超声换能器的分类V1.4
- 格式:pdf
- 大小:55.98 KB
- 文档页数:1
简单了解超声波换能器的作⽤超声波换能器是⼀种能把⾼频电能转化为机械能的装置,材料的压电效应将电信号转换为机械振动。
超声波换能器是⼀种能量转换器件,它的功能是将输⼊的电功率转换成机械功率(即超声波)再传递出去,⽽⾃⾝消耗很少的⼀部分功率。
⼀、超声波换能器的⼯作原理:在总结超声波焊接机换能器的种类之前,我们先来了解⼀下超声波换能器的⼯作原理:超声波换能器是由锆钛酸铅压电陶瓷材料制造的夹芯式构件组成,通常在超声波焊接头处就会有⼀组超声波换能器。
超声波换能器主要功能是实现声能、电能、机械能的能量转换。
⼆、超声波换能器的作⽤:超声波换能器的作⽤主要表现在能量转化上,主要通过超声波换能器把超声波能量集中,然后转化到超声波模具及焊接头上。
三、超声波换能器的种类:超声波换能器的分类⽅式有多种多样,常见的有:1.按照换能器的振动模式,可分为剪切振动换能器、扭转振动换能器、纵向振动换能器、弯曲振动换能器等。
2.按照换能器的⼯作状态,可分为接收型超声换能器、发射型超声换能器和收发两⽤型超声换能器。
3.按照换能器的⼯作介质,可分为液体换能器、固体换能器以及⽓介超声换能器等。
4.按照换能器的输⼊功率和⼯作信号,可分为检测超声换能器、脉冲信号换能器、功率超声换能器、连续波信号换能器、调制信号换能器等。
5.按照换能器的形状,可分为圆柱型换能器、棒状换能器、圆盘型换能器、复合型超声换能器及球形换能器等。
6.按照能量转换的机理和所⽤的换能材料,可分为电磁声换能器、静电换能器、机械型超声换能器、磁致伸缩换能器、压电换能器等。
德召尼克(常州)焊接科技有限公司是⼀家在江苏常州注册的企业,以超声波焊接,振动摩擦焊接,激光塑料焊接应⽤为核⼼,⾮标⾃动化设备研发设计为依托的⾼科技企业。
⽬前公司主要业务领域涉⾜:电声⾏业,汽车⾏业、医疗⾏业,净⽔⾏业等不同领域。
公司秉承以科技为先导、以品质和效益为中⼼、以技术创新为推动⼒,致⼒于为客户提供先进的超声波,振动摩擦,激光等焊接领域的技术开发与研究,主要涉及产品包括:超声波塑料焊接、超声波⾦属焊接、振动摩擦焊接,激光塑料焊接系统、以及相应焊头、模具的设计和制造,⾮标⾃动化系统设备集成。
超声波换能器的参数及工作方式类型超声波换能器是一种能够将电能转换为超声波能量的装置。
它由压电材料组成,通过电场的作用使材料发生压缩和膨胀,从而产生超声波。
本文将从超声波换能器的参数和工作方式类型两个方面对其进行详细介绍。
一、超声波换能器的参数超声波换能器的参数对其性能和应用有着重要影响,主要包括频率、振幅、工作电压和灵敏度等。
1. 频率:超声波换能器的频率通常指的是压电材料的固有频率,即在不加电场的情况下,材料自身振动的频率。
超声波换能器的频率范围很广,从几十千赫兹到几百兆赫兹不等,可以根据具体应用需求选择适当的频率。
2. 振幅:超声波换能器的振幅是指材料在电场刺激下产生的最大机械振幅。
振幅的大小与换能器的尺寸、材料性质和工作电压等因素相关,通常通过调节工作电压来控制振幅的大小。
3. 工作电压:工作电压是指施加在超声波换能器上的电压,通过改变电压的大小和频率可以控制超声波的产生和输出。
工作电压的选择要考虑到换能器的耐受能力和应用需求。
4. 灵敏度:超声波换能器的灵敏度是指它对输入信号的敏感程度。
灵敏度越高,换能器对输入信号的响应越快速、准确。
灵敏度的大小与换能器的材料性质和结构设计等因素密切相关。
二、超声波换能器的工作方式类型根据超声波换能器的工作方式不同,可以将其分为压电式、磁电式和电动力式三种类型。
1. 压电式超声波换能器:压电式超声波换能器是应用最广泛的一种类型。
它利用压电效应将电能转化为机械能,通过电场的作用使压电材料发生压缩和膨胀,从而产生超声波。
压电式超声波换能器具有频率范围广、振幅大、能量转换效率高等优势,被广泛应用于医学成像、无损检测、清洗和声纳等领域。
2. 磁电式超声波换能器:磁电式超声波换能器利用磁电效应将电能转化为机械能。
它通过电磁场的作用使磁电材料发生形变,从而产生超声波。
磁电式超声波换能器具有振幅大、频率稳定等特点,适用于高功率和高频率的应用。
3. 电动力式超声波换能器:电动力式超声波换能器是一种利用电动力效应将电能转化为机械能的装置。
超声波换能器原理知识大普及在对超声波焊接机、超声波清洗机等设备的了解过程中,都会看到超声波换能器的身影,那么超声波换能器究竟是个什么设备呢?它主要完成哪些功能呢?又是利用什么原理来完成的呢?接下来就让小编带您一探究竟!一、超声波换能器简介超声波换能器,英文名称为Ultrasonictransducer,是一种将高频电能转换为机械能的能量转换器件。
其常被用于超声波清洗机、超声波焊接机、三氯机、气相机等设备中,在农业、工业、生活、交通运输、军事、医疗等领域内都得到了广泛的应用。
超声波换能器二、超声波换能器结构超声波换能器主要包括外壳、声窗(匹配层)、压电陶瓷圆盘换能器、背衬、引出电缆、Cymbal阵列接收器等几大部分构成。
其中,压电陶瓷圆盘换能器起到的作用和一般的换能器相同,主要用于发射并接受超声波;而在压电陶瓷圆盘换能器的上面是Cymbal阵列接收器,主要由引出电缆、Cymbal换能器、金属圆环和橡胶垫圈组成,用作超声波接收器,接受压电陶瓷圆盘换能器频带外产生的多普勒回拨信号。
超声波换能器结构三、超声波换能器原理超声波换能器,其实就是频率与其谐振频率相同的压电陶瓷,利用的是材料的压电效应将电能转换为机械振动。
一般情况下,先由超声波发生器产生超声波,经超声波换能器将其转换为机械振动,再经超声波导出装置、超声波接收装置便可产生超声波。
超声波换能器原理四、超声波换能器应用(1)超声波清洗机利用超声波在清洗液中不断地进行传播来清洗物体上的污垢,其超声波振动频率便是由超声波换能器决定的,可根据清洗物来设定不同的频率以达到清洗的目的。
(2)超声波焊接机利用超声波换能器产生超声波振动,振动产生摩擦使得焊区局部熔化进而接合在一起。
(3)超声波马达中并不含有超声波换能器,只是将其定子近似为换能器,利用逆压电效应产生超声波振动,通过定子与转子的摩擦进而带动转子转动。
(4)超声波减肥利用超声波换能器产生机械振动,将脂肪细胞振碎并排出体外,进而达到减肥的效果。
超声波换能器是将超声波发生器输出的电能,或者磁能转换成相同频率的机械振动。
目前有两种类型,一种是磁致伸缩型换能器,另一种是压电陶瓷换能器。
一、分类1、磁致伸缩式换能器,由于效率低,性价比不高,需外加直流极化磁场,因此目前已经很少使用。
2、压电陶瓷换能器基本原理是建立在晶体材料的压电效应基础上的,这种材料为压电晶体材料,在超声焊接机主要用的是压电陶瓷产量。
这种材料在成熟外地发生形变时,在压电陶瓷晶体表面,会出现电荷,晶体内部产生电场。
反之,当晶体呈受外电场作用时,金片会发生形变,这种现状称之为压电效应。
超声波换能器是超声振动系统的核心部件,超声波换能器设计的好坏,关系到焊接机工作的效率,稳定性及寿命等,在市场上采用大部分的压电陶瓷换能器。
二、发热故障原因介绍完了超声波换能器的类型,下面我们来给大家简单说一下超声波换能器使用时会发热的问题。
超声波换能器发热,主要是由两个原因引起的。
1、被焊工件会发热或被超声波处理的物质会发热,或超声波模具(工具头)、变幅杆长时间工作会发热,这些热量都会传递到换能器上。
2、换能器本身的功率损耗,既然做不到能量转换效率100%,损耗的那部分能量必然转换成热量。
温升会导致换能器参数变化,逐渐偏移匹配状态,更严重的是温升会导致压电陶瓷晶片性能的劣化。
这反过来又促使换能器工作状态更坏,更快地升温,这是一个恶性循环。
所以我们必须给以换能器良好的冷却条件,一般是常温风冷。
杭州成功超声设备有限公司创立于1995年,是国内从事超声应用研究、大功率超声波换能器开发与生产的专业厂商及国家高新技术企业。
公司主要产品有换能器、超声驱动电源等。
这些产品作为功率超声应用行业的核心关键部件广泛应用于声化学、塑料焊接、金属焊接、橡胶切割、无纺布焊接等领域。
超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗很少一部分功率(小于10%)。
所以,使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。
超声波换能器分类:1、柱型2、倒喇叭型3、钢后盖型4、中间夹铝片型主要适用于超声波塑料焊接机、超声波切割刀、超声波金属焊接机,超声波清洗机,超声波声化学设备等。
超声波换能器在合适的电场激励下能发生有规律的振动,其振幅一般10μm左右,这样的振幅要直接完成焊接和加工工序是不够的。
连上通过合理设计的变幅杆后,超声波的振幅可以在很大的范围内变化,只要材料强度足够,振幅可以超过100μm。
因加工方式和要求不同,换能器的工作方式大致可分为连续工作(如花边机,CD机,清洗机,拉链机)和脉冲工作(如塑料焊机),不同的工作方式对换能器的要求是不同的。
一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇的,有停顿,但瞬间电流很大。
平均而言,二种状态的功率都是很大的。
使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。
换能器的频率相对而言还比较直观些。
该频率是指用频率(函数)发生器,毫伏表,示波器等通过传输线路法测得的频率,或用网络阻抗分析仪等类似仪表测得的频率。
一般通称小信号频率。
与它相对应的是上机频率,即客户将换能器通过电缆连到机箱上,通电后空载或有载时测得的实际工作频率。
因客户匹配电路各不相同,同样的换能器在不同的驱动电源(电箱)表现出来的频率是不同的,这样的频率不能作为交流讨论的依据。
让换能器和驱动电源、模具良好配合以形成一台完整的超声波设备可以简称为匹配。
由于匹配对整机性能的影响是决定性的,无论怎样强调匹配的重要性都不为过。
匹配最主要考虑的因素是换能器的电容量,其次是换能器的频率。
换能器与驱动电源的匹配主要有4个方面,即阻抗匹配、频率匹配、功率匹配、容抗匹配。
第三章医⽤超声换能器第三章医⽤超声换能器应⽤超声波进⾏诊断时,⾸先要解决的问题是如何发射和接收超声波,通过使⽤超声换能器可以解决这个问题。
⽬前医学超声设备⼤多采⽤声电换能器来实现超声波的发射与接收。
声电换能器按⼯作原理分为两⼤类,即电场式和磁场式。
电场式中,利⽤电场所产⽣的各种⼒效应来实现声电能量的相互转换,其内部储能元件是电容,它⼜分为压电式、电致伸缩式、电容式。
磁场式中,是借助磁场的⼒效应实现声电能量的互相转换,内部储能元件是电感,它⼜分为电动式、电磁式、磁致伸缩式。
在医学超声⼯程中,使⽤的最多的是压电式超声换能器。
§3.1 压电效应与压电材料特性⼀、压电效应压电效应是法国物理学家Pierre Curie 和Jacqnes Curie 兄弟于1880年发现的。
图3-1 压电效应⽰意图对某些单晶体或多晶体电介质,如⽯英晶体、陶瓷、⾼分⼦聚合材料等,当沿着⼀定⽅向对其施加机械⼒⽽使它变形时,内部就产⽣极化现象,同时在它的两个对应表⾯上便产⽣符号相反的等量电荷,并且电荷密度与机械⼒⼤⼩成⽐例;⽽且当外⼒取消后,电荷也消失,⼜重新恢复不带电状态,这种现象称为正压电效应,如图3-1。
当作⽤⼒的⽅向改变时,电荷的极性也随着改变。
相反,当在电介质的极化⽅向上施加电场(加电压)作⽤时,这些电介质晶体会在⼀定的晶轴⽅向产⽣机械变形;外加电场消失,变形也随之消失,这种现象称为逆压电效应(电致伸缩)。
如果在电介质的两⾯外加交变电场时,电介质产⽣压缩及伸张,即产⽣振动,此振动加到弹性介质上,介质亦将振动,产⽣机械波。
如外加交变电场频率⾼于20KHz,则这种波即是超声波。
超声接收换能器采⽤了正压电效应,将来⾃⼈体中的声压转变为电压。
超声波发射换能器采⽤了逆压电效应,将电压转变为声压,并向⼈体发射。
压电效应是可逆的,压电材料既具有正压电效应,⼜具有逆压电效应。
医学超声设备中,常采⽤同⼀压电换能器作为发射和接收探头,但发射与接收必须分时⼯作。
机械超声换能器的工作原理及其种类下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!机械超声换能器的工作原理及其种类1. 概述机械超声换能器是一种将电能与机械能相互转换的装置,广泛应用于医疗、工业和科学领域。
超声波无损检测技术工艺 第二章 超声换能器§2.2 压电换能器§2.2.4超声检测用压电换能器的种类,结构,设计与制作工艺的考虑因素一.超声检测技术中常用压电换能器的种类在超声检测技术中应用的压电换能器是多种多样的,但最广泛应用的是厚度振动型的压电换能器(俗称探头),它受激励而产生的超声波是纵波,然后可以利用超声波的折射特性,通过适当的方法实现波型转换,把纵波转换成其他所需要的波型用于检测.此外,根据激发超声波的工作频谱,可以把探头分为宽频带(窄脉冲)探头(可窄至一周半)和窄频带脉冲探头,前者主要用于要求具有较高分辨力的超声检测,而后者则主要用于如穿透法,谐振法,声振法等的超声检测.在实际应用中,最常见的是根据探头的用途和结构特点来分类,大致上有:1.普通直探头:由单块压电晶片兼并发射与接收功能而制成的探头,其晶片多为圆形薄片,还可分为液浸法检测用的和直接接触法用的探头2.普通斜探头:由单块压电晶片兼并发射与接收功能,其晶片多为圆形,方形和矩形薄片.其上配有斜楔以改变晶片受激产生的纵波在界面上的入射角,利用超声波的折射特性产生波型转换,从而在检测介质中激发出所需要的波型.它主要用于直接接触法检测,根据所激发波型的不同,可以分为:(1)横波探头:用于对工件内部及表面缺陷的横波检测,例如检测焊缝(2)瑞利波(表面波)探头:用于对具有光洁表面的工件的表面缺陷检测,例如检测叶片表面裂纹(3)板波(兰姆波)探头:用于薄板检测(4)爬波探头:用于粗糙表面工件的近表面缺陷检测(5)可变角探头:可调整纵波入射角以探索适当波型超声波的激发条件以及调整超声波在被检介质中的折射角度此外还有如纵波斜探头及各种适应不同工件需要的专用探头.3.组合双晶探头:由两块晶片分别发射和接收超声波,晶片形状有两块半圆形(分割式),两块方形或两块矩形等.探头上配有延迟块,用以小范围改变纵波入射角以调节超声波进入工件的状态,而且起到延迟阻塞时间,抑制近场干扰等作用,从而显著提高检测的近表面分辨力.两块晶片之间还配置了隔声层以阻隔入射界面上产生的直通波和屏蔽感应电场的干扰(即起到电声屏蔽的作用).按照产生的波型和结构形式,可以分为:(1)组合双晶直探头:包括液浸法检测与直接接触法检测应用的探头,尤其以后者为常用.全部元件组合在一个整体之内,在工件中激励的是纵波-在被检介质中是以折射纵波进行检测的。
超声波换能器简介一、超声波换能器种类按照能量转换的机理和利用的换能材料:压电换能器、磁致伸缩换能器、静电换能器(电容型换能器)、机械型超声波换能器等。
按照换能器的振动模式:纵向(厚度)振动换能器、剪切振动换能器、扭转振动换能器、弯曲振动换能器、纵-扭复合以及纵-弯复合振动模式换能器等。
按照换能器的工作介质:气介超声换能器、液体换能器以及固体换能器等。
按照换能器的工作状态:发射型超声换能器、接收型超声换能器和收发两用型超声换能器。
按照换能器的输入功率和工作信号:功率超声换能器、检测超声换能器、脉冲信号换能器、调制信号换能器和连续波信号换能器等。
按照换能器的形状:棒状换能器、圆盘型换能器、圆柱型换能器、球形换能器等。
另外,不同的应用需要不同形式的超声波换能器,如平面波超声换能器、球面波超声换能器、柱面波超声波换能器、聚焦超声换能器以及阵列超声换能器等。
二、换能器工作原理超声波换能器是在超声频率范围内将交变的电信号转换成声信号或者将外界声场中的声信号转换为电信号的能量转换器件,其工作原理是基于晶体的压电效应及逆压电效应。
有些单晶体和多晶陶瓷材料受到应力能在材料中产生电场,这种效应称为压电效应,这些材料称为压电材料。
电能转换成超声波能量是利用逆压电效应原理,而接收超声波使之提供电信号则是利用压电效应的原理。
由于超声波在介质中传播时会产生许多物理,化学及生物等效应,同时因为超声波穿透力强、集束性好、信息携带量大、易于实现快速准确的在线无损检测和无损诊断,因而在工业、农业、国防、生物医药和科学研究等方面得到广泛的应用。
三、超声波换能器能量转换原理简介换能器就是进行能量转换的器件,是将一种形式的能量转换为另一种形式的能量的装置,在声学研究领域,换能器主要是指电声换能器,它能实现电能和声能之间的相互转换。
用来发射声波的换能器称为发射器,当换能器处于发射状态时,将电能转换成机械能,再转换成声能;用来接收声波的换能器称为接收器,当换能器处于接收状态时,将声能转换成机械能,再转换成电能。
无损检测技术中的超声换能器选择与使用指南超声换能器是无损检测领域中常用的一种设备,通过将电能转化为超声波能量,用于检测材料内部的缺陷或评估其性能。
在超声无损检测中,选择适当的超声换能器至关重要,它将直接影响检测结果的准确性和可靠性。
本文将就超声换能器的选择与使用提供一些指南。
1. 了解超声换能器的工作原理和类型超声换能器通过电磁或压电效应将电能转化为机械振动,产生超声波。
根据工作原理和振动方式的不同,超声换能器可分为电磁式和压电式两种类型。
电磁式超声换能器适用于低频检测,通常用于对较大尺寸和较厚材料的检测;压电式超声换能器适用于高频检测,通常用于对较小尺寸和较薄材料的检测。
2. 根据检测需求选择适当的超声换能器在选择超声换能器时,需要考虑以下几个因素:- 检测材料的类型和厚度:不同材料对超声波的传播和反射特性不同,因此需要选择适合材料类型和厚度的超声换能器。
- 缺陷的类型和大小:不同类型和大小的缺陷对超声波的传播和散射也会产生不同的影响,选择合适的超声换能器可以提高检测缺陷的准确性。
- 检测的深度和灵敏度:根据检测的深度需求和所需的灵敏度,选择适当频率的超声换能器。
- 工作环境的要求:有些超声换能器具有防水、防腐蚀等特性,适用于复杂的工作环境。
3. 正确使用超声换能器正确使用超声换能器可以提高检测效果和延长设备寿命。
- 确保超声换能器与被检测材料之间的良好接触,使用适当的耦合剂或传感器。
- 保持超声换能器的清洁和保养,避免尖锐物品或化学物质对其造成损害。
- 使用合适的检测技术和仪器参数,根据需要调整超声换能器的工作频率和敏感度。
- 定期检查和校准超声换能器,确保其性能达到预期的标准。
4. 注意超声换能器的限制和注意事项超声换能器虽然在无损检测中具有重要的作用,但仍有一些限制和注意事项需要注意:- 超声波在不同材料中的传播速度和衰减特性不同,这可能会影响检测结果的准确性,需要针对具体材料进行校准和修正。
技术支持:上海谐鸣超声
压电(超声)换能器的分类
超声换能器应用范围较广,型号类别较多,换能器制作材料主要有压电陶瓷、单晶、复合材料和磁致伸缩材料等,其中压电陶瓷使用较多,这里简单的介绍一下压电换能器的主要分类,大致如下:
1、根据换能器工作过程声波的传播介质分:
A.气介换能器:以气体做为声波的传播媒介,如空气测距和气体流量换能
器等;
B.液介换能器:以液体做为声波的传播媒介,如水下测距和液体流量换能
器等;
C.固介换能器:以固体做为声波的传播媒介,如无损检测换能器基本属于
该类;
2、根据换能器工作过程中所起的作用分:
A.发射型换能器:换能器只用来发射声波(信号);
B.接收型换能器:换能器只用来接收声波(信号);
C.收发共用型换能器:换能器既用于发射又用来接收声波(信号);
3、根据换能器的振动模式分:
A.夹心/纵向振子换能器:按一定的结构将机械部件和压电陶瓷通过预应力
组合在一起,如超声清洗和焊接用的换能器一般都是属于该类型;
B.弯曲振动(叠片)换能器:以弯曲振动的模式发射和接收声波(信号),
如倒车雷达上所使用的换能器属于该类型;
C.普通/常规换能器:仅单独使用压电陶瓷,利用其本身各种振动模式,通
过胶黏剂固定密封于壳体内,该类型换能器使用场合较普遍,无损检测
换能器大多属于该类型;
D.其他振动模式换能器:如弯张型、钹式等,但应用少,在此不一一罗列;
4、根据换能器的带宽分:有宽带和窄带换能器,水声上用的较多;
5、根据换能器耐温性分:普通型,中温型和高温型换能器;
6、根据换能器耐压力性分:普通型和高压型换能器;
7、根据换能器频率分:低频、中频和高频换能器;
换能器分类较多,以上罗列了部分分类形式,仅供参考。
(上海谐鸣超声)
1。