(2)由A、B两点坐标,设抛物线y=a(x+1)(x﹣4),将C(0,﹣2)代入,得a=,∴y=(x+1)(x﹣4),∴经过A、B、C三点的抛物线解析式为y=x2﹣x﹣2;(3)直线CN与⊙M相切;连接CM,设过CN直线的解析式为y=kx+b,设抛物线的顶点为N,则N点的坐标为(,﹣),∴CN直线的解析式为y=﹣x﹣2,∴点E的坐标为(﹣,0),∴CE==,∴EM=OE+OM=,∵CM2=,CE2=,EM2=,∴CM2+CE2=EM2,∴△ECM是直角三角形,即MC⊥EC,∴直线CN与⊙M相切;赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。
襄阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列命题不正确的是()A . 0是整式B . x=0是一元一次方程C . (x+1)(x﹣1)=x2+x是一元二次方程D . 是二次根式2. (2分) (2016九上·新疆期中) 如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A . 逐渐变短B . 逐渐变长C . 先变短后变长D . 先变长后变短3. (2分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A . 袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B . 掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C . 先后两次掷一枚质地均匀的硬币,两次都出现反面D . 先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过94. (2分)(2017·深圳模拟) 如图所示,下列几何体中,主视图、左视图、俯视图都相同的是()A . 半球B . 圆柱C . 球D . 六棱柱5. (2分)在比例尺为1:50000的地图上量得甲、乙两地的距离为10cm,则甲、乙两地的实际距离是()A . 500kmB . 50kmC . 5kmD . 0.5km6. (2分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A . 560(1+x)2=315B . 560(1﹣x)2=315C . 560(1﹣2x)2=315D . 560(1﹣x2)=3157. (2分)下列说法正确的是()A . 有两个角为直角的四边形是矩形B . 矩形的对角线互相垂直C . 等腰梯形的对角线相等D . 对角线互相垂直的四边形是菱形8. (2分)已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是A . ①②都有实数解B . ①无实数解,②有实数解C . ①有实数解,②无实数解D . ①②都无实数解9. (2分)下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A . 0 个B . 1 个C . 2 个D . 3 个10. (2分) (2015八下·苏州期中) 菱形具有而矩形不具有的性质是()A . 对角线互相垂直B . 对角线相等C . 四个角都是直角D . 对角线互相平分二、填空题 (共6题;共6分)11. (1分) (2016九上·云梦期中) 若关于x的方程(m﹣)x ﹣ x+2=0是一元二次方程,则m的值是________.12. (1分)(2014·南通) 在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在________区域的可能性最大(填A或B或C).13. (1分)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的是________ .14. (1分)如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=60°,AC=16,则图中长度为8的线段有________ 条.(填具体数字)15. (1分) (2017八下·临沂开学考) 如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________.16. (1分)如图,中,,,垂足为D,若AD=2,BD=4,则CD为________.三、解下列方程 (共8题;共75分)17. (20分) (2017九上·顺义月考)(1)求方程(x−2)2−16=0的根(2)解方程:x2−4x−12=0.(3)解方程:(3−y)2+y2=9.(4)解方程:2x2+6x-5=018. (15分) (2019九上·长春期末) 方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示,解答问题:(1)请按要求对△OAB作变换:以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA′B′.(2)写出点A′的坐标;(3)求△OA′B'的面积.19. (5分)在三个不透明的袋子中分别装有一些除颜色外完全相同的球.甲袋中装有1个红球和2个白球,乙袋中装有1个黄球和1个白球,丙袋中装有1个红球和1个白球.从每个袋子中随机摸出一个球,用树形图法求“摸出三个白球”的概率.20. (5分)如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.21. (5分)如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标;(2)汽车行驶到什么位置时离B村最近?写出此点的坐标;(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?22. (5分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场经调查发现,如果每件衬衫降价0.5元,商场平均每天可多售出1件,若商场平均每天想盈利1200元,是否可能,若可能则每件衬衫应降价多少元?23. (10分) (2020九上·遂宁期末) 如图,在 ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.24. (10分) (2018八上·四平期末) 已知:如图,在中,是的中点,点在上,点在上,且 .(1)求证: .(2)若 =2,求四边形的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解下列方程 (共8题;共75分)17-1、17-2、17-3、17-4、18-1、18-2、18-3、19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、第11 页共11 页。
湖北省襄阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一元二次方程的二次项系数,一次项系数,常数项分别是()A .B .C .D .2. (2分)已知一元二次方程ax2+bx+c=0(a≠0)中,其中真命题有()①若a+b+c=0,则b2-4ac≥0;②若方程ax2+bx+c=0两根为-1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根A . 1B . 2C . 3D . 03. (2分)若关于x的一元二次方程(2k﹣1)x2﹣8x+6=0没有实数根,则k的最小整数值是()A . -1B . 2C . 3D . 44. (2分) (2018九上·金山期末) 已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A . ;B . ;C . ;D . .5. (2分)(2018·禹会模拟) 某市2017年国内生产总值(GDP)比2016年增长了12%,预计今年(2018年)比2017年增长7%,若这两年年平均增长率为x%,则x%满足的关系是()A . 12%+7%=x%B . (1+12%)(1+7%)=2(1+x%)C . 12%+7%=2x%D . (1+12%)(l+7%)=(1+x%)26. (2分) (2016七上·高密期末) 当a=2与a=﹣2时,代数式a4﹣2a2+3的两个值()A . 互为倒数B . 互为相反数C . 相等D . 既不相等也不互为相反数7. (2分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A . 0个B . 1个C . 2个D . 3个8. (2分)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A .B .C .D .9. (2分)如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()A . 1B .C .D .10. (2分)(2017·青岛模拟) 如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD 边于点F,分别连接AE、CF,若AB=2 ,∠DCF=30°,则EF的长为()A . 4B . 6C .D . 2二、填空题 (共9题;共12分)11. (1分) (2020九上·南昌期末) 若关于x的方程x2-5x+k=0的一个根是0,则另一个根是________.12. (1分) (2019八下·东台月考) 如图,菱形 ABCD 中,对角线 AC、BD 相交于点O , H 为 AD 边中点,菱形 ABCD 的周长为 20,则OH 的长等于________.13. (2分)用平行四边形纸条沿对边AB、CD边上的点E、F所在的直线折成V字形图案,已知图中∠1=68°,∠2的度数为________14. (1分) (2019九上·磴口期中) 已知a、b是方程x2+2x﹣5=0的两个实数根,则a2+ab+2a的值为________.15. (1分) (2019九上·德清期末) 若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有________合格品.16. (1分) (2019九上·清江浦月考) 若,则 =________17. (2分)如图,某小区有一块长为36m,宽为24m的矩形空地,计划在其中间修建两块形状相同的矩形绿地,它们的面积之和为600m2 ,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.18. (2分) (2019七下·大通回族土族自治期中) 如图,若点E的坐标为(-2,1),点F的坐标为(1,-1),则点G的坐标为________.19. (1分)已知一元二次方程x2﹣3x﹣4=0的两根是m,n,则m2+n2=________.三、解答题 (共9题;共76分)20. (20分)解方程:(1) x2+4x﹣1=0.(2) 2x2﹣3x﹣3=0(配方法)(3) 2x2﹣7x+3=0(4) x(x﹣3)=x﹣3.21. (6分)甲、乙、丙三人玩“丢飞碟”游戏,飞碟从一人传到另一人记为丢一次.(1)下列事件是必然事件的是A . 丢三次,每人都一次接到飞碟B . 丢两次乙两次接到飞碟C . 丢四次三人中至少有一人两次接到飞碟D . 丢三次三人中每人至少一次接到飞碟(2)若从乙开始,丢两次后,飞碟传到丙处的概率是多少?(用树状图说明)22. (2分) (2016九上·滁州期中) 如图,矩形EFGH内接于△ABC,且边FG落在BC上,AD⊥BC,BC=3cm,AD=2cm,EF= EH,求EH的长.23. (2分) (2018九上·通州期末) 如图,是等腰三角形,,以为直径的⊙ 与交于点,,垂足为,的延长线与的延长线交于点.(1)求证:是⊙ 的切线;(2)若⊙ 的半径为2,,求的值.24. (10分)(2017·大庆模拟) 关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.25. (10分) (2019八下·合浦期中) 如图,在中,,点是中点,,.(1)求证:四边形是菱形;(2)过点作于点,,,求的长.26. (10分) (2016七下·吴中期中) “a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x________)2+________;(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.27. (6分) (2016七上·武汉期中) 四人做传数游戏,小郑任报一个数给小丁,小丁把这个数加1传给小红,小红再把所得的数乘以2后传给小童,小童把所听到的数减1报出答案.(1)如果小郑所报的数为x,请把小童最后所报的答案用代数式表示出来(2)若小郑报的数为9,则小童的答案是多少?(3)若小童报出的答案是15,则小郑传给小丁的数是多少?28. (10分) (2019八上·凤翔期中) 如图,折叠长方形的一边,使点落在边上的点处,, .(1)求的长;(2)求的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共12分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共76分)20-1、20-2、20-3、20-4、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、。
襄阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共8题;共16分)1. (2分) (2019八下·天河期末) 下列二次根式中,属于最简二次根式的是()A .B .C .D .2. (2分)(2017·红桥模拟) 如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A .B .C .D .3. (2分)下列运算中,正确的是()A . 2 +3 =5B . ﹣a8÷a4=﹣a2C . (3a2)3=27a6D . (a2﹣b)2=a4﹣b24. (2分)(2017·枝江模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分) (2016九上·芜湖期中) 如图,在⊙O中,AB是直径,点C是的中点,点P是的中点,则∠PAB的度数()A . 30°B . 25°C . 22.5°D . 不能确定6. (2分) (2016九上·芜湖期中) 如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A .B .C . 2D . 37. (2分)下列函数解析式中,一定为二次函数的是()A . y=3x﹣1B . y=ax2+bx+cC . s=2t2﹣2t+1D . y=x2+8. (2分)如图,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数(k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积为12,则k的值为()A . 4B . 6C . 8D . 12二、填空题: (共6题;共7分)9. (1分)(2017·孝感) 如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1 , S2 ,则可化简为________.10. (1分)分解因式:a3b﹣2a2b2+ab3= ________.11. (1分) (2017八下·鄂托克旗期末) 如图,O为数轴原点,A,B两点分别对应﹣3与3,作腰长为4的等腰△ABC,连接OC,以O为圆心,OC长为半径画弧交数轴于点M,则点M对应的实数为________.12. (2分)(2019·台州模拟) 在△ABC中,∠C=90°,AC=4,BC=3,如图1,四边形DEFG为△ABC的内接正方形,则正方形DEFG的边长为________.如图2,若三角形ABC内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为________.13. (1分) (2015九上·宁波月考) △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是________.14. (1分) (2018九上·下城期末) 在△ABC中,(cosA﹣)2+|tanB﹣1|=0,则∠C=________.三、解答题: (共10题;共79分)15. (10分)(2012·福州)(1)计算:|﹣3|+(π+1)0﹣(2)化简:a(1﹣a)+(a+1)2﹣1.16. (5分) (2016九上·芜湖期中) 在一个不透明的盒子里装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于10的概率.17. (5分)某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?18. (5分) (2016九上·芜湖期中) 已知二次函数y=ax2+k(a≠0),当x=2时,y=4;当x=﹣1时,y=﹣3,求这个二次函数解析式.19. (11分)“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:根据上述信息,解答下列问题:(1)抽取的学生人数为________;(2)将两幅统计图补充完整;(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.20. (5分) (2016九上·芜湖期中) 如图,某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示. AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为45°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD 是改造后的斜坡(点D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0.01m)[参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.601,≈1.414].21. (10分) (2016九上·芜湖期中) 如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AC=6,BD=8,求线段OE的长.22. (11分) (2016九上·芜湖期中) 甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为________吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.23. (5分) (2016九上·芜湖期中) 问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BC D的面积,并说明理由.简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)24. (12分) (2016九上·芜湖期中) 如图,菱形ABCD中,对角线AC , BD相交于点O ,且AC=6cm,BD=8cm,动点P , Q分别从点B , D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B 运动,到点O停止1s后继续运动,到点B停止,连接AP , AQ , PQ .设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).(1)填空:AB=________cm,AB与CD之间的距离为________ cm;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.参考答案一、选择题. (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题: (共6题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题: (共10题;共79分)15-1、15-2、16-1、17-1、18-1、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、22-3、24-1、24-2、24-3、。
2015-2016学年湖北省襄阳XX中学九年级(上)期中数学试卷一、选择题1.将一元一次方程3x2﹣1=6x化成一般形式后,二次项系数和一次项系数分别为()A.3,﹣6 B.3,6 C.3,﹣1 D.3x2,﹣6x2.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=23.下列电视台的台标,是中心对称图形的是()A. B.C.D.4.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40° B.50° C.80° D.100°5.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30° B.35° C.40° D.45°6.把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B.C.D.7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=28 B. x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=288.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:则该函数图象的顶点坐标为()A.(﹣3,﹣3) B.(﹣2,﹣2) C.(﹣1,﹣3) D.(0,﹣6)9.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.C.D.910.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个二、填空题11.一元二次方程x2﹣x=0的根是.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.13.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是.14.著名画家达芬奇不仅画意超群,同时还是一个数学家,发明家.他增进设计过一种圆规.如图所示,有两个互相垂直的话槽(滑槽宽度忽略不计)一根没有弹性的木棒的两端A,B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来,若AB=10cm,则画出的圆半径为cm.15.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①△(a ,b )=(﹣a ,b );②○(a ,b )=(﹣a ,﹣b );③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于 .16.如图,正方形ABCD 中,已知AB=3,点E ,F 分别在BC 、CD 上,且∠BAE=30°,∠DAF=15°,则△AEF 的面积为 .三、解答题:(共9小题,共72分)17.解方程:x 2+3x ﹣1=0.18.如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,求a 的值.19.如图,弦AB 和CD 相交于⊙O 内一点E ,AE=CE .求证:BE=DE .20.如图是一张长8cm 、宽5cm 的矩形纸板,将纸板四个角各剪去一个同样大小的正方形,可制成底面积是18cm 2的一个无盖长方体纸盒,求剪去的正方形的边长.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (3,4)、B (1,1)、C (4,2).(1)画出△ABC 绕点B 逆时针旋转90°后得到的△A 1BC 1,其中A 、C 分别和A 1、C 1对应.(2)平移△ABC ,使得A 点落在x 轴上,B 点落在y 轴上,画出平移后的△A 2B 2C 2,其中A 、B 、C 分别和A 2B 2C 2对应.(3)填空:在(2)的条件下,设△ABC ,△A 2B 2C 2的外接圆的圆心分别为M 、M 2,则MM 2= .22.如图,在半径为5的扇形AOB 中,∠AOB=90°,点C 是上的一点,且BC=2,OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)求线段OD 、DE 的长;(2)求线段OE 的长.23.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少销售10件玩具,设该种品牌玩具的销售单价为x 元(x >40),销售量为y 件,销售该种品牌玩具获得的利润为w 元.(1)请直接写出y 与x ,w 与x 的函数表达式;(2)若商场获得了10000元的销售利润,求该种品牌玩具销售单价x 应定为多少元?(3)若玩具厂规定该种品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该种品牌玩具获得的最大利润是多少?24.(1)如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD≌△BCE;(2)如图2,将图1中△DCE绕点C逆时针旋转n°(0<n<45°),使∠BED=90°,又作△DCE中DE边上的高CM,请完成图2,并判断线段CM、AE、BE之间的数量关系,并说明理由;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP 的距离.25.如图,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)在第一象限内抛物线上,找一点M使△OCM的面积是△OAM的面积的倍,求点M的坐标;(3)在抛物线上,找一点N使∠NCA=2∠ACB,求点N的坐标.2015-2016学年湖北省襄阳九年级(上)期中数学试卷参考答案与试题解析一、选择题1.将一元一次方程3x2﹣1=6x化成一般形式后,二次项系数和一次项系数分别为()A.3,﹣6 B.3,6 C.3,﹣1 D.3x2,﹣6x【考点】一元二次方程的一般形式.【专题】计算题.【分析】方程移项变形为一般形式,找出二次项系数和一次项系数即可.【解答】解:方程整理得:3x2﹣6x﹣1=0,则二次项系数和一次项系数分别为3,﹣6,故选A.【点评】考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.4.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40° B.50° C.80° D.100°【考点】圆周角定理.【专题】压轴题.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠BOC=2∠A=100°.故选D.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.5.如图,将△ABC 绕顶点C 逆时针旋转得到△A′B′C′,且点B 刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA 等于( )A .30°B .35°C .40°D .45°【考点】旋转的性质.【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA′+∠A′=∠B′BC=45°+25°=70°,以及∠BB′C=∠B′BC=70°,再利用三角形内角和定理得出∠AC A′=∠A′BA=40°.【解答】解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC ,∴∠ACA′=∠A′BA=40°.故选:C .【点评】此题主要考查了旋转的性质以及三角形的外角的性质和三角形内角和定理等知识,根据已知得出∠ACA′=40°是解题关键.6.把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( )A .B .C .D .【考点】二次函数图象与几何变换.【分析】确定出平移前的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出抛物线解析式即可.【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1),∵向右平移一个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为(1,﹣3),∴得到的抛物线的解析式为y=(x﹣1)2﹣3.故选B.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便.7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=28 B. x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为: x(x﹣1)=4×7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.8.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:则该函数图象的顶点坐标为()A.(﹣3,﹣3) B.(﹣2,﹣2) C.(﹣1,﹣3) D.(0,﹣6)【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.9.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.C.D.9【考点】解直角三角形;全等三角形的判定;圆心角、弧、弦的关系;圆周角定理.【专题】综合题.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.【解答】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=X,BC=8,AC=6,得8﹣x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=7.故选B.【点评】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.此题是一个大综合题,难度较大.10.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的对称轴在y轴右侧,可以判定a、b异号,由此确定①正确;由抛物线与x轴有两个交点得到b2﹣4ac>0,又抛物线过点(0,1),得出c=1,由此判定②正确;由抛物线过点(﹣1,0),得出a﹣b+c=0,即a=b﹣1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定④正确;由a﹣b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,由此判定③正确;由图象可知,当自变量x 的取值范围在一元二次方程ax 2+bx+c=0的两个根之间时,函数值y >0,由此判定⑤错误.【解答】解:∵二次函数y=ax 2+bx+c (a ≠0)过点(0,1)和(﹣1,0),∴c=1,a ﹣b+c=0.①∵抛物线的对称轴在y 轴右侧,∴x=﹣>0,∴a 与b 异号,∴ab <0,正确;②∵抛物线与x 轴有两个不同的交点,∴b 2﹣4ac >0,∵c=1,∴b 2﹣4a >0,b 2>4a ,正确;④∵抛物线开口向下,∴a <0,∵ab <0,∴b >0.∵a ﹣b+c=0,c=1,∴a=b ﹣1,∵a <0,∴b ﹣1<0,b <1,∴0<b <1,正确;③∵a ﹣b+c=0,∴a+c=b ,∴a+b+c=2b >0.∵b <1,c=1,a <0,∴a+b+c=a+b+1<a+1+1=a+2<0+2=2,∴0<a+b+c <2,正确;⑤抛物线y=ax 2+bx+c 与x 轴的一个交点为(﹣1,0),设另一个交点为(x 0,0),则x 0>0, 由图可知,当x 0>x >﹣1时,y >0,错误;综上所述,正确的结论有①②③④.故选B .【点评】本题主要考查二次函数图象与系数之间的关系,不等式的性质,难度适中.二次函数y=ax 2+bx+c (a ≠0),a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;抛物线与x 轴的交点个数,决定了b 2﹣4ac 的符号,此外还要注意二次函数与方程之间的转换.二、填空题11.一元二次方程x 2﹣x=0的根是 x 1=0,x 2=1 .【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8 .【考点】抛物线与x轴的交点.【分析】由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB的长度.【解答】解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.【点评】此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.13.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是0 .【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4×(a﹣1)×3≥0,再求出两不等式的公共部分得到a≤且a≠1,然后找出此范围内的最大整数即可.【解答】解:根据题意得a﹣1≠0且△=(﹣2)2﹣4×(a﹣1)×3≥0,解得a≤且a≠1,所以整数a的最大值为0.故答案为0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.14.著名画家达芬奇不仅画意超群,同时还是一个数学家,发明家.他增进设计过一种圆规.如图所示,有两个互相垂直的话槽(滑槽宽度忽略不计)一根没有弹性的木棒的两端A,B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来,若AB=10cm,则画出的圆半径为 5 cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得OP=AB,即为圆的半径.【解答】解:如图,∵两个滑槽互相垂直,点P是木棒的中点,∴OP=AB=×10=5cm,即画出的圆半径为5cm.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质是解题的关键.15.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【考点】点的坐标.【专题】新定义.【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.16.如图,正方形ABCD中,已知AB=3,点E,F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,则△AEF的面积为9﹣3.【考点】正方形的性质.【专题】计算题;推理填空题.【分析】如图,把△ADF绕点A逆时针旋转90°得到△ABM.则AM=AF,∠FAD=∠MAB=15°,首先证明△EAF≌EAM,推出ME=EF,推出ME=BM+BE=BE+DF,设FE=a,在Rt△ABE中,由∠ABE=90°,AB=3,∠BAE=30°,推出BE=,DF=a﹣,CF=3﹣(a﹣),根据EF2=EC2+CF2,列出方程求出a即可解决问题.【解答】解:如图,把△ADF绕点A逆时针旋转90°得到△ABM.则AM=AF,∠FAD=∠MAB=15°∵四边形ABCD 是正方形,∴AB=AD=BC=CD ,∠D=∠ABC=∠ABM=90°,∵∠BAE=30°,∠DAF=15°,∴∠EAF=45°,∠MAE=∠MAB+∠BAE=45°=∠EAF ,在△EAF 和△EAM 中,,∴△EAF ≌EAM ,∴ME=EF ,∵ME=BM+BE=BE+DF ,设FE=a ,在Rt △ABE 中,∵∠ABE=90°,AB=3,∠BAE=30°,∴BE=,DF=a ﹣,CF=3﹣(a ﹣),∵EF 2=EC 2+CF 2,∴a 2=(3﹣)2+[3﹣(a ﹣)]2,∴a=6﹣2,∴S △AEF =S △AME =•EM •AB=•(6﹣2)×3=9﹣3.故答案为9﹣3.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、直角三角形30度角旋转等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线的方法,记住基本图形、基本结论,属于中考常考题型.三、解答题:(共9小题,共72分)17.解方程:x 2+3x ﹣1=0.【考点】解一元二次方程-公式法.【专题】计算题.【分析】找出a ,b ,c 的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=3,c=﹣1,∵△=9+4=13,∴x=,则x 1=,x 2=.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.18.如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,求a 的值.【考点】根的判别式;根与系数的关系.【分析】利用根与系数的关系求得x 1x 2=a ,x 1+x 2=﹣4,然后将其代入x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=0列出关于a 的方程,通过解方程即可求得a 的值.【解答】解:∵x 1,x 2是关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根,∴x 1x 2=a ,x 1+x 2=﹣4,∴x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=a ﹣2×(﹣4)﹣5=0,即a+3=0,解得:a=﹣3.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.19.如图,弦AB 和CD 相交于⊙O 内一点E ,AE=CE .求证:BE=DE .【考点】圆周角定理;全等三角形的判定与性质.【专题】证明题.【分析】由∠A=∠C ,∠D=∠B ,再加上AE=CE ,即可得到△AED ≌△CEB ,从而有BE=DE .【解答】证明:在△ADE 和△CBE 中有,∴△AED ≌△CEB ,∴BE=DE .【点评】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了三角形全等的判定与性质.20.如图是一张长8cm 、宽5cm 的矩形纸板,将纸板四个角各剪去一个同样大小的正方形,可制成底面积是18cm 2的一个无盖长方体纸盒,求剪去的正方形的边长.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】由于剪去的正方形边长为xcm ,那么长方体纸盒的底面的长为(8﹣2x ),宽为(5﹣2x ),然后根据底面积是18cm 2即可列出方程.【解答】解:设剪去的正方形边长为xcm ,依题意得(8﹣2x )•(5﹣2x )=18,解得:x=1或x=>5(舍去).答:减去的正方形的边长为1cm .【点评】本题考查了一元二次方程的应用,明白纸盒的结构是解题的关键.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (3,4)、B (1,1)、C (4,2).(1)画出△ABC 绕点B 逆时针旋转90°后得到的△A 1BC 1,其中A 、C 分别和A 1、C 1对应.(2)平移△ABC ,使得A 点落在x 轴上,B 点落在y 轴上,画出平移后的△A 2B 2C 2,其中A 、B 、C 分别和A 2B 2C 2对应.(3)填空:在(2)的条件下,设△ABC ,△A 2B 2C 2的外接圆的圆心分别为M 、M 2,则MM 2= .【考点】作图-旋转变换;勾股定理;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A、C绕点B逆时针旋转90°的对应点A1、C1的位置,再与点A顺次连接即可;(2)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(3)根据平移的性质,对应点的连续互相平行且相等可得MM2=AA2,再利用勾股定理列式计算即可得解.【解答】解:(1)△A1BC1如图所示;(2)△A2B2C2如图所示;(3)∵M、M2分别为△ABC,△A2B2C2的外接圆的圆心,∴MM2=AA2,由勾股定理得,AA2==,所以,MM2=.故答案为:.【点评】本题考查了利用旋转变换作图,利用平移变换作图,勾股定理,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.如图,在半径为5的扇形AOB中,∠AOB=90°,点C是上的一点,且BC=2,OD⊥BC,OE⊥AC,垂足分别为D、E.(1)求线段OD、DE的长;(2)求线段OE的长.【考点】垂径定理;勾股定理;三角形中位线定理.【专题】计算题.【分析】(1)连结AB,如图1,根据垂径定理,由OD⊥BC得到BD=BC=1,再在Rt△OBD中,利用勾股定理可计算出OD=2,然后证明DE为△ABC的中位线,根据三角形中位线性质得到DE=AB,接着证明△AOB为等腰直角三角形得到AB=OB=5,所以DE=;(2)作DH⊥OE,连结OC,如图2先证明∠2+∠3=45°,得到△ODH为等腰直角三角形,则OH=DH=OD=2,再在Rt△DHE中,利用勾股定理计算出HE=,然后由OE=OH+HE计算即可.【解答】解:(1)连结AB,如图1,∵OD⊥BC,∴BD=CD=BC=1,在Rt△OBD中,∵BD=1,OB=5,∴OD==2,∵OE⊥AC,∴AE=CE,∴DE为△ABC的中位线,∴DE=AB,∵∠AOB=90°,∴△AOB为等腰直角三角形,∴AB=OB=5,∴DE=;即线段OD、DE的长分别为2,;(2)作DH⊥OE,连结OC,如图2,∵OC=OB,OD垂直平分BC,∴OD平分∠BOC,即∠3=∠4,同理可得∠1=∠2,而∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°,∴△ODH为等腰直角三角形,∴OH=DH=OD=•2=2,在Rt△DHE中,∵DH=2,DE=,∴HE==,∴OE=OH+HE=2+.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和三角形中位线定理.23.(2015•沈阳二模)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少销售10件玩具,设该种品牌玩具的销售单价为x元(x>40),销售量为y件,销售该种品牌玩具获得的利润为w元.(1)请直接写出y与x,w与x的函数表达式;(2)若商场获得了10000元的销售利润,求该种品牌玩具销售单价x应定为多少元?(3)若玩具厂规定该种品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该种品牌玩具获得的最大利润是多少?【考点】二次函数的应用.【分析】(1)由销售单价每涨1元,就会少售出10件玩具得y=600﹣(x﹣40)×10=1000﹣10x,利润W=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000;(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣30000转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【解答】解:(1)y=600﹣(x﹣40)×10=1000﹣10x,W=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000;(2)﹣10x2+1300x﹣30000=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润,(3)根据题意得,解之得:44≤x≤46,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,对称轴是直线x=65,∴当44≤x≤46时,w随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点评】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.24.(2015秋•武昌区期中)(1)如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD≌△BCE;(2)如图2,将图1中△DCE绕点C逆时针旋转n°(0<n<45°),使∠BED=90°,又作△DCE中DE边上的高CM,请完成图2,并判断线段CM、AE、BE之间的数量关系,并说明理由;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP 的距离.【考点】全等三角形的判定与性质.【分析】(1)易证∠ACD=∠BCE,即可解题;(2)根据△ACD≌△BCE,即可证明AD=EB,即可解题;(3)易证△DPE∽△BAE,即可求得PE的值,即可解题.【解答】解:(1)∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)如图2,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠BEC=∠ADC=135°,∴A 、D 、E 三点共线,∵DE=DM+ME=2CM ,∴AE=BE+2CM ;(3)①如图,∵∠DPE=∠BAE=90°,∴△DPE ∽△BAE ,∴=,∵BP==3,解得PE=,∴A 到BE 距离为=1.②如图,∵∠DPE=∠BCE=90°,∴△DPE ∽△BCE ,∴=,∵BP==3,∴PE=,∴C 到BE 距离为=1.∴A 到BE 距离为2.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,考查了勾股定理的运用.25.(2014秋•汉阳区校级期中)如图,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)在第一象限内抛物线上,找一点M使△OCM的面积是△OAM的面积的倍,求点M的坐标;(3)在抛物线上,找一点N使∠NCA=2∠ACB,求点N的坐标.【考点】二次函数综合题.【分析】(1)把A(﹣1,0),B(3,0)两点代入y=ax2+bx﹣3求解即可,(2)由y=x2﹣2x﹣3交y轴于点C.可得OC=3,设M(x,y),由△OCM的面积是△OAM的面积的倍,可得OC•x=ו|AO|•y,解得y=2x,代入y=x2﹣2x﹣3求解即可.(3)作NQ⊥AB于点Q,CH⊥NQ于点H,由△AOC∽△NHC,设N(x,y),由=,可得x=﹣3y ﹣9,与y=x2﹣2x﹣3联立求解即可.【解答】解:(1)把A(﹣1,0),B(3,0)两点代入y=ax2+bx﹣3得,解得,所以抛物线的解析式y=x2﹣2x﹣3.(2)如图1,∵y=x 2﹣2x ﹣3交y 轴于点C .∴OC=3,设M (x ,y ),∵△OCM 的面积是△OAM 的面积的倍,∴OC •x=ו|AO|•y ,∴y=2x ,代入y=x 2﹣2x ﹣3得,x 1=2+,x 2=2﹣(舍去),∴y=2x=4+2,∴M (2+,4+2). (3)如图2,作NQ ⊥AB 于点Q ,CH ⊥NQ 于点H ,∵OB=3,OC=3,∴∠OCB=∠BCH=45°,∵∠NCA=2∠ACB ,∴∠OCA=∠NCH ,∠AOC=∠NHC=90°,∴△AOC ∽△NHC ,设N (x ,y ),∴=,∴=,解得x=﹣3y ﹣9,与y=x 2﹣2x ﹣3联立得,解得(舍去),.∴N ((,﹣).【点评】本题主要考查了二次函数的综合题,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识求解.。
2015-2016学年湖北省襄阳市樊城区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列方程中,是关于x的一元二次方程的是()A.2y2+y﹣1=0 B.﹣2x=1 C.ax2+bx+c=0 D.x2=02.(3分)下列汽车标志可以看作是中心对称图形的是()A.B.C.D.3.(3分)已知双曲线y=上有一点P(2,﹣3),则点A(6,1)、B(﹣2,3)、C(,﹣12)、D(﹣7,1)中,在该双曲线上的还有()A.点A、B B.点A、C C.点B、C D.点B、D4.(3分)已知x2﹣2x﹣1=0,则2x2﹣4x的值为()A.﹣2 B.2 C.﹣2或6 D.2或65.(3分)某商品连续两次降价10%后的价格是81元,则该商品原来的价格是()A.100元B.90元C.810元D.819元6.(3分)将抛物线y=﹣(x﹣2)2向右平移1个单位,再向下平移2个单位后,得到的抛物线解析式为()A.y=﹣(x﹣1)2+2 B.y=﹣(x﹣1)2﹣2 C.y=﹣(x﹣3)2+2 D.y=﹣(x﹣3)2﹣27.(3分)如图,CD为⊙O的直径,且CD⊥弦AB,∠AOC=50°,则∠B大小为()A.25°B.30°C.40°D.65°8.(3分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.49.(3分)点O是△ABC的外心,点I是△ABC的内心,若∠BIC=145°,则∠BOC 的度数为()A.110°B.125°C.130° D.140°10.(3分)已知圆锥的高线长为4cm,底面半径为3cm,则此圆锥则面展开图的面积为()A.12πcm2B.13πcm2C.14πcm2D.15πcm211.(3分)给出下列函数①y=2x;②y=﹣x+1;③y=(x>0);④y=x2(x<﹣1)其中y随x的增大而减小的函数是()A.①②B.①③C.②④D.②③④12.(3分)二次函数y=ax2+b(b>0)与反比例函数y=在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)如图,点A在双曲线y=上,AB⊥x轴于点B,且△AOB的面积是2,则k的值是.14.(3分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA=.15.(3分)已知α、β是关于x的一元二次方程的x2+(2m+3)x+m2=0两个不相等的实数根,且满足α+β+αβ=0,则m的值是.16.(3分)网球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=﹣t2+6t,则网球在飞行中距离地面的最大高度是.17.(3分)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若P在线段CA 的延长线上,且∠ABP=30°,则CP的长为.三、解答题(本大题共9小题,共69分)18.(6分)用两种不同的方法解下列方程:x2﹣4x=12.19.(4分)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)20.(5分)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C,已知点B的纵坐标为﹣2.(1)求反比例函数的解析式;的面积为6,则A(,);(2)已知S△AOB(3)当y1<y2时,直接写出x的取值范围.21.(7分)已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C 不重合).(1)如图1,若点P是弧BC的中点,则PB+PC PA(填“>、=、<”);(2)如图2,若点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.22.(7分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m,鸡场的面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由.23.(8分)如图,已知P是正方形ABCD内一点,以点B为旋转中心,将△ABP 按顺时针方向旋转使点A与点C重合,这时P点旋转到G点.(1)设AB的长为a,PB的长为b(b<a),在图中用阴影标出△ABP旋转到△CBG的过程中,边PA所扫过区域的面积,并用含a、b的式子表示它;(2)若PA=,PB=1,PC=2,连接PG,试猜想△PGC的形状,并说明理由.24.(10分)家乐福超市在我市开业时,玩具专柜新到一种儿童益智玩具,购进时的成本是20元/件,当超市的销售单价是30元/件时,月销售量是720件,试销后分析发现:销售单价每上涨1元,月销售量就减少30件.(1)求月销售利润y(元)与每件玩具的上涨价格x(元)之间的函数关系式;(2)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?(3)按照物价部门的规定,每件玩具的售价不能高于35元,如果专柜想要月销售利润在8400元以上,直接写出上涨价格x(元)的取值范围.25.(10分)如图,AB是⊙O的直径,点D是⊙O上一点,∠BAD的平分线交⊙O于点C,过点C的直线与AD互相垂直,垂足为点E,直线EC与AB的延长线交于点P,连接BC,已知PB:PC=1:.(1)求证:CP是⊙O的切线;(2)若⊙O的半径为r,试探究线段PB与r的数量关系并证明;(3)当r=3时,求DE的长.26.(12分)如图,矩形OABC在平面直角坐标系中,A、C两点的坐标分别为A (6,0),C(0,﹣3),直线y=﹣x与BC边相交于D点,过原点的抛物线y=ax2+bx 经过A、D两点.(1)求抛物线的解析式,并写出对称轴;(2)试判断△OCD与△ABD是否相似?并说明理由.(3)在抛物线对称轴上是否存在一点P,使得△POD为直角三角形?若存在,直接写出点P的坐标(并在“备用图”中画出P点得到的痕迹);若不存在,请说明理由.2015-2016学年湖北省襄阳市樊城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列方程中,是关于x的一元二次方程的是()A.2y2+y﹣1=0 B.﹣2x=1 C.ax2+bx+c=0 D.x2=0【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A、是关于y的一元二次方程,不符合题意;B、为分式方程,不符合题意;C、当a=0时,边上一元二次方程,不符合题意;D、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;故选D【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.(3分)下列汽车标志可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知双曲线y=上有一点P(2,﹣3),则点A(6,1)、B(﹣2,3)、C(,﹣12)、D(﹣7,1)中,在该双曲线上的还有()A.点A、B B.点A、C C.点B、C D.点B、D【分析】根据待定系数法可求双曲线y=,再将A(6,1)、B(﹣2,3)、C(,﹣12)、D(﹣7,1)代入即可求解.【解答】解:∵双曲线y=上有一点P(2,﹣3),∴﹣3=,解得k=﹣6,∵6×1=6,﹣2×3=﹣6,×(﹣12=﹣6,﹣7×1=﹣7,∴在该双曲线上的还有点B、C.故选:C.【点评】考查了反比例函数图象上点的坐标特征,反比例函数图象上点的坐标满足该函数.4.(3分)已知x2﹣2x﹣1=0,则2x2﹣4x的值为()A.﹣2 B.2 C.﹣2或6 D.2或6【分析】由x2﹣2x﹣1=0得到x2﹣2x=1,再把原式变形为2(x2﹣2x),然后利用整体代入的方法计算.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴2x2﹣4x=2(x2﹣2x)=2×1=2.故选B.【点评】本题考查了代数式求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.注意利用整体代入的方法计算代数式的值.5.(3分)某商品连续两次降价10%后的价格是81元,则该商品原来的价格是()A.100元B.90元C.810元D.819元【分析】可设该商品原来的价格是x元,根据等量关系式:原价×(1﹣降低率)2=81,列出方程即可求解.【解答】解:设原价为x.x×(1﹣10%)2=81,解得x=100.故选:A.【点评】考查一元一次方程的应用;解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(3分)将抛物线y=﹣(x﹣2)2向右平移1个单位,再向下平移2个单位后,得到的抛物线解析式为()A.y=﹣(x﹣1)2+2 B.y=﹣(x﹣1)2﹣2 C.y=﹣(x﹣3)2+2 D.y=﹣(x﹣3)2﹣2【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标间,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣(x﹣2)2的顶点坐标为(2,0),∴向右平移1个单位,再向下平移2个单位后的顶点坐标是(3,﹣2)∴所得抛物线解析式是y=﹣(x﹣3)2﹣2,故选D.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.7.(3分)如图,CD为⊙O的直径,且CD⊥弦AB,∠AOC=50°,则∠B大小为()A.25°B.30°C.40°D.65°【分析】本题关键是理清弧的关系,找出等弧,则可根据“同圆中等弧对等角”求出∠D的度数,即可得出结果.【解答】解:∵CD⊥AB,∴,∴∠D=∠AOC=25°,∴∠B=90°﹣25°=65°;故选:D.【点评】此题综合考查垂径定理和圆周角的求法及性质;熟练掌握圆周角定理是解决问题的关键.8.(3分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.【点评】此题主要考查学生对相似三角形的判定方法的掌握情况.9.(3分)点O是△ABC的外心,点I是△ABC的内心,若∠BIC=145°,则∠BOC 的度数为()A.110°B.125°C.130° D.140°【分析】因为点I为△ABC的内心,推出∠IAB+∠IBA=(∠ABC+∠ACB)=180°﹣145°=35°,推出∠ABC+∠ACB=70°,推出∠A=180°﹣(∠ABC+∠ACB)=110°,作△ABC的外接圆如图,在⊙O上取一点D,连接BD、CD.因为∠D=180°﹣∠A=70°,根据∠BOC=2∠D即可解决问题.【解答】解:∵点I为△ABC的内心,∴∠IAB+∠IBA=(∠ABC+∠ACB)=180°﹣145°=35°,∴∠ABC+∠ACB=70°,∴∠A=180°﹣(∠ABC+∠ACB)=110°∵点O为△ABC的外心,作△ABC的外接圆如图,在⊙O上取一点D,连接BD、CD.∴∠D=180°﹣∠A=70°,∴∠BOC=2∠D=140°.故选D.【点评】本题主要考查了三角形的内心与外心,正确得出∠A的度数是解题关键.10.(3分)已知圆锥的高线长为4cm,底面半径为3cm,则此圆锥则面展开图的面积为()A.12πcm2B.13πcm2C.14πcm2D.15πcm2【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵圆锥的高为4cm,底面半径为3cm,∴圆锥的母线长为:=5cm,∴圆锥的侧面展开图的面积为:π×5×3=15πcm2.故选D.【点评】本题考查圆锥侧面积公式的运用,掌握公式是关键;注意圆锥的高,母线长,底面半径组成直角三角形这个知识点.11.(3分)给出下列函数①y=2x;②y=﹣x+1;③y=(x>0);④y=x2(x<﹣1)其中y随x的增大而减小的函数是()A.①②B.①③C.②④D.②③④【分析】根据正比例函数、一次函数、反比例函数、二次函数的性质解答.【解答】解:①y=2x,正比例函数,k>0,故y随x的增大而增大;②y=﹣x+1,一次函数,k<0,故y随x增大而减小;③y=(x>0),反比例函数,k>0在第一象限内y随x的增大而减小;④y=x2(x<﹣1),图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小.故选D.【点评】本题综合考查二次函数、一次函数、反比例函数、正比例函数的增减性(单调性),是一道难度中等的题目.12.(3分)二次函数y=ax2+b(b>0)与反比例函数y=在同一坐标系中的图象可能是()A.B.C.D.【分析】先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而确定该选项是否正确.【解答】解:A、对于反比例函数y=经过第二、四象限,则a<0,所以抛物线开口向下,故A选项错误;B、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,b >0,抛物线与y轴的交点在x轴上方,故B选项正确;C、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,故C选项错误;D、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,而b>0,抛物线与y轴的交点在x轴上方,故D选项错误.故选:B.【点评】本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a ≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了反比例函数的图象.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)如图,点A在双曲线y=上,AB⊥x轴于点B,且△AOB的面积是2,则k的值是﹣4.【分析】根据反比例函数的系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,=2,据此求出k的值是多少即可.且保持不变,可得|k|=S△AOB【解答】解:∵△AOB的面积是2,∴|k|=2,∴|k|=4,解得k=±4,又∵双曲线y=的图象经过第二、四象限,∴k=﹣4,即k的值是﹣4.故答案为:﹣4.【点评】此题主要考查了反比例函数的系数k的几何意义,要熟练掌握,解答此题的关键是要明确:比例系数k的几何意义在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.14.(3分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA=.【分析】根据勾股定理,可得AC的长,根据邻边比斜边,可得角的余弦值.【解答】解:如图,由勾股定理得AC=2,AD=4,cosA=,故答案为:.【点评】本题考查了锐角三角函数的定义,角的余弦是角邻边比斜边.15.(3分)已知α、β是关于x的一元二次方程的x2+(2m+3)x+m2=0两个不相等的实数根,且满足α+β+αβ=0,则m的值是3.【分析】由方程有两个不相等的实数根,可得出△=12m+9>0,解之即可得出m 的取值范围,由根与系数的关系结合α+β+αβ=0,可得出关于m的一元二次方程,解之即可得出m的值,再由m的取值范围可确定m的值.【解答】解:∵关于x的一元二次方程的x2+(2m+3)x+m2=0有两个不相等的实数根,∴△=(2m+3)2﹣4m2=12m+9>0,解得:m>﹣.∵α、β是关于方程x2+(2m+3)x+m2=0的两个实数根,∴α+β=﹣(2m+3),αβ=m2.∵α+β+αβ=0,∴m2﹣2m﹣3=0,解得:m1=﹣1,m2=3.∵m>﹣,∴m=3.故答案为:3.【点评】本题考查了根的判别式以及根与系数的关系,根据根与系数的关系结合α+β+αβ=0,列出关于m的一元二次方程是解题的关键.16.(3分)网球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=﹣t2+6t,则网球在飞行中距离地面的最大高度是9m.【分析】把二次函数的解析式化成顶点式,即可得出答案.【解答】解:h=﹣t2+6t=﹣(t2﹣6t)=﹣(t2﹣6t+9)+9=﹣(t﹣3)2+9,∵﹣1<0,∴抛物线的开口向下,有最大值,当t=3时,h有最大值是9m.故答案为:9m.【点评】本题考查了二次函数的应用,关键是把函数式化成顶点式.17.(3分)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若P在线段CA 的延长线上,且∠ABP=30°,则CP的长为6或4.【分析】根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.【解答】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=;但不符合P在线段CA的延长线上,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或4.【点评】本题考查了解直角三角形,熟悉特殊角的三角函数值是解题的关键.三、解答题(本大题共9小题,共69分)18.(6分)用两种不同的方法解下列方程:x2﹣4x=12.【分析】分别根据配方法和因式分解法的步骤依次计算可得.【解答】解:配方法:x2﹣4x=12,x2﹣4x+4=12+4,即(x﹣2)2=16,∴x﹣2=4或x﹣2=﹣4,解得:x1=6,x2=﹣2;因式分解法:x2﹣4x﹣12=0,(x﹣6)(x+2)=0,x﹣6=0或x+2=0,∴x1=6,x2=﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法19.(4分)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)【分析】先要找出什么样的图形是轴对称图形,什么样的图形是中心对称图形.【解答】解:(1)有以下答案供参考:.(2)有以下答案供参考:.【点评】此题主要考查了利用轴对称设计图案,考查中心对称、轴对称的概念与画图的综合能力.20.(5分)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C,已知点B的纵坐标为﹣2.(1)求反比例函数的解析式;的面积为6,则A(﹣2,4);(2)已知S△AOB(3)当y1<y2时,直接写出x的取值范围.【分析】(1)利用一次函数y1=﹣x+2的图象经过点B,可得B(4,﹣2),把B (4,﹣2)代入反比例函数y2=,可得反比例函数的解析式;(2)设点A(a,b),根据S的面积为6,可得OC(|b|+|﹣2|)=6,进而△AOB得到b的值,再根据反比例函数解析式,即可得到点A的坐标;(3)根据一次函数y1=﹣x+2的图象在反比例函数y2=的图象下方,可得对应的自变量x的取值范围.【解答】解:(1)在一次函数y1=﹣x+2中,令y=﹣2,可得﹣2=﹣x+2,解得x=4,∴B(4,﹣2),把B(4,﹣2)代入反比例函数y2=,可得k=﹣2×4=﹣8,∴反比例函数的解析式为y=﹣;(2)设点A(a,b),则由S的面积为6,可得OC(|b|+|﹣2|)=6,△AOB∴×2×(|b|+2)=6,解得b=4,(负值已舍去)又∵ab=﹣8,∴a=﹣2,∴A(﹣2,4),故答案为:﹣2,4;(3)∵A(﹣2,4),B(4,﹣2),∴当y1<y2时,﹣2<x<0或x>4.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及数形结合思想的运用.21.(7分)已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C 不重合).(1)如图1,若点P是弧BC的中点,则PB+PC=PA(填“>、=、<”);(2)如图2,若点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.【分析】(1)连OB,OC,由点P是弧BC的中点,△ABC是⊙O的内接正三角形,根据垂径定理的推论得到AP为⊙O的直径,易得△OBP和△OPC都是等边三角形,于是得到结论;(2)截取PE=PC,则△PEC为等边三角形,得到CE=CP,∠PCE=60°,易证△CAE ≌△CBP,得到AE=PB,即有PB+PC=PA.【解答】解:(1)连OB,OC,如图∵点P是弧BC的中点,△ABC是⊙O的内接正三角形,∴AP为⊙O的直径,∴∠BPO=∠ACB,∠APC=∠ABC,∵△ABC是⊙O的内接正三角形,∴∠ACB=∠ABC=60°,∴∠BPO=∠APC=60°,∴△OBP和△OPC都是等边三角形,∴PB=PC=OP=OA,∴PB+PC=PA;故答案为=.(2)(1)的结论还成立.理由如下:在PA上截取PE=PC,∵∠APC=60°,∴△PEC为等边三角形,∴CE=CP,∠PCE=60°,而∠ACB=60°,∴∠ACE=∠BCP,而CA=CB,∴△CAE≌△CBP,∴AE=PB,∴PB+PC=PA.【点评】本题考查了圆周角定理:同弧所对的圆周角相等,也考查了等边三角形的性质和三角形全等的判定与性质以及证明一条线段等于两条线段和的方法.22.(7分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m,鸡场的面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【分析】设垂直于墙的边长为未知数,则平行于墙的边长为木栏长﹣2×垂直于墙的边长,鸡场的面积=垂直于墙的边长×平行于墙的边长,把相关数值代入,看是否有合适的解即可【解答】解:设垂直于墙的边长为xm.依题意得:x(35﹣2x)=180,2x2﹣35x+180=0.∵△<0,∴此方程无解.答:鸡场的面积不能达到180m2.【点评】考查一元二次方程的应用;得到长方形的两个边长是解决本题的突破点.23.(8分)如图,已知P是正方形ABCD内一点,以点B为旋转中心,将△ABP 按顺时针方向旋转使点A与点C重合,这时P点旋转到G点.(1)设AB的长为a,PB的长为b(b<a),在图中用阴影标出△ABP旋转到△CBG的过程中,边PA所扫过区域的面积,并用含a、b的式子表示它S=;(2)若PA=,PB=1,PC=2,连接PG,试猜想△PGC的形状,并说明理由.【分析】(1)因为将△ABP按顺时针方向旋转使点A与点C重合,即旋转了90°,利用面积差可得边PA所扫过区域的面积=S=S扇形BAC +S△CBG﹣S△ABP﹣S扇形BPG,代入可得结论;(2)先利用勾股定理得PG=,根据勾股定理的逆定理可得:△PGC是等腰直角三角形.【解答】解:(1)如图1,由旋转得:∠PBG=∠ABC=90°,BG=PB=b,△ABP≌△CBG,∴S=S扇形BAC +S△CBG﹣S△ABP﹣S扇形BPG,=﹣,=,故答案为:;(2)如图2,△PGC是等腰直角三角形,理由是:∵∠PBG=90°,PB=BG=1,∴△PBG是等腰直角三角形,∴PG=,△PGC中,PC=2,CG=,∴PC2=PG2+CG2,∴△PGC是直角三角形,∵CG=PG,∴△PGC是等腰直角三角形.【点评】本题考查了正方形的性质、旋转的性质、勾股定理及其逆定理、等腰直角三角形的性质和判定、扇形的面积,明确旋转前后的边和角对应相等,并熟练掌握扇形面积的计算公式.24.(10分)家乐福超市在我市开业时,玩具专柜新到一种儿童益智玩具,购进时的成本是20元/件,当超市的销售单价是30元/件时,月销售量是720件,试销后分析发现:销售单价每上涨1元,月销售量就减少30件.(1)求月销售利润y(元)与每件玩具的上涨价格x(元)之间的函数关系式;(2)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?(3)按照物价部门的规定,每件玩具的售价不能高于35元,如果专柜想要月销售利润在8400元以上,直接写出上涨价格x(元)的取值范围.【分析】(1)根据题意可以求得月销售利润y(元)与每件玩具的上涨价格x(元)之间的函数关系式;(2)根据(1)中的函数解析式,将它化为顶点式,即可解答本题;(3)根据题意可以得到相应的不等式组,从而可以解答本题.【解答】解:(1)由题意可得,y=(30+x﹣20)(720﹣30x)=﹣30x2+420x+7200,即月销售利润y(元)与每件玩具的上涨价格x(元)之间的函数关系式是y=﹣30x2+420x+7200;(2)∵y=﹣30x2+420x+7200=﹣30(x﹣7)2+8670,∴当x=7时,y取得最大值,此时y=8670,∴x+30=37,答:每件玩具的售价定为37元时,可使月销售利润最大,最大的月利润是8670元;(3)由题意可得,,解得,4<x≤5,答:上涨价格x(元)的取值范围是4<x≤5.【点评】本题考查二次函数的应用、不等式组的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质和不等式的性质解答.25.(10分)如图,AB是⊙O的直径,点D是⊙O上一点,∠BAD的平分线交⊙O于点C,过点C的直线与AD互相垂直,垂足为点E,直线EC与AB的延长线交于点P,连接BC,已知PB:PC=1:.(1)求证:CP是⊙O的切线;(2)若⊙O的半径为r,试探究线段PB与r的数量关系并证明;(3)当r=3时,求DE的长.【分析】(1)先判断出∠CAE=∠CAB,进而得出∠CAE=∠OCA,即可得出OC∥AE,即可得出结论;(2)设出PB=x,则PC=x,先判断出△PBC∽△PCA,即可得出比例式即可得出PA=3x,即可得出结论;(3)利用锐角三角函数求出∠BAC=30°,即可求出∠ABD=30°,即可求出AD,即可得出结论.【解答】解:(1)如图1,连接OC,∴OA=OC,∴∠OAC=∠OCA,∵AC是∠BAD的平分线,∴∠CAE=∠CAB,∴∠CAE=∠OCA,∴OC∥AE,∵PC⊥AE,∴PC⊥OC,∵点C在⊙O上,∴PC是⊙O的切线;(2)PB=r,理由:由(1)知,PC是⊙O的切线,∴∠PCB=∠PAC,∵∠A=∠A,∴△PBC∽△PCA,∴=,设PB=x,则PC=x,∴,∴PA=3x,∴PA=PB+AB=x+2r=3x,∴r=x,∴PB=r,(3)如图2,连接OC,由(1)知,OC⊥PC,由(2)知,BP=r=OB,∴BC=OP=r,AC=BC=r=3,在Rt△ABC中,sin∠BAC===,∴∠BAC=30°,∴∠BAD=2∠BAC=60°,连接BD,∴∠ADB=90°,∴∠ABD=30°,∴AD=AB=r=3.在Rt△ACE中,∠ACE=30°,cos∠CAE==,∴AE=3×cos30°=,∴DE=AE﹣AD=﹣3=.【点评】此题是圆的综合题,主要考查了角平分线定理,切线的判定和性质,相似三角形的判定和性质,勾股定理,锐角三角函数,解(1)的关键是判断出OC ∥AE,解(2)的关键是表示出PA,解(3)的关键是求出∠BAC=30°,是一道中等难度的中考常考题.26.(12分)如图,矩形OABC在平面直角坐标系中,A、C两点的坐标分别为A (6,0),C(0,﹣3),直线y=﹣x与BC边相交于D点,过原点的抛物线y=ax2+bx 经过A、D两点.(1)求抛物线的解析式,并写出对称轴;(2)试判断△OCD与△ABD是否相似?并说明理由.(3)在抛物线对称轴上是否存在一点P,使得△POD为直角三角形?若存在,直接写出点P的坐标(并在“备用图”中画出P点得到的痕迹);若不存在,请说明理由.【分析】(1)根据矩形的性质得到OA∥BC,得到D点的纵坐标为﹣3,求得D (4,﹣3),把A(6,0),D(4,﹣3)代入y=ax2+bx即可得到结论;(2)根据已知条件即可得到结论;(3)设P(3,m),根据勾股定理得到OP2=9+m2,PD2=(4﹣3)2+(﹣3﹣m)2=m2+6m+10,OD2=32+42=25,列方程即可得到结论.【解答】解:(1)∵四边形OABC是矩形,∴OA∥BC,∵C(0,﹣3),∴D点的纵坐标为﹣3,∵直线y=﹣x与BC边相交于D点,∴D(4,﹣3),把A(6,0),D(4,﹣3)代入y=ax2+bx得,,解得:,∴抛物线的解析式为y=x2﹣x,其对称轴为直线x=3;(2)∵OC=3,CD=4,∴AB=OC=3,BD=2,∵,=,∴,∴△OCD与△ABD不相似;(3)设P(3,m),∴OP2=9+m2,PD2=(4﹣3)2+(﹣3﹣m)2=m2+6m+10,OD2=32+42=25,∴①当OP2+PD2=OD2时,即9+m2+m2+6m+10=25,解得:m=,②当OP2+OD2=PD2时,即9+m2+25=m2+6m+10,解得:m=4,③当OP2=OD2+PD2时,即9+m2=m2+6m+10+25,解得:m=﹣,∴点P的坐标为:(3,),(3,),(3,4),(3,﹣).【点评】本题考查了二次函数综合题,利用了自变量与函数值的对应关系是求点与坐标轴的交点坐标的关键,待定系数求函数解析式,相似三角形的判定:两角对应相等的两个三角形相似,两边对应成比例且夹角相等的两个三角形相似;勾股定理的应用.。
湖北省襄阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018九上·富顺期中) 下面关于x的方程中①ax2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3= ;④ =x-1.一元二次方程的个数是()A . 1B . 2C . 3D . 42. (2分)当三角形的面积一定时,三角形的底和底边上的高成()关系.A . 正比例函数B . 反比例函数C . 一次函数D . 二次函数3. (2分)点A(-1,1)是反比例函数的图象上一点,则m的值为()A . 0B . -2C . -1D . 14. (2分)将下图中的箭头缩小到原来的,得到的图形是()A .B .C .D .5. (2分)下列一次函数中,y随x增大而减小的是()A . y=3xB . y=3x﹣2C . y=3x+2xD . y=﹣3x﹣26. (2分)若实数满足=4,则的值为()A . 1或-3B . 1C . -3D . 07. (2分)已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=上,则()A . y1<y2<y3B . y3<y2<y1C . y3<y1<y2D . y2<y1<y38. (2分)(2018·黄浦模拟) 下列方程中没有实数根的是()A . ;B . ;C . ;D . .9. (2分)相似三角形的最短边分别是5cm和3cm,它们的面积之差为,那么小三角形的面积为()A .B .C .D .10. (2分) (2017九上·路北期末) 已知反比例函数y= (k≠0)的图像经过点M(﹣2,2),则k的值是()A . ﹣4B . ﹣1C . 1D . 411. (2分) (2017九上·鄞州竞赛) 如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2, AC=3, BC=6,则⊙O的半径是()A . 3B . 4C . 4D . 212. (2分)现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2 ,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A . x(x-20)=300B . x(x+20)=300C . 60(x+20)=300D . 60(x-20)=300二、填空题 (共6题;共7分)13. (1分)(2017·西安模拟) 如图,△AOB与反比例函数交于C、D,且AB∥x轴,△AOB的面积为6,若AC:CB=1:3,则反比例函数的表达式为________.14. (1分)已知,则=________15. (1分) (2017八下·海安期中) 如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为________16. (1分)顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.17. (1分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成蔬菜滞销,李伟为了加快销售,减少损失,对价格进行两次下调后,以每千克3.2元的单价对外批发销售.平均每次下调的百分率是________18. (2分) (2016九上·滁州期中) 如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y 轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1 ,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为________.三、解答题 (共8题;共64分)19. (10分)解方程:(1)x2-4x+1=0(2)x(x-3)=5(x-3)20. (2分)已知,如图, = = ,那么△ABD与△BCE相似吗?为什么?21. (2分) (2018八上·婺城期末) 甲、乙两车都从A地驶向B地,并以各自的速度匀速行驶甲车比乙车早行驶,甲车途中休息了设甲车行驶时间为,下图是甲乙两车行驶的距离与的函数图象,根据题中信息回答问题:(1)填空: ________, ________;(2)当乙车出发后,求乙车行驶路程与的函数解析式,并写出相应的x的取值范围;(3)当甲车行驶多长时间时,两车恰好相距50km?请直接写出答案.22. (10分)(2012·内江) 如果方程x2+px+q=0的两个根是x1 , x2 ,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.23. (5分) (2016九上·山西期末) 某商店准备购进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个。
湖北省襄阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016八上·沂源开学考) 对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A . 开口向下,顶点坐标(5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(﹣5,3)D . 开口向上,顶点坐标(﹣5,3)2. (2分) (2018九上·宝应月考) 下列问题中,错误的个数是()( 1 )三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A . 1个B . 2个C . 3个D . 4个3. (2分) (2018九上·金华期中) 四边形ABCD内接于⊙O,则∠A:∠B:∠C:∠D的值可以是()A . 2:3:4:5B . 2:4:3:5C . 2:5:3:4D . 2:3:5:44. (2分)(2013·绵阳) 下列“数字”图形中,有且仅有一条对称轴的是()A .B .C .D .5. (2分)抛物线y= x2-6x+24的顶点坐标是()A . (-6,-6)B . (-6,6)C . (6,6)D . (6,-6)6. (2分)如图,阴影部分组成的图案既是关于轴成轴对称的图形,又是关于坐标原点成中心对称的图形.若点的坐标是,则点和点的坐标分别为()A .B .C .D .7. (2分)(2018·通城模拟) 如图,⊙O的半径为3,四边形ABCD内接于⊙O,若2∠BAD=∠BCD,则弧BD 的长为()A . πB .C . 2πD . 3π8. (2分) (2018九上·建瓯期末) 如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是()A . 5个B . 4个C . 3个D . 2个9. (2分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A . 20B . 15C . 10D . 510. (2分)(2019·浙江模拟) 如图,抛物线交x轴于点A,B,交y轴于点C,当△ABC 纸片上的点C沿着此抛物线运动时,则△ABC纸片随之也跟着水平移动,设纸片上BC的中点M坐标为(m,n),在此运动过程中,n与m的关系式是()A . n= (m- )2-B . n= (m- )2+C . n= (m- )2-D . n= (m- )2-二、填空题 (共8题;共15分)11. (3分)如图,正方形OABC的各顶点A、B、C的坐标如图,则点A、B、C分别关于x轴,y轴,原点对称的坐标分别是________ ________ ________ .12. (1分) (2016九上·桐乡期中) 如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣ x2+ x+ .则他将铅球推出的距离是________ m.13. (1分)若A(﹣,y1),B(﹣,y2),C(,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1 , y2 , y3的大小关系是________.14. (1分)平行四边形是________对称图形.(“轴对称图形”或“中心对称图形”)15. (1分)(2018·丹棱模拟) 如图,⊙O的半径为6,直线AB是⊙O的切线,切点为B,弦BC∥AO,若∠A=30°,则劣弧BC的长为 ________.16. (1分)如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△,则点的坐标为________17. (1分)(2017·石城模拟) 如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B 重合),则cosC的值为________.18. (6分)如图,抛物线y1=﹣x2+2向右平移1个单位得到的抛物线y2 .回答下列问题:(1)抛物线y2的解析式是________ ,顶点坐标为________ ;(2)阴影部分的面积________ ;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3 ,则抛物线y3的解析式为________ ,开口方向________ ,顶点坐标为________ .三、解答题 (共6题;共60分)19. (5分)如图,抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,(1)求出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x的增大而减小?20. (5分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.21. (15分) (2016九上·常熟期末) 在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。
2015-2016学年湖北省襄阳市襄城区九年级(上)期中数学试卷一、选择题(每小题3分,共计36分)1.(3分)下列方程中是一元二次方程的是()A.2x+1=0 B.y2+x=1 C.x2+1=0 D.x2=12.(3分)一元二次方程x2﹣5x+2=0的两根为a,b时,则a+b﹣ab的值是()A.7 B.3 C.﹣3 D.﹣73.(3分)如果关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k<1且k≠0 C.k>1 D.k≤1且k≠04.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.线段B.等边三角形C.五角星D.等腰梯形5.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°6.(3分)如图,A,B,C,D为⊙O上四点,若∠BOD=110°,则∠A的度数是()A.110°B.115°C.120° D.125°7.(3分)若⊙O的半径为4,圆心O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定8.(3分)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位9.(3分)如图,当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处读数如图所示,那么该圆的半径长为()A.B.C.5 D.310.(3分)下列说法中正确的是()A.三点确定一个圆B.垂直于弦的直径平分弦C.相等的圆心角所对弧相等D.三角形的外心是这个三角形三条角平分线的交点11.(3分)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm12.(3分)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共计15分)13.(3分)一元二次方程x2﹣2x=0的解是.14.(3分)已知点M(2a﹣b,3)与点N(﹣6,a+b)关于原点中心对称,则a ﹣b=.15.(3分)若A(﹣4,y l),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y l,y2,y3的大小关系是.(用<号连接)16.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是.17.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论是.(只填序号)三、解答题(共9小题,共69分)18.(5分)解下列方程:5x2﹣3x=x+1.19.(5分)已知m是方程x2+2x﹣5=0的一个根,求2m3+4m2﹣10m﹣9的值.20.(6分)某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?21.(6分)如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.(1)求此桥拱线所在抛物线的解析式.(2)桥边有一浮在水面部分高4m,最宽处12m的渔船,试探索此船能否开到桥下?说明理由.22.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.23.(7分)如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.24.(12分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?25.(10分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C 为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.26.(12分)如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.2015-2016学年湖北省襄阳市襄城区九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计36分)1.(3分)下列方程中是一元二次方程的是()A.2x+1=0 B.y2+x=1 C.x2+1=0 D.x2=1【解答】解:A、2x+1=0未知数的最高次数是1,故错误;B、y2+x=1含有两个未知数,故错误;C、x2+1=0是一元二次方程,正确;D、是分式方程,故错误.故选:C.2.(3分)一元二次方程x2﹣5x+2=0的两根为a,b时,则a+b﹣ab的值是()A.7 B.3 C.﹣3 D.﹣7【解答】解:∵一元二次方程x2﹣5x+2=0的两根为a,b,∴a+b=5,ab=2,∴a+b﹣ab=5﹣2=3.故选:B.3.(3分)如果关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k<1且k≠0 C.k>1 D.k≤1且k≠0【解答】解:根据题意得:4﹣4k>0且k≠0,解得:k<1且k≠0.故选:B.4.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.线段B.等边三角形C.五角星D.等腰梯形【解答】解:A、线段既是轴对称图形又是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、五角星是轴对称图形,不是中心对称图形,故此选项错误;D、等腰梯形是轴对称图形,不是中心对称图形,故此选项错误;故选:A.5.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.6.(3分)如图,A,B,C,D为⊙O上四点,若∠BOD=110°,则∠A的度数是()A.110°B.115°C.120° D.125°【解答】解:∵A,B,C,D为⊙O上四点,∠BOD=110°,∴∠C=∠BOD=55°,∴∠A=180°﹣∠C=125°.故选:D.7.(3分)若⊙O的半径为4,圆心O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定【解答】解:根据圆心到直线的距离5大于圆的半径4,则直线和圆相离.故选:C.8.(3分)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2+2x+3向右移1个单位,再向下平移2个单位.故选:D.9.(3分)如图,当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处读数如图所示,那么该圆的半径长为()A.B.C.5 D.3【解答】解:设切点为C,连接OC交AB于点D,由题意可得:AB=6,则BD=3,设BO=x,则OD=x﹣3,在Rt△ODB中,x2=(x﹣3)2+32,解得:x=3,则该圆的半径长为3cm.故选:D.10.(3分)下列说法中正确的是()A.三点确定一个圆B.垂直于弦的直径平分弦C.相等的圆心角所对弧相等D.三角形的外心是这个三角形三条角平分线的交点【解答】解:A、不共线的三点确定一个圆,故此选项错误;B、垂直于弦的直径平分弦,并且平分弦所对的两条弧,故此选项正确;C、在同圆或等圆中,相等的圆心角所对弧相等,故此选项错误;D、三角形的外心是这个三角形三边的中垂线的交点,故此选项错误;故选:B.11.(3分)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.12.(3分)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A.B.C.D.【解答】解:∵AE=BF=CG,且等边△ABC的边长为2,∴BE=CF=AG=2﹣x;∴△AEG≌△BEF≌△CFG.在△AEG中,AE=x,AG=2﹣x,∵S△AEG=AE×AG×sinA=x(2﹣x);∴y=S△ABC ﹣3S△AEG=﹣3×x(2﹣x)=(x2﹣x+1).∴其图象为二次函数,且开口向上.故选:C.二、填空题(每小题3分,共计15分)13.(3分)一元二次方程x2﹣2x=0的解是x1=0,x2=2.【解答】解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.(3分)已知点M(2a﹣b,3)与点N(﹣6,a+b)关于原点中心对称,则a ﹣b=5.【解答】解:∵点M(2a﹣b,3)与点N(﹣6,a+b)关于原点中心对称,∴,解得:,则a﹣b=1﹣(﹣4)=5.故答案为:5.15.(3分)若A(﹣4,y l),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y l,y2,y3的大小关系是y2<y1<y3.(用<号连接)【解答】解:∵y=x2+4x﹣5=(x+2)2﹣9,∴抛物线开口向上,对称轴为x=﹣2,∵A、B、C三点中,B点离对称轴最近,C点离对称轴最远,∴y2<y1<y3.故本题答案为:y2<y1<y3.16.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(﹣2,0)或(2,10).【解答】解:因为点D(5,3)在边AB上,所以AB=BC=5,BD=5﹣3=2;(1)若把△CDB顺时针旋转90°,则点D′在x轴上,OD′=2,所以D′(﹣2,0);(2)若把△CDB逆时针旋转90°,则点D′到x轴的距离为10,到y轴的距离为2,所以D′(2,10),综上,旋转后点D的对应点D′的坐标为(﹣2,0)或(2,10).故答案为:(﹣2,0)或(2,10).17.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论是③④.(只填序号)【解答】解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣=1,即2a+b=0.故①错误;②根据图示知,当x=1时,y<0,即a+b+c<0.故②错误;③∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a.故③正确;④∵△ADB为等腰直角三角形.所以AD=BD=设D(1,a+b+c),又b=﹣2a,c=﹣3a,故D(1,﹣4a);列方程求解得a=或a=﹣(舍去)∴只有a=时三角形ABD为等腰直角三角形故④正确;⑤要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.故⑤错误.综上所述,正确的结论是③④.故答案是:③④.三、解答题(共9小题,共69分)18.(5分)解下列方程:5x2﹣3x=x+1.【解答】解:整理,得5x2﹣4x﹣1=0因式分解,得(5x+1)(x﹣1)=0于是得5x+1=0或x﹣1=0,则,x2=119.(5分)已知m是方程x2+2x﹣5=0的一个根,求2m3+4m2﹣10m﹣9的值.【解答】解:∵m是方程x2+2x﹣5=0的一个根,∴m2+2m﹣5=0,∴2m3+4m2﹣10m﹣9=2m(m2+2m﹣5)﹣9=2m×0﹣9=﹣9.20.(6分)某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?【解答】解:设每期减少的百分率为x,根据题意得:450×(1﹣x)2=288,解得:x1=1.8(舍去),x2=0.2解得x=20%.答:每期减少的百分率是20%.21.(6分)如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.(1)求此桥拱线所在抛物线的解析式.(2)桥边有一浮在水面部分高4m,最宽处12m的渔船,试探索此船能否开到桥下?说明理由.【解答】解:(1)设抛物线为y=ax2+bx+c由题意得:A(﹣12,0),B(12,0),C(0,8).C点坐标代入得:c=8,A,B点坐标代入得:,解得.所求抛物线为y=﹣x2+8;(2)能开到桥下,理由:当y=4时得,解得:高出水面4m处,拱宽>12m(船宽)所以此船在正常水位时可以开到桥下.22.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.【解答】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.23.(7分)如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.【解答】(1)证明:由旋转的性质可知:∠DBE=∠ABC=60°,BD=AB,∴△ABD为等边三角形,∴∠DAB=60°,∴∠DAB=∠ABC,∴DA∥BC;(2)猜想:DF=2AF,证明如下:如图,在DF上截取DG=AF,连接BG,由旋转的性质可知,DB=AB,∠BDG=∠BAF,在△DBG和△ABF中,,∴△DBG≌△ABF(SAS),∴BG=BF,∠DBG=∠ABF,∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°,又∵BG=BF,∴△BGF为等边三角形,∴GF=BF,又∵BF=AF,∴FG=AF,∴DF=DG+FG=AF+AF=2AF.24.(12分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【解答】解:(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,故z与x之间的函数解析式为z=﹣2x2+136x﹣1800;(2)由z=440,得440=﹣2x2+136x﹣1800,解这个方程得x1=28,x2=40所以,销售单价定为28元或40元,(3)∵厂商每月的制造成本不超过540万元,每件制造成本为18元,∴每月的生产量为:小于等于=30万件,y=﹣2x+100≤30,解得:x≥35,又由限价40元,得35≤x≤40,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为:510万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.25.(10分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C 为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.26.(12分)如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.【解答】解:(1)如图1,∵A(﹣3,0),C(0,4),∴OA=3,OC=4.∵∠AOC=90°,∴AC=5.∵BC∥AO,AB平分∠CAO,∴∠CBA=∠BAO=∠CAB.∴BC=AC.∴BC=5.∵BC∥AO,BC=5,OC=4,∴点B的坐标为(5,4).∵A(﹣3,0)、C(0,4)、B(5,4)在抛物线y=ax2+bx+c上,∴解得:∴抛物线的解析式为y=﹣x2+x+4.(2)如图2,设直线AB的解析式为y=mx+n,∵A(﹣3,0)、B(5,4)在直线AB上,∴解得:∴直线AB的解析式为y=x+.设点P的横坐标为t(﹣3≤t≤5),则点Q的横坐标也为t.∴y P=t+,y Q=﹣t2+t+4.∴PQ=y Q﹣y P=﹣t2+t+4﹣(t+)=﹣t2+t+4﹣t﹣=﹣t2++=﹣(t2﹣2t﹣15)=﹣[(t﹣1)2﹣16]=﹣(t﹣1)2+.∵﹣<0,﹣3≤t≤5,∴当t=1时,PQ取到最大值,最大值为.∴线段PQ的最大值为.(3)①当∠BAM=90°时,如图3所示.抛物线的对称轴为x=﹣=﹣=.∴x H=x G=x M=.∴y G=×+=.∴GH=.∵∠GHA=∠GAM=90°,∴∠MAH=90°﹣∠GAH=∠AGM.∵∠AHG=∠MHA=90°,∠MAH=∠AGM,∴△AHG∽△MHA.∴.∴=.解得:MH=11.∴点M的坐标为(,﹣11).②当∠ABM=90°时,如图4所示.∵∠BDG=90°,BD=5﹣=,DG=4﹣=,∴BG===.同理:AG=.∵∠AGH=∠MGB,∠AHG=∠MBG=90°,∴△AGH∽△MGB.∴=.∴=.解得:MG=.∴MH=MG+GH=+=9.∴点M的坐标为(,9).综上所述:符合要求的点M的坐标为(,9)和(,﹣11).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。