高考数学专题6第25练
- 格式:docx
- 大小:620.34 KB
- 文档页数:12
高考数学复习考点题型专题讲解专题25 定值问题高考定位 在解析几何题目中,有些几何量与参数无关,这类问题被称为定值问题.定值问题是高考的热点问题、难度较大,一般作为压轴题出现.[高考真题](2020·新高考Ⅰ卷改编)已知椭圆C :x 26+y 23=1,点M ,N 在C 上,点A (2,1)且AM ⊥AN ,AD ⊥MN ,D 为垂足,证明:存在定点Q ,使得|DQ |为定值. 证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直, 设直线MN 的方程为y =kx +m , 代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0,故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0.将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km 1+2k2+(m -1)2+4=0,整理得(2k +3m +1)(2k +m -1)=0.因为A (2,1)不在直线MN 上, 所以2k +m -1≠0, 所以2k +3m +1=0,k ≠1.所以直线MN 的方程为y =k ⎝ ⎛⎭⎪⎫x -23-13(k ≠1).所以直线MN 过点P ⎝ ⎛⎭⎪⎫23,-13.若直线MN 与x 轴垂直, 可得N (x 1,-y 1). 由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0. 又x 216+y 213=1,所以3x 21-8x 1+4=0.解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝ ⎛⎭⎪⎫23,-13.令Q 为AP 的中点,即Q ⎝ ⎛⎭⎪⎫43,13.若D 与P 不重合,则由题设知AP 是Rt△ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝ ⎛⎭⎪⎫43,13,使得|DQ |为定值.样题1(2022·厦门二模改编)已知抛物线C :y 2=4x ,点P (1,2).过点Q (0,1)的直线l 与抛物线C 交于不同两点A ,B ,直线PA 交y 轴于M ,直线PB 交y 轴于N ,设O 为坐标原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.证明 由题意,可知直线l 的斜率存在,且不为0,设直线l 的方程为y =kx +1(k ≠0),A (x 1,y 1),B (x 2,y 2). 由⎩⎨⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0,Δ=(2k -4)2-4k 2>0,得k <0或0<k <1. 则x 1+x 2=-2k -4k 2,x 1x 2=1k2,直线PA 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得M 的纵坐标y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2, 同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2, 由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N , 所以1λ+1μ=11-y M +11-y N =x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.样题2(2022·湖南六校联考改编)已知双曲线C :x 2-y 2=1.已知点A 是C 上一定点,过点B (0,1)的动直线与双曲线C 交于P ,Q 两点,记k AP ,k AQ 分别为直线AP ,AQ 的斜率,若k AP +k AQ 为定值λ,求点A 的坐标及实数λ的值.解 设A (m ,n ),过点B 的动直线为y =tx +1,P (x 1,y 1),Q (x 2,y 2), 由⎩⎨⎧x 2-y 2=1,y =tx +1,得(1-t 2)x 2-2tx -2=0, 所以⎩⎪⎨⎪⎧1-t 2≠0,Δ=4t 2+8(1-t 2)>0,x 1+x 2=2t 1-t2,x 1x 2=-21-t2, 由1-t 2≠0,且Δ>0,得t 2<2且t 2≠1. 因为k AP +k AQ =λ, 所以y 1-n x 1-m +y 2-nx 2-m=λ, 即tx 1+1-n x 1-m +tx 2+1-nx 2-m=λ,化简得(2t -λ)x 1x 2+(-mt +1-n +λm )(x 1+x 2)-2m +2mn -λm 2=0, 所以(2t -λ)·-21-t 2+(-mt +1-n +λm )·2t 1-t 2-2m +2mn -λm 2=0,化简得m (λm -2n )t 2+2(λm -n -1)t +2λ-2m +2mn -λm 2=0, 由于上式对无穷多个不同的实数t 都成立,所以⎩⎨⎧m (λm -2n )=0,λm -n -1=0,2λ-2m +2mn -λm 2=0.如果m =0,那么n =-1,此时A (0,-1)不在双曲线C 上,舍去, 所以m ≠0,所以λm =2n =n +1, 所以n =1,代入2λ-2m +2mn -λm 2=0, 得2λ=λm 2,因为λ=2nm≠0,所以m 2=2,得m =±2, 此时A (±2,1)在双曲线C 上.综上,A (2,1),λ=2,或者A (-2,1),λ=- 2.样题3(2022·石室中学三诊改编)已知椭圆M :x 24+y 2=1,设O 为坐标原点,A ,B ,C是椭圆M 上不同的三点,且O 为△ABC 的重心,探究△ABC 面积是否为定值,若是,求出这个定值;若不是,说明理由.解 当直线AB 的斜率不存在时,AB ⊥x 轴,点C 在x 轴上,点C 到AB 的距离d =32|a |=3,|AB |=3, 则S △ABC =12|AB |d =332.当直线AB 的斜率存在时,设直线AB :y =kx +m ,联立⎩⎨⎧x 24+y 2=1,y =kx +m ,消去y 得(4k 2+1)x 2+8kmx +4(m 2-1)=0. 设A (x 1,y 1),B (x 2,y 2), 则有Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1·x 2=4m 2-44k 2+1.y 1+y 2=k (x 1+x 2)+2m =2m4k 2+1. 因为O 为△ABC 的重心,所以OC →=-(OA →+OB →)=⎝ ⎛⎭⎪⎫8km 4k 2+1,-2m 4k 2+1, 因为点C ⎝ ⎛⎭⎪⎫8km4k 2+1,-2m 4k 2+1在椭圆上, 所以⎝ ⎛⎭⎪⎫8km 4k 2+124+⎝ ⎛⎭⎪⎫-2m 4k 2+12=1,即4m 2=4k 2+1.又|AB |=1+k 2|x 1-x 2|=1+k 2·44k 2+1-m 24k 2+1.点O 到直线AB 的距离d =|m |1+k 2, 所以S △ABC =3S △ABO =32·|AB |·d =6|m |4k 2+1-m 24k 2+1=6|m |3m 24m 2=332.综上,S △ABC =332为定值.规律方法 求解定值问题的两大途径(1)可由特例得出一个值(此值一般就是定值),然后证明定值:将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子与分母约分得定值.训练(2022·湖州调研)已知定点F (0,1),定直线l :y =-1,动圆M 过点F ,且与直线相切.(1)求动圆M 的圆心轨迹E 的方程;(2)过焦点F 的直线l 与抛物线E 交于A ,B 两点,与圆N :x 2+y 2-2y =0交于C ,D 两点(A ,C 在y 轴同侧),求证:|AC |·|BD |是定值. 解 (1)设点M 到直线l 的距离为d ,依题意|MF |=d . 设M (x ,y ),则有x 2+(y -1)2=|y +1|, 化简得x 2=4y .(2)抛物线E :x 2=4y 的焦点F (0,1),设直线l 的方程是y =kx +1,A (x 1,y 1),B (x 2,y 2), 由⎩⎨⎧x 2=4y ,y =kx +1, 得x 2-4kx -4=0, 则Δ=16(k 2+1)>0, 且x 1+x 2=4k ,x 1·x 2=-4.由条件可知圆x 2+(y -1)2=1的圆心为N (0,1),半径为1,圆心就是焦点, 由抛物线的定义有|AF |=y 1+1,|BF |=y 2+1, 则|AC |=|AF |-1=y 1,|BD |=|BF |-1=y 2,故|AC |·|BD |=y 1y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=-4k 2+4k 2+1=1. 即|AC |·|BD |为定值,定值为1.一、基本技能练1.(2022·合肥模拟改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,左、右顶点分别为A 1,A 2.点P 是椭圆C 上异于左、右顶点的任意一点,证明:点P 与A 1,A 2连线的斜率的乘积为定值,并求出该定值.证明 设P (x 0,y 0),则x 20a 2+y 20b2=1,所以y 20=b 2(a 2-x 20)a2, 所以kPA 1=y 0x 0+a,kPA 2=y 0x 0-a (x 0≠±a ),所以k PA 1·k PA 2=y 0x 0+a ·y 0x 0-a =y 20x 20-a 2=b 2(a 2-x 20)a 2x 20-a 2=-b 2a 2, 又因为e =c a =12,a 2=b 2+c 2,所以b 2a 2=34,所以-b 2a 2=-34,所以点P 与A 1,A 2连线的斜率的乘积为定值-34.2.(2022·广州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆C的左、右焦点,M 为椭圆C 上一点,△MF 1F 2的周长为4+2 3. (1)求椭圆C 的方程;(2)若P 为圆x 2+y 2=5上任意一点,过点P 作椭圆C 的两条切线,切点分别为A ,B ,试判断PA →·PB →是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)由已知可得⎩⎨⎧2a +2c =4+23,c a =32,a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆C 的方程为x 24+y 2=1.(2)设P (x 0,y 0),则x 20+y 20=5.当x 0=±2时,y 0=±1,显然PA ⊥PB , 则PA →·PB →=0.当x 0≠±2时,过点P 的切线可设为y =k (x -x 0)+y 0, 联立切线方程与椭圆方程, 得⎩⎨⎧y =kx +(y 0-kx 0),x 2+4y 2=4,消去y ,得(4k 2+1)x 2+8k (y 0-kx 0)x +4[(y 0-kx 0)2-1]=0, 所以Δ=64k 2(y 0-kx 0)2-16(4k 2+1)·[(y 0-kx 0)2-1]=0. 整理成关于k 的方程,得(4-x 20)k 2+2x 0y 0k +1-y 20=0,此方程的两个根k 1,k 2就是切线PA ,PB 的斜率, 所以k 1·k 2=1-y 204-x 20=1-(5-x 20)4-x 20=-1.所以PA ⊥PB ,所以PA →·PB →=0. 综上,PA →·PB →=0,为定值.3.(2022·盐城模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1,F 2,其离心率e =12,P 是椭圆C 上一动点,△PF 1F 2内切圆面积的最大值为π3.(1)求椭圆C 的标准方程;(2)直线PF 1,PF 2与椭圆C 分别相交于点A ,B ,求证:|PF 1||F 1A |+|PF 2||F 2B |为定值. (1)解 由题意得△PF 1F 2内切圆半径r 的最大值为33,设|F 1F 2|=2c , 则⎩⎪⎨⎪⎧e =c a =12,12×(2a +2c )×33=12×2c ·b ,a 2=b 2+c 2,∴⎩⎨⎧b 2=3,a 2=4, ∴椭圆C 的标准方程为x 24+y 23=1.(2)证明 设P (x 0,y 0),A (x 1,y 1),B (x 2,y 2),当y 0≠0时,设直线PF 1,PF 2的方程分别是x =m 1y -1,x =m 2y +1.联立⎩⎨⎧x =m 1y -1,x 24+y 23=1,消去x 并整理得(3m 21+4)y 2-6m 1y -9=0,∴y 0y 1=-93m 21+4. ∵x 0=m 1y 0-1,∴m 1=x 0+1y 0, 又x 204+y 203=1,∴y 0y 1=-5+2x 03. 联立⎩⎨⎧x =m 2y +1,x 24+y 23=1,同理可得y 0y 2=-5-2x 03,∴|PF 1||F 1A |+|PF 2||F 2B |=-y 0y 1-y 0y 2=103; 当y 0=0时,直线PF 1,PF 2与x 轴重合,易得|PF 1||F 1A |+|PF 2||F 2B |=3+13=103. 综上所述,|PF 1||F 1A |+|PF 2||F 2B |=103. 二、创新拓展练4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),离心率为22. (1)求椭圆C 的方程;(2)设直线l :y =kx +t (t ≠0)与椭圆C 相交于A ,B 两点,若以OA ,OB 为邻边的平行四边形OAPB 的顶点P 在椭圆C 上,求证:平行四边形OAPB 的面积为定值.(1)解 由题意⎩⎪⎨⎪⎧2a 2+1b2=1,c a =22,a 2=b 2+c 2,解得⎩⎨⎧a 2=4,b 2=2, 所以椭圆方程为x 24+y 22=1. (2)证明 联立⎩⎨⎧y =kx +t ,x 24+y 22=1, 得(2k 2+1)x 2+4ktx +2(t 2-2)=0,所以Δ=(4kt )2-8(2k 2+1)(t 2-2)=8[2(2k 2+1)-t 2]>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4kt 2k 2+1,x 1x 2=2(t 2-2)2k 2+1,所以y 1+y 2=k (x 1+x 2)+2t =2t 2k 2+1. 因为四边形OAPB 是平行四边形,所以OP →=OA →+OB →=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫-4kt 2k 2+1,2t 2k 2+1, 则P ⎝ ⎛⎭⎪⎫-4kt 2k 2+1,2t 2k 2+1. 又因为点P 在椭圆上,所以4k 2t 2(2k 2+1)2+2t 2(2k 2+1)2=1, 即t 2=2k 2+12. 因为|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2 =221+k 22(2k 2+1)-t 22k 2+1=231+k 22k 2+1. 又点O 到直线l 的距离d =|t |1+k2, 所以平行四边形OAPB 的面积S =2S △OAB =|AB |·d =23|t |2k 2+1=62k 2+12k 2+1= 6. 即平行四边形OAPB 的面积为定值 6.。
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
导数大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023春·湖南长沙·高三长沙一中校考阶段练习)已知函数()1e ln ax f x x x-=+,a ∈R .(1)当1a =时,求函数()f x x -的最小值;(2)若函数()f x x 的最小值为a ,求a 的最大值.2.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知函数()(π)sin b f x a x x =--,[π,)x ∈+∞(1)1b =时,若()0f x ≤恒成立,求a 的取值范围;(2)12b =,()f x 在3π,π2⎡⎤⎢⎥⎣⎦上有极值点0x ,求证:00()πf x x +>.3.(2023秋·浙江宁波·高三期末)已知函数1()ln ,0f x x k x k x ⎛⎫=--> ⎪⎝⎭.(1)当3k =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若对()()0,1,0x f x ∀∈<恒成立,求k 的取值范围;(3)求证:对(0,1)x ∀∈,不等式22e 11ln x x x x x-<+恒成立.4.(2023秋·广东茂名·高三统考阶段练习)已知0a >,函数()e x f x x a =-,()ln g x x x a =-.(1)证明:函数()f x ,()g x 都恰有一个零点;(2)设函数()f x 的零点为1x ,()g x 的零点为2x ,证明12x x a =.5.(2023春·广东·高三统考开学考试)已知函数()()2ln 2R f x a x x a a x=+++∈.(1)证明函数()f x 有唯一极小值点;(2)若e 04a <<,求证:()e 2x f x x x +<+.6.(2023秋·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >;(ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.7.(2023·山西朔州·怀仁市第一中学校校考二模)已知函数()ln a f x x x=+.(1)讨论函数()f x 的单调性;(2)令()()()2ln ln g x f x x x x =+--,若0x 是函数()g x 的一个极值点,且()02g x =-,求实数a 的值.8.(2023·江苏·高三专题练习)已知函数()ln m x n f x x+=在()()1,1f 处的切线方程为1y =.(1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.9.(2023秋·吉林松原·高三前郭尔罗斯县第五中学校考期末)已知函数()21e 12ax f x ax x =---.(1)当1a ≥时,证明:对任意的0x ≥,都有()0f x ≥;(2)证明:()()**112ln 1ln 2,nk n n k n k =>+-∈∈∑N N .10.(2023春·黑龙江哈尔滨·高三哈尔滨市第五中学校校考开学考试)已知函数2()ln 2x f x x =-,()(1)g x k x =-+.(1)求函数()f x 的单调递减区间;(2)若存在01x >,当()01,x x ∈时,1()()2f xg x +>,求实数k 的取值范围.11.(2023·黑龙江·黑龙江实验中学校考一模)设函数()()()e 2,x f x ax x a =--∈R .(1)若曲线()y f x =在点()()22f ,处的切线斜率为2e ,求a 的值;(2)若()f x 存在两个极值点()1212,x x x x <,且对任意[]()20,,0x x f x ∈<恒成立,求实数a 的取值范围.12.(2023春·安徽·高三校联考开学考试)已知函数()()2e x f x x -=-.(1)求()f x 的单调区间;(2)若a ,b 为两个不相等的实数,且满足()e e 2e e b a b a a b -=-,求证:6a b +>.13.(2023春·安徽亳州·高三校考阶段练习)已知函数32()61()f x x ax x a =+-+∈R ,且(1)6f '=-.(1)求函数()f x 的图象在点(1,(1))f 处的切线方程;(2)若函数()()g x f x m =-在区间[2,4]-上有三个零点,求实数m 的取值范围.14.(2023·安徽安庆·统考二模)已知函数()21ln e x f x a x bx -=+,a ,b ∈R .e 2.71828≈ .(1)若曲线()y f x =在点()()22f ,处的切线方程是ln 2y x =+,求a 和b 的值;(2)若e a =,且()f x 的导函数()f x '恰有两个零点,求b 的取值范围.15.(2023·重庆沙坪坝·重庆南开中学校考一模)设21()sin 2f x x x x =-+.(1)当0x ≥时,求证:()0f x ≥;(2)证明:对一切正整数n ,都有2222111111sin1sin sin sin sin 23422(1)n n +++++>-+ .16.(2023春·重庆沙坪坝·高三重庆八中校考阶段练习)已知函数21()ln 2f x x kx x =-+(1)讨论函数()f x 的单调性;(2)若()f x 有两个极值点12,x x ,证明:212()()22k f x f x -<-17.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()(0,1)x f x a a a =>≠在点()()11,A x f x 处的切线为1l :11y k x b =+,函数()log (0,1)a g x x a a =>≠在点()()22,B x g x 处的切线为2l :22y k x b =+.(1)若1l ,2l 均过原点,求这两条切线斜率之间的等量关系.(2)当e a =时,若12l l ∥,此时12b b -的最大值记为m ,证明:53ln 22m -<<.18.(2023·辽宁·校联考模拟预测)已知函数()e 3x f x x =+.(1)求()f x 在()3,-+∞上的极值;(2)若()()213,,32x ax x f x ∀∈-+∞≤-,求a 的最小值.19.(2023秋·江苏扬州·高三校考期末)已知函数()e 1ln x k f x x x+=+,其中0k ≥.(1)求函数()f x 的最小值;(2)证明:()11ln *,221n n n n ++>-∈≥+N .20.(2023·辽宁沈阳·统考一模)已知()()()2212ln 212f x x x x a x a x ⎛⎫=-+-+- ⎪⎝⎭,0a >.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的值.21.(2023·辽宁抚顺·统考模拟预测)已知函数2()()2ln f x x a x =++.(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点1x ,2x ,且12x x <,求证:()122x f x x <<.22.(2023秋·河北唐山·高三唐山市丰南区第一中学校考期末)已知函数()()2ln 0f x x x a x a =-->.(1)求()f x 的单调区间;(2)①若()0f x ≥,求实数a 的值;②设*n ∈N ,求证:()2111111ln 124n n n ⎛⎫⎛⎫++++++>+ ⎪⎝⎭⎝⎭ .23.(2023秋·河北衡水·高三河北衡水中学校考期末)已知函数()11e ln -=-+kx f x x kx x.(1)求证:()0f x ≥;(2)若()0,x ∀∈+∞,都()211e ≥+f x ,求k 满足的取值范围.24.(2023春·河北保定·高三校考阶段练习)已知函数()2ln f x ax x =-.(1)讨论()f x 的单调性;(2)设函数()2g x x =-,若对于任意31,e x ⎡⎤∈⎣⎦,都有()()f x g x ≥,求a 的取值范围.25.(2023秋·福建厦门·高三厦门外国语学校校考期末)已知函数()()2ex f x x x b =--(1)讨论函数()f x 的单调性(2)若()f x 有两个极值点1212,()x x x x >,且()()213,ef x f x ≥,求b 的取值范围26.(2023·山东枣庄·统考二模)已知函数()e sin x f x x x =-.(1)当π2x ≤时,求证:()0f x ≥;(2)当0x >时,函数()f x 的零点从小到大依次排列,记为{}()*n x n ∈N 证明:(i )1sin sin n n x x +>;(ii )212π2πn n x n x -+<<.27.(2023秋·湖北十堰·高三统考阶段练习)已知函数()()21e x f x x m x nx m=--+,且曲线()y f x =在0x =处的切线为=2y -.(1)求m ,n 的值和()f x 的单调区间;(2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>.28.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)已知函数()()ln 3(R)f x x a x x a a =--+-∈.(1)若0a =,求()f x 的极小值.(2)讨论函数()f x '的单调性;(3)当2a =时,证明:()f x 有且只有2个零点.29.(2023秋·湖南长沙·高三长沙一中校考阶段练习)已知函数()()e R x f x ax a =-∈,()πe cos 2x g x x =+.(1)若()0f x ≥,求a 的取值范围;(2)求函数()g x 在()0,∞+上的单调性;(3)求函数()()21e sinπ1x h x g x x -=--⎡⎤⎣⎦在()0,∞+上的零点个数.30.(2023·江苏泰州·泰州中学校考一模)已知函数e 1()e 1x x f x -=+(e 为自然对数的底数).(1)若不等式e 1()e 1f x ->+恒成立,求实数x 的取值范围;(2)若不等式1()ln 23f x ax a <+-在(ln 2,)x ∈+∞上恒成立,求实数a 的取值范围.。
专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。
2013-2022十年全国高考数学真题分类汇编专题06 数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析:; (2)78-.解析:(1)解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022年全国甲卷理科·第17题2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析; (2)9.解析:(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国II 卷·第17题3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析解析:(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111nn n an a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国I 卷·第17题4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解析:(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考全国Ⅱ卷·第17题5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考Ⅰ卷·第17题6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2nn a =;(2)100480S =.解析:(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2nn a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15 ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31 ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63 ,则3233635b b b ==== ,即有52个5;6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100 ,则64651006b b b ==== ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年新高考I 卷(山东卷)·第18题7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--解析:(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020新高考II 卷(海南卷)·第18题的8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.解析:(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以12112222121n b b b b b +⋅=--,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S nn n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.【题目栏目】数列\等差、等比数列的综合应用【题目来源】2021年高考全国乙卷理科·第19题9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析解析:选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年高考全国甲卷理科·第18题10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++--- 1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第17题11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.解析:(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;的(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第17题12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.【答案】()1见解析;()21122n n a n =+-,1122n n b n =-+.【官方解析】()1由题设得114()2()n n n n a b b +++=+,即111()2n n n n a b a b +++=+.又因为111a b +=,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为111a b -=,所以{}n n a b -是首项为1,公差为2的等差数列.()2由()1知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【分析】()1可通过题意中的1434n n n a b a +=-+以及1434n n n b a b +=--对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;()2可通过()1中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【解析】()1由题意可知,,,,所以,即111()2n n n n a b a b +++=+,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为等差数列,.()2由()1可知,112n n n a b -+=,,所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【点评】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第19题13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =【答案】【官方解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=由已知得424q q =,解得0q =(舍去),2q =-或2q =故()12n n a -=-或12n n a -=(2)若()12n n a -=-,则()123mm S --=,由63m S =,得()2188m-=-,此方和没有正整数解若12n n a -=,则21m m S =-,由63m S =,得264m =,解得6m =综上,6m =.1434n n n a a b +-=+1434n n n b b a +-=-111a b +=111a b -=1144323442n n n n n n n n a b a b b a a b ++=+=--+++-{}n n a b +112(112n n n a b -+=()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-112n n n n a b a b ++=-+-{}n n a b -12的21n n a b n -=-21n n a b n -=-【民间解析】(1)设等比数列{}n a 的公比为q ,由11a =,534a a =可得42141q q ⨯=⨯⨯,所以24q =所以2q =±当2q =时,1112n n n a a q --==;当2q =-时,()1112n n n a a q --==-(2)由(1)可知2q =±当2q =时,由()1163631m m a q S q-=⇒=-即126312m-=-,即62642m ==,所以6m =;当2q =-时,由()1163631m m a q S q-=⇒=-即()126312m--=+,即()2188m-=-,无解综上可知6m =.【题目栏目】数列\等比数列\等比数列的综合应用【题目来源】2018年高考数学课标Ⅲ卷(理)·第17题14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】解析:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =得2d =,所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2018年高考数学课标Ⅱ卷(理)·第17题15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.【答案】(Ⅰ)11(11n n a λλλ-=--;(Ⅱ)1λ=-.【解析】(Ⅰ)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠.由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即1(1)n n a a λλ+-=.由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是11()11n n a λλλ-=--.(Ⅱ)由(Ⅰ)得1()1n n S λλ=--,由53132S =得5311(132λλ-=-,即51()132λλ=-,解得1λ=-.【题目栏目】数列\等比数列\等比数列的前n 项和【题目来源】2016高考数学课标Ⅲ卷理科·第17题16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.【答案】(1)[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==;(2)1893.【解析】(1)设{}n a 的公差为d ,据已知有72128d +=,解得1d =.所以数列{}n a 的通项公式为n a n =.[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==.(2)因为0,110,1,10100,2,1001000,3,1000,n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893⨯+⨯+⨯=.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2016高考数学课标Ⅱ卷理科·第17题17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和【答案】(Ⅰ)21n +(Ⅱ)11646n -+分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111((21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[((()]235572123n n -+-++-++ =11646n -+.考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法【题目栏目】数列\数列的求和\裂项相消法求和问题【题目来源】2015高考数学新课标1理科·第17题18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:12111na a a ++<…+【答案】解析:(Ⅰ)由131n n a a +=+,得1113(22n n a a ++=+,且11322a +=所以{}12n a +是首相为32,公比为3的等比数列。
高考数学必考点专项第6练函数与方程习题精选一、单选题1. 函数2()=2+log ||x f x x 的零点个数为( ) A. 0 B. 1 C. 2 D. 32. 已知函数若()g x 存在2个零点,则a的取值范围是( )A. [1,)-+∞B. [0,)+∞C. [1,0)-D. [1,)+∞3. 若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A. b e a <B. a e b <C. 0b a e <<D. 0a b e <<4. 已知()f x 是定义在R 上的奇函数,且满足,当时,,则函数在区间上所有零点个数为( )A. 0B. 2C. 4D. 65. 已知函数2()()x f x e ax x R =-∈有三个不同的零点,则实数a 的取值范围是( )A.B.C.D.6. 设a ,b R ∈,函数若函数()y f x ax b =--恰有3个零点,则( )[6,6]-A. 1a <-,0b <B. 1a <-,0b >C. 1a >-,0b <D. 1a >-,0b > 7. 已知函数的零点为,函数()f x 的最小值为0y ,且则函数的零点个数是( )A. 3B. 4C. 3或4D. 2或38. 已知函数,若函数()()g x x f x a =⋅-的零点个数恰为2个,则( )A.2837a <<或1a =- B. 7382a <<C.7382a <<或1a =- D. 7382a <<或54a =-9. 已知函数2,0()ln ,0kx x f x x x +⎧=⎨->⎩,则下列关于[()]2y f f x =-的零点个数判别正确的是( )A. 当0k =时,有无数个零点B. 当0k <时,有3个零点C. 当0k >时,有3个零点D. 无论k 取何值,都有4个零点二、多选题10. 若关于x 的方程23--=02x x k 在(1,1)-上有实根,则( )A. k 的最大值为52B. k 的最小值为916-C. 95[-,)162k ∈D. 95(,]162k ∈-11. 已知函数,().g x kx =若方程()()f x g x =有实根,则实数k的取值可以是( )012[,),y x x ∈A.12B. 1-C. 1D. (2,+)∞上的任意一个数12. 已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A. 当121122x x -<<<时,恒有12()()f x f x >B. 若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17[,]26C. 不存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D. 若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-13. 已知函数,若方程()0f x a -=有两个不相等的实根,则实数a 的取值范围可以是( )A.B.C.D.14. 已知函数,则方程22()2()10f x f x a -+-=的根的个数可能为( )A. 2B. 6C. 5D. 4三、填空题15. 用二分法求函数()=34x f x x --的一个零点,其参考数据如下:(2,)+∞根据此数据,可得方程34=0x --的一个近似解(精确度0.01)为__________.16. 方程103x e x =-的解(,1),x k k k Z ∈+∈,则k =__________. 17. 已知()|lg |2f x x kx =--,给出下列四个结论:(1)若0k =,则()f x 有两个零点; (2)0k ∃<,使得()f x 有一个零点;(3)0k ∃<,使得()f x 有三个零点;(4)0k ∃>,使得()f x 有三个零点;以上正确结论的序号是__________. 四、解答题18. 已知二次函数2()2(,).f x x bx c b c R =++∈(1)若函数()y f x =的零点为1-和1,求实数b ,c 的值;(2)若()f x 满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--,(0,1)内,求实数b 的取值范围.19. 已知函数2()22(0)f x ax ax b a=-++>在区间[2,0]-上有最小值1,最大值9.(1)求a b+的值;(2)设()()f xg xx=,若不等式在区间[2,4]上恒成立,求实数k的取值范围;(3)设,若函数()F x有三个零点,求实数λ的取值范围.答案和解析1.【答案】C .【解答】解:函数2()2log ||xf x x =+的零点个数,即为函数2xy =-的图象和函数2log ||y x =的图象的交点个数,作出函数的图象如下:数形结合可得,函数2xy =-的图象和函数2log ||y x =的图象的交点个数为2. 故选.C2.【答案】A解:函数()()g x f x x a =++存在2个零点, 即关于x 的方程()f x x a =--有2个不同的实根, 即函数()f x 的图象与直线y x a =--有2个交点. 作出直线y x a =--与函数()f x 的图象,如图所示,由图可知,1a -,解得1a -, 故选.A3.【答案】D解:函数xy e =是增函数,0xy e '=>恒成立, 函数的图象如图,0y >,即取得坐标在x 轴上方,如果(,)a b 在x 轴下方,连线的斜率小于0,不成立.点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线;(,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0.a b e <<故选:.D4.【答案】D解:由,得,故,故函数是周期为4的周期函数.又因为()f x 是定义在R 上的奇函数,所以,所以,故1x =是函数()f x 的对称轴.当时,,由此画出()f x 的大致图象如下图所示,令()()10g x xf x =-=,注意到(0)0g ≠,故上述方程可化为,画出1y x=的图象, 由图可知与1y x=图象都关于点(0,0)对称,它们两个函数图象的6个交点A 与F ,B 与E ,C 与D , 所以函数在区间[6,6]-上所有零点个数为6.故选.D5.【答案】C解:0x =时,(0)10f =≠,令2()0xf x e ax =-=,得2xe a x=,令2()x e g x x =,则问题转化为y a =与2()xe g x x=有三个交点,3(2)()xx e g x x -'=,令()0g x '=,解得2x =,()f x∴当0x <或2x >时,()0g x '>,()g x 在(,0)-∞,(2,)+∞单调递增,当02x <<时,()0g x '<,()g x 在(0,2)单调递减,()g x 在2x =处取极小值,2(2)4e g =,作出()g x 的图象如下:要使直线y a =与曲线2()x e g x x =有三个交点,则24e a >,故实数a 的取值范围是2e (,).4+∞故选.C6.【答案】C解:当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,()y f x ax b =--最多一个零点;当0x 时,3211()(1)32y f x ax b x a x ax ax b =--=-++-- 3211(1)32x a x b =-+-, 2(1)y x a x '=-+,当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b=--最多一个零点,不合题意; 当10a +>,即1a >-时,令0y '>得[1,),x a ∈++∞函数递增,令0y '<得[0,1),x a ∈+函数递减,函数最多有2个零点; 根据题意函数()y f x ax b =--恰有3个零点,所以函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如右图:01ba∴<-且,解得0b <,10a ->,31(1)6b a >-+,31(1)06a b ∴-+<<,11a -<<,故选:.C7.【答案】D解:如图所示,函数2()(0)f x ax bx c a =++>的零点为1x ,212()x x x <,令2()0f x ax bx c =++=, 240.b ac ∴∆=->由2(())()()0f f x af x bf x c =++=,0∆>,1()f x x ∴=或2().f x x =函数()f x 的最小值为0y ,且012[,),y x x ∈画出直线2y x =,1.y x =则直线2.y x =与()y f x =必有两个交点,此时2().f x x =有2个实数根,即函数(())y f f x =有两个零点.直线1y x =与()y f x =可能有一个交点或无交点,此时1()f x x =有一个实数根2b x a=-或无实数根. 综上可知:函数(())y f f x =的零点有2个或3个.故选.D8.【答案】D解:如图,可得()f x 的图象.令()0g x =,当0x =时,不符合题意;当0x ≠时,令()0g x =,得()a f x x =, ()g x 零点个数为2个,则函数()f x 与a y x =有两个交点. 易知0a =不符合题意.若0a >,则满足,可得73;82a << 若0a <,因左支已交于一点,则右支必然只能交于一点,故,此时无解;或,解得54a =- 综上,a 的取值范围内为7382a <<或5.4a =- 故选.D9.【答案】A解:设()f x t =,对于A ,当0k =时,函数()f x 对应的图象如下图:当0t 时,由()2f t =得22=此时方程恒成立了,即[()]2y f f x =-有无数个零点,故A 正确,D 错误.对于B ,当0k <时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有一个解,由()0t f x ==,此时x 有一个解,综上[()]2y f f x =-的零点个数为2个,故B 错误, C .当0k >时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有2个解,由()0t f x ==,此时x 有2个解,综上[()]2y f f x =-的零点个数为4个,故C 错误,故选.A10.【答案】BC 解:22339()2416k x x x =-=--,(1,1)x ∈-, 函数239()416y x =--的图象开口向上,对称轴为34x =, 当34x =时,min 916y =-,当1x =-时,max 52y =, (1,1)x ∈-,95[,).162k ∴∈- 故选.BC11.【答案】ACD解:由题意,可得函数()f x 的图象和函数()g x 的图象有交点,如图所示:(2,1)A ,12OA k =, ∴函数()f x 的图象和函数()g x 的图象有交点,数形结合可得12k或1k <-, 故选.ACD12.【答案】BC解:根据定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩, 如图所示:对于A :当121122x x -<<<时,根据函数的图象12()()f x f x >不一定成立,故A 错误; 对于B :当(0,]x m ∈时,要使()f x 的最小值为34,令13214x =-,解得76x =,故m 的取值范围为17[,]26,故B 正确;对于C :令()f x kx =,故21x x kx -+=,整理得2(1)10x k x -++=,由于2(1)40k =+->,解得1k >,或3(k <-舍)若0k <,则当(0,1]x ∈时,0()()0y kx f x F x =<<⇒>,故3k <-舍去.又当1k >时,设1x 是方程()0F x =的较大根11x =>= 故1k >也不合题意.考虑y kx =与21y x x =-+有一个交点与121y x =-也有一个交点的情况, 因为y kx =与21y x x =-+有一个交点,故22(1)4230k k k ∆=+-=+-=,解得1k =或3(k =-舍)又当(0,)x ∈+∞时,y x =与121y x =-只有一个交点(1,1),与y x =和21y x x =-+的交点重合综上所述不存在实数k ,使得()F x 有5个不相等的零点, C 正确;对于D :3()04f x -=,解得112x =,276x =,所以1253x x +=, 令53x =-,则553()()337f f -=-=- 由于当23133[1,0),()()4247x f x x ∈-=---<-<-故37a =-也满足题意,D 不正确。
[练案25]第六讲 正弦定理、余弦定理A 组基础巩固一、单择题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( C ) A .π6B .π3C .2π3D .5π6[解析] 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,所以由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.故选C.2.已知△ABC 中,A =π6,B =π4,a =1,则b 等于( D )A .2B .1C . 3D . 2[解析] 由正弦定理a sin A =bsin B,得1sin π6=b sinπ4,所以112=b 22,所以b = 2. 3.已知△ABC 中,A ︰B ︰C =1︰1︰4,则a ︰b ︰c =( A ) A .1︰1︰ 3 B .2︰2︰ 3 C .1︰1︰2D .1︰1︰4[解析] △ABC 中,A ︰B ︰C =1︰1︰4,所以A =π6,B =π6,C =23π,a ︰b ︰c =sin A︰sin B ︰sin C =12︰12︰32=1︰1︰ 3.4.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( C )A .π2B .π3C .π4D .π6[解析] 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C ,由余弦定理a 2+b 2-c 2=2ab cos C ,所以sin C =cos C .因为C ∈(0,π),所以C =π4.故选C.5.(2020·某某武邑中学调研)黑板上有一道有解的解三角形的习题,一位同学不小心把其中一部分擦去了,现在只能看到:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a =2,…,解得b =6,根据以上信息,你认为下面哪个选项可以作为这个习题的其余已知条件( B )A .A =30°,B =45° B .C =75°,A =45° C .B =60°,c =3D .c =1,cos C =13[解析] 由C =75°,A =45°可知B =60°,又asin A =b sin B ,∴b =a sin B sin A =2sin 60°sin 45°=322=6,符合题意,故选B.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状是( C )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] ∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3.∴△ABC 是等边三角形,故选C.二、多选题7.在△ABC 中,a =4,b =8,A =30°,则此三角形的边角情况可能是( ACD ) A .B =90° B .C =120° C .c =4 3 D .C =60°[解析] ∵asin A =b sin B ,∴sin B =b sin A a=1,∴B =90°,C =60°,c =4 3.故选A 、C 、D.8.(2020·某某某某期中)下列关于正弦定理的叙述中正确的是( ACD )A .在△ABC 中,a ︰b ︰c =sin A ︰sinB ︰sinC B .在△ABC 中,若sin 2A =sin 2B ,则A =BC .在△ABC 中,若sin A >sin B ,则A >B ;若A >B ,则sin A >sin BD .在△ABC 中,a sin A =b +csin B +sin C[解析] 对于A ,在△ABC 中,由正弦定理可得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以a ︰b ︰c =sin A ︰sin B ︰sin C ,故A 正确;对于B ,若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,可得A =B 或A +B =π2,故B 错误;对于C ,若sin A >sin B ,根据正弦定理a=2R sin A ,b =2R sin B ,得a >b ,再根据大边对大角可得A >B .若A >B ,则a >b ,由正弦定理a =2R sin A ,b =2R sin B ,得sin A >sin B ,故C 正确;对于D ,由a sin A =b sin B =csin C,再根据比例式的性质可知D 正确.故选A 、C 、D.三、填空题9.(2015·某某卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,sin B =12,C =π6,则b =__1__. [解析] ∵sin B =12且B ∈(0,π),∴B =π6或5π6,又C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由a sin A =b sin B ,得3sin 2π3=bsinπ6,∴b =1.10.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +c cos B =2b ,则ab=__2__ [解析] 解法一:由正弦定理sin B cos C +sin C cos B =2sin B ,即sin (B +C )=sin A =2sin B ,有a b =sin Asin B=2.解法二:由余弦定理得b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2b ,化简得a =2b ,因此,ab=2.解法三:由三角形射影定理,知b cos C +c cos B =a ,所以a =2b ,所以ab=2.故填2. 11.(2017·某某节选)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是152.[解析] 取BC 中点E ,由题意,AE ⊥BC .△ABE 中,cos ∠ABC =BE AB =14,所以cos ∠DBC =-14,sin ∠DBC =1-116=154,所以S △BCD =12×BD ×BC ×sin ∠DBC =152.故填152. 12.(2019·某某)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =1225,cos ∠ABD =7210.[解析] 在Rt △ABC 中,易得AC =5,sin C =AB AC =45.在△BCD 中,由正弦定理得BD =BCsin ∠BDC×sin ∠BCD =322×45=1225,sin ∠DBC =sin [π-(∠BCD +∠BDC )]=sin (∠BCD +∠BDC )=sin ∠BCD cos ∠BDC +cos ∠BCD ·sin ∠BDC =45×22+35×22=7210.又∠ABD +∠DBC =π2,所以cos ∠ABD =sin ∠DBC =7210. 三、解答题13.(2019·)在△ABC 中,a =3,b -c =2,cos B =-12.(1)求b ,c 的值; (2)求sin (B +C )的值.[解析] (1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=32+c 2-2×3×c ×(-12).因为b =c +2,所以(c +2)2=32+c 2-2×3×c ×(-12).解得c =5. 所以b =7.(2)由cos B =-12得sin B =32.由正弦定理得sin A =a b sin B =3314.在△ABC 中,B +C =π-A . 所以sin (B +C )=sin A =3314.14.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求sin C .[解析] 由已知得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin (120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos (C +60°)=-22. 由于0°<C <120°,所以sin (C +60°)=22,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60° =6+24. B 组能力提升1.(2020·某某省级示X 性高中联合体联考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3sin A =2sin C ,b =5,cos C =-13,则a =(C)A .3B .4C .6D .8[解析] 由3sin A =2sin C 及正弦定理,得3a =2c ,设a =2k (k >0),则c =3k .由余弦定理,得cos C =a 2+b 2-c 22ab =25-5k 220k =-13,解得k =3或k =-53(舍去),从而a =6.故选C.2.(2020·某某某某七中一诊)设a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,已知(b +c )sin (A +C )=(a +c )·(sin A -sin C ),则A =(C)A .30°B .60°C .120°D .150°[解析] 依题意,知(b +c )sin B =(a +c )(sin A -sin C ),由正弦定理,得(b +c )b =(a +c )·(a -c ),即b 2+c 2-a 2=-bc .由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12,所以A =120°.故选C.3.(2020·某某四校摸底调研)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin Asin B +sin C +ba +c=1,则C =(B)A .π6B .π3C .2π3D .5π6[解析] 由正弦定理及sin A sin B +sin C +b a +c =1,得a b +c +b a +c=1,整理可得a 2+b 2-c2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.故选B.4.(2020·某某某某部分重点中学第一次联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a cos B =c ,sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为(B)A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形[解析] 由2a cos B =c 及正弦定理,得2sin A cos B =sin C .在△ABC 中,因为sin C=sin (A +B ),所以2sin A cos B =sin A cos B +cos A sin B ,整理得sin (A -B )=0,又A ,B ∈(0,π),所以A =B .因为sin A sin B (2-cosC )=sin 2C 2+12,所以sin A sin B [2-(1-2sin 2C 2)]=sin 2C 2+12,即sin A sin B (1+2sin 2C 2)=12(1+2sin 2C 2),所以sin A sin B =12.又A=B ,且A ,B ∈(0,π),所以A =B =π4,所以C =π-A -B =π2,所以△ABC 是等腰直角三角形.故选B.5.(2019·某某)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B 2b ,求sin (B +π2)的值.[解析] (1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac,得23=3c 2+c 2-222×3c ×c ,即c 2=13.所以c =33. (2)因为sin A a =cos B2b,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ), 故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255. 因此sin (B +π2)=cos B =255.。
专题五 数列第25练 基本量——破解等差、等比数列的法宝教学目标:1.数列在中学教材中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要衔接点.2.而作为数列中两个最基本的数列——等差数列和等比数列又有着很重要的地位,本节从两个数列的基本量来研究这两个数列. 一、“导”(3分钟)知识梳理二、“思”(15分钟)题型一 等差、等比数列的基本运算例1 已知等差数列{a n }的前5项和为105,且a 10=2a 5.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .题型二 等差、等比数列的性质及应用例2 (1)已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( )A .25B .50C .100D .不存在(2)在等差数列{a n }中,a 1=-2 013,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 013的值为( ) A .-2 011 B .-2 012 C .-2 010 D .-2 013题型三 等差、等比数列的综合应用例3 已知数列{a n }的前n 项和S n 满足条件2S n =3(a n -1),其中n ∈N *.(1)证明:数列{a n }为等比数列;(2)设数列{b n }满足b n =log 3a n ,若c n =a n b n ,求数列{c n }的前n 项和.三、“议论”(8分钟)四、“展”(8分钟)五、五、“评”(6分钟)六、“检”(5分钟)1.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .1102.(2014·课标全国Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n 等于( )A .n (n +1)B .n (n -1) C.n (n +1)2D.n (n -1)2。
高中数学学习材料金戈铁骑整理制作第25练空间几何体的三视图及表面积与体积[题型分析·高考展望]三视图作为新课标新增加的内容,是高考的热点和重点:其考查形式多种多样,选择题、填空题和综合解答题都有出现,而这些题目以选择题居多;立体几何中的计算问题考查的知识,涉及到三视图、空间几何体的表面积和体积以及综合解答和证明.专题6立体几何与空间向量常考题型精析题型一三视图识图例1(1)(2014·湖北)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②(2)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧(左)视图为()点评画法规则:(1)由几何体的轮廓线定形状,看到的画成实线,看不到的画成虚线. (2)正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左)一样高.变式训练1(2014·江西)一几何体的直观图如图,下列给出的四个俯视图中正确的是()题型二空间几何体的表面积和体积例2(1)(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+ 3B.2+ 3C.1+2 2D.2 2(2)(2015·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.点评利用三视图求几何体的表面积、体积,需先由三视图还原几何体,三个图形结合得出几何体的大体形状,由实虚线得出局部位置的形状,再由几何体的面积体积公式求解.变式训练2(2014·陕西)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.高考题型精练1.(2015·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A.1B.2C.4D.82.(2015·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2π D.23+2π 3.(2014·浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm 2B.129 cm 2C.132 cm 2D.138 cm 24.如图是某简单组合体的三视图,则该组合体的体积为( )A.363(π+2)B.363(π+2)C.1083πD.108(3π+2)5.(2014·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.726.两球O 1和O 2在棱长为1的正方体ABCD -A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和球O 2的表面积之和的最小值为( ) A.(6-33)π B.(8-43)π C.(6+33)πD.(8+43)π7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S —ABC 的体积为( ) A.3 3 B.2 3 C. 3D.18.(2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3D.2π9.(2014·北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.10.一个几何体的三视图如图所示,其中正(主)视图是等边三角形,俯视图是半圆.现有一只蚂蚁从点A 出发沿该几何体的侧面环绕一周回到A 点,则蚂蚁所经过路程的最小值为________.11.(2015·西安模拟)如图所示是一几何体的直观图及正(主)视图、侧(左)视图、俯视图.(1)若F 为PD 的中点,证明:AF ⊥平面PCD ; (2)证明:BD ∥平面PEC .12.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC 沿AC折起,使平面ADC⊥平面ABC,得到几何体D—ABC,如图2所示.(1)求证:BC⊥平面ACD;(2)求几何体D—ABC的体积.答案精析专题6 立体几何与空间向量第25练 空间几何体的三视图及表面积与体积常考题型精析 例1 (1)D (2)B解析 (1)由三视图可知,该几何体的正视图是一个直角三角形(三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一顶点与另一直角边中点的连线),故正视图是④;俯视图即在底面的射影是一个斜三角形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.(2)还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.变式训练1 B [该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.] 例2 (1)B (2)83π解析 (1)由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.(2)由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,所以该几何体的体积V =2×13π×12×1+π×12×2=83πm 3.变式训练2 解 由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明 ∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH , ∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形,又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG . ∴四边形EFGH 是矩形. 高考题型精练1.B [由正(主)视图与俯视图想象出其直观图,然后进行运算求解.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π, ∴r 2=4,r =2,故选B.]2.A [这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝⎛⎭⎫12×1×2×1=π+13,选A.]3.D [该几何体如图所示,长方体的长、宽、高分别为6 cm,4 cm ,3 cm ,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm ,5 cm ,所以表面积S =[2×(4×6+4×3)+3×6+3×3]+⎝⎛⎭⎫5×3+4×3+2×12×4×3=99+39=138(cm 2).]4.B [由俯视图可知该几何体的底面由三角形和半圆两部分构成,结合正(主)视图和侧(左)视图可知该几何体是由半个圆锥与一个三棱锥组合而成的,并且圆锥的轴截面与三棱锥的一个侧面重合,两个锥体的高相等.由三视图中的数据,可得该圆锥的底面半径r =6,三棱锥的底面是一个底边长为12,高为6的等腰三角形,两个锥体的高h =122-62=63, 故半圆锥的体积V 1=12×13π×62×63=363π.三棱锥的底面积S =12×12×6=36,三棱锥的体积V 2=13Sh =13×36×63=72 3.故该几何体的体积V =V 1+V 2=363π+72 3 =363(π+2).故选B.]5.B [由俯视图可以判断该几何体的底面为直角三角形,由正(主)视图和侧(左)视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,直角梯形ABP A 1的面积为12×(2+5)×4=14,计算可得A 1P =5.直角梯形BCC 1P 的面积为12×(2+5)×5=352.因为A 1C 1⊥平面A 1ABP ,A 1P⊂平面A 1ABP ,所以A 1C 1⊥A 1P ,故Rt △A 1PC 1的面积为12×5×3=152.又Rt △ABC 的面积为12×4×3=6,矩形ACC 1A 1的面积为5×3=15,故几何体ABC -A 1PC 1的表面积为14+352+152+6+15=60.]6.A [设球O 1,O 2的半径分别为r 1,r 2, 由题意知O 1A +O 1O 2+O 2C 1=3,而O 1A =3r 1,O 1O 2=r 1+r 2,O 2C 1=3r 2, ∵3r 1+r 1+r 2+3r 2= 3.∴r 1+r 2=3-32,从而S 1+S 2=4πr 21+4πr 22=4π(r 21+r 22)≥4π·(r 1+r 2)22=(6-33)π.]7.C [如图,过A 作AD 垂直SC 于D ,连接BD .由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边, 所以△SAC ≌△SBC . 由于AD ⊥SC ,所以BD ⊥SC . 由此得SC ⊥平面ABD .所以V S —ABC =V S —ABD +V C —ABD =13S △ABD ·SC .由于在Rt △SAC 中,∠ASC =30°,SC =4, 所以AC =2,SA =23,由于AD =SA ·CA SC = 3.同理在Rt △BSC 中也有BD =SB ·CBSC = 3.又AB =3,所以△ABD 为正三角形,所以V S —ABC =13S △ABD ·SC =13×12×(3)2·sin 60°×4=3,所以选C.]8.C [过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π·12·2-13π·12·1=5π3,故选C.] 9.2 2解析 根据三视图还原几何体,得如图所示的三棱锥P -ABC .由三视图的形状特征及数据,可推知P A ⊥平面ABC ,且P A =2.底面为等腰三角形,AB =BC ,设D 为AC 的中点,AC =2,则AD =DC =1,且BD =1,易得AB =BC =2,所以最长的棱为PC ,PC =P A 2+AC 2=2 2. 10.2+ 6解析 如图所示,侧面展开图为一个四分之一圆与一个等边三角形,从点A出发沿该几何体的侧面环绕一周回到A 点,蚂蚁所经过路程的最小值为|AA 1|=22+22-2×2×2cos 150°=8+43=2+ 6.11.证明 (1)由几何体的三视图,可知底面ABCD 是边长为4的正方形,P A ⊥平面ABCD ,P A ∥EB ,P A =2EB =4.因为P A =AD ,F 为PD 的中点,所以PD ⊥AF .又CD ⊥DA ,CD ⊥P A ,P A ∩DA =A ,所以CD ⊥平面ADP .所以CD ⊥AF .又CD ∩DP =D ,所以AF ⊥平面PCD .(2)取PC 的中点M ,连接AC ,EM ,AC 与BD 的交点为N ,连接MN ,所以MN =12P A ,MN ∥P A . 所以MN =EB ,MN ∥EB .故四边形BEMN 为平行四边形.所以EM ∥BN .又EM ⊂平面PEC ,BN ⊄平面PEC ,所以BD ∥平面PEC .12.(1)证明 在图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC .又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知BC 为三棱锥B —ACD 的高, BC =22,S △ACD =2,∴V B —ACD =13S △ACD ·BC =13×2×22=423, 由等体积性可知,几何体D —ABC 的体积为423.。