人教B版高中数学选修(2-3)-2.1《离散型随机变量的分布列》教学教案1
- 格式:doc
- 大小:61.50 KB
- 文档页数:3
2. 1.2离散型随机变量的分布列(教学设计)教学目标: 知识与技能:会求出某些简单的离散型随机变量的概率分布。
过程与方法:通过教学渗透由特殊到一般的数学思想,发展学生的抽象、概括能力。
情感、态度与价值观:学会合作探讨,体验成功,提高学生学习数学的兴趣。
教学重点:离散型随机变量的分布列的概念 教学难点:求简单的离散型随机变量的分布列 教学过程: 一、复习引入:1随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若是随机变量,b a b a ,,+=ξη是常数,则也是随机变量 并且不改变其属性(离散型、连续型) 二、师生互动,新课讲解:1 分布列:设离散型随机变量ξ可能取得值为 1,2,…,3,…,ξ取每一个值i (i =1,2,…)的概率为()i i P x p ξ==,则称表1)(0≤≤A P 11nii p==∑⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ⎧⎨⎩1,针尖向上;X=0,针尖向下.p 1p -p ()0P q ξ==()p P ==1ξ10<<p 1=+q p ξ310C 3595k k C C-35953100(),0,1,2,3k kC C P X k k C -===ξξξξξξξξξξξ 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件 {X=}发生的概率为(),0,1,2,,k n k M N MnNC C P X k k m C --===,其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列(,,)N M n =10, n=5 .于是中奖的概率353454555103010103010103010555303030C C C C C C C C C ------++()i i P x p ξ==1)(0≤≤A P 11nii p==∑ 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品数,则事件 {X=}发生的概率为(),0,1,2,,k n k M N MnNC C P X k k m C --===,其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从参数为(,,)N M n 的超几何分布超几何分布五、分层作业: A 组:1、(课本P49习题 A 组 NO :4)2、(课本P49习题 A 组 NO :5)3、(课本P49习题 A 组 NO :6)4、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率. 解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n . ∴ 7474)1(===n n P ξ,717)0(===n n P ξ,7272)1(==-=n n P ξ. 所以从该盒中随机取出一球所得分数ξ的分布列为说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.B组:1、(课本P49习题B组NO:1)2、(课本P49习题B组NO:2)。
2.1 离散型随机变量及其分布列[教学目标]①理解随机变量和离散型随机变量的概念,明确试验中随机变量的取值及其意义;②理解离散型随机变量概率分布的概念和性质;理解二点分布及其特点;③会求简单的离散型随机变量的概率分布.[教学重点]理解离散型随机变量及其分布列[教学难点]求离散型随机变量的分布列课前预习1.随机变量:试验可能出现的结果可以用一个______来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个___________.随机变量常用大写字母____________表示.2.离散型随机变量:如果随机变量X 的所有可能的取值都能___________,那么称X 为离散型随机变量.3.离散型随机变量的分布列:假设离散型随机变量X 可能取的不同值为,,,,,,21n i x x x x ⋅⋅⋅⋅⋅⋅X 取每一个值),,2,1(n i x i ⋅⋅⋅=的概率i i p x X P ==)(,那么表称为离散型随机变量X 的概率分布,或称为离散型随机变量的分布列.离散型随机变量分布列的性质:__________________________________;__________________________________.5.二点分布:如果随机变量的分布列为其中p q p -=<<1,10,那么称离散型随机变量X 服从参数为p 的二点分布. 课上学习例1、写出随机变量的可能取值,并说明随机变量所表示的随机试验的结果:从一个装有编号为1号到10号的10个球的袋中,任取一个球,被取出的球的编号为X ;一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X ;投掷两枚骰子,所得点数之和为X ,所得点数之和是偶数Y .例2、掷一颗骰子,所指出的点数为随机变量X :求X 上网分布列;求“点数大于4〞的概率;求“点数不超过5〞的概率.例3、某同学向以下图所示的圆形靶投掷飞镖,飞镖落在靶外的概率为0.1,飞镖落在靶内的各个点是随机的.圆形靶中的三个圆是同心圆,半径分别为30cm,20cm,10cm,飞镖落在不同区域的环数如图中标示.设这位同学投掷一次得到的环数为随机变量X ,求X 的分布列.8 09 10三、课后练习1.连续抛掷两枚骰子,第一枚骰子和第二枚骰子点数之差是一个随机变量X ,那么“X >4〞表示的试验结果是 〔 〕.A 第一枚6点,第二枚2点 .B 第一枚5点,第二枚1点.C 第一枚1点,第二枚6点 .D 第一枚6点,第二枚1点假设离散型随机变量的分布列如下表所示,那么表中a 的值为〔 〕1.A 21.B 31.C 61.D3.随机变量X 的分布列为:,,2,1,21)(⋅⋅⋅===k k X P k 那么=≤<)42(X P 〔 〕163.A 41.B 161.C 165.D4.将一颗骰子掷两次,求两次掷出的最大点数X 的分布列.5.一个袋中有形状大小完全相同的3个白球和4个红球.从中任意摸出一球,用0表示摸出白球,用1表示摸出红球,即⎩⎨⎧=摸出红球,摸出白球,,1,0X ,求X 的分布列;从中任意摸出两个球,用“0=X〞表示两个球全是白球,用“1=X 〞表示两个球不全是白球,求X 的分布列.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以X 表示取出的3只球中的最小,写出随机变量X 的分布列.。
一般高中程准教科—数学修 2-3[人教版 B]2.1.2 失散型随机变量的散布列教课目:1、理解失散型随机量的散布列的意,会求某些的失散型随机量的散布列;2、掌握失散型随机量的散布列的两个基天性,并会用它来解决一些的.教课要点:1、理解失散型随机量的散布列的意,会求某些的失散型随机量的散布列;2、掌握失散型随机量的散布列的两个基天性,并会用它来解决一些的.教课程一、复引入:1.随机量:假如随机的果能够用一个量来表示,那么的量叫做随机量随机量常用希腊字母ξ、η等表示2.失散型随机量: 随机量只好取有限个数或可列无多个数称失散随机量,在高中段我只研究随机量取有限个数的情况 .二、解新:1.散布列 : 失散型随机量ξ可能获得x1,x2,⋯,x3,⋯,ξ 取每一个xi(i =1,2,⋯)的概率P(x i )p i,称表ξx1x2⋯x i⋯P12⋯i⋯P P P随机量ξ的概率散布,称ξ 的散布列2. 散布列的两个性:任何随机事件生的概率都足: 0 P( A) 1 ,而且不行能事件的概率 0,必定事件的概率1.由此你能够得出失散型随机量的散布列都拥有下边两个性:⑴P i≥0, i =1,2,⋯;⑵ P1+P2+⋯=1.于失散型随机量在某一范内取的概率等于它取个范内各个的概率的和即P(x k ) P(x k ) P(x k 1 )3.二点散布:假如随机量X 的散布列:X10P p q三、例子例 1.一盒中放有大小同样的色、色、黄色三种小球,已知球个数是球个数的两倍,黄球个数是球个数的一半.从盒中随机拿出一个球,若拿出球得 1 分,拿出黄球得 0 分,拿出球得- 1 分,写出从盒中拿出一球所得分数ξ的散布列.剖析:欲写出ξ的散布列,要先求出ξ的全部取值,以及ξ取每一值时的概率.解:设黄球的个数为n ,由题意知 绿球个数为 2n ,红球个数为 4n ,盒中的总数为7n .∴4n 4 0)n 1, P(2n 2 P( 1), P(7n71).7n 77n7所以从该盒中随机拿出一球所得分数ξ 的散布列为ξ1- 1P41 27 7 7说 明 : 在 写 出 ξ 的散布列后,要实时检查全部的概率之和能否为1.例 2. 某一射手射击所得的环数ξ 的散布列以下:ξ4 5 6 7 8 9 10P 0.020.040.060.090.280.290.22求此射手“射击一次命中环数≥7”的概率.剖析:“射击一次命中环数≥7”是指互斥事件“ ξ = 7 ”、“ ξ = 8”、“ ξ = 9 ”、“ξ =10 ”的和,依据互斥事件的概率加法公式,能够求得此射手“射击一次命中环数≥ 7”的概率.解:依据射手射击所得的环数ξ 的散布列,有P ξP ξP ξ=8) =0.28 , P ξ=10) = 0.22.( =7) = 0.09 , ( (=9) = 0.29 , ( 所求的概率为 P ( ξ≥ 7) = 0.09+0.28+0.29+0.22 = 0.88 .例 3.某厂生产电子元件, 其产品的次品率为5%.现从一批产品中随意地连续拿出2 件,写出此中次品数 ξ 的概率散布.解:依题意,随机变量 ξ ~ B (2 ,5%).所以,(ξ =0)=(95%) 2=0.9025 , (ξ=1)=1(5%)(95%)=0.095 ,P C 2P C 2 P22=0.0025 .(2 )= C 2 (5%)所以,次品数 ξ 的概率散布是ξ0 1 2 P0.90250.0950.0025讲堂小节: 本节课学习了失散型随机变量的散布列 讲堂练习: 第 51 页练习课后作业: 第 54 页习题 A 2。
人教版高中选修2-32.1离散型随机变量及其分布列课程设计一、前言本次课程设计主要围绕高中数学选修2中32.1章节——离散型随机变量及其分布列展开。
通过本次课程设计的学习,同学们将能够掌握离散型随机变量及其分布列的基本概念和计算方法,理解离散型随机变量及其分布列在实际问题中的应用。
二、学习目标1.掌握离散型随机变量的概念及其特点。
2.掌握离散型随机变量的分布列的计算方法。
3.运用离散型随机变量及其分布列解决实际问题。
三、预备知识在学习离散型随机变量及其分布列之前,需要了解以下相关的概念和计算方法:1.离散型随机变量的概念和性质;2.概率分布函数的概念和计算方法;3.期望值的概念和计算方法;4.方差的概念和计算方法。
四、课程内容1. 离散型随机变量的概念和特点(1)定义离散型随机变量是将可能取到的值排成一列,列中每个值都有一个非零概率与之对应的随机变量。
(2)特点离散型随机变量的取值只能是一个个离散的点,而不是连续的一段。
离散型随机变量的概率分布可以用分布列或分布律的形式表示。
2. 离散型随机变量的分布列的计算方法(1)定义设 X 是一个离散型随机变量,x1, x2, ……, xn 是 X 所有可能取到的值,P(X=xi) 表示 X 取值为 xi 的概率,则称P(X=xi) = pi为 X 的分布列。
(2)计算方法针对特定的问题,可以根据题目给出的概率分布函数,来计算离散型随机变量的分布列。
3. 运用离散型随机变量及其分布列解决实际问题通过练习相关的例题和习题,同学们可以熟练掌握离散型随机变量及其分布列在实际问题中的应用场景和求解方法。
五、作业内容1.认真阅读课程设计内容和相关参考书籍。
2.完成指定的练习和习题。
3.在学习本章后,同学们可以尝试选择特定问题,设计相关的概率模型和计算方法,并在课堂上讲解自己的思路和解法。
六、总结通过本次课程设计的学习,同学们将会掌握离散型随机变量及其分布列的基本概念和计算方法,理解离散型随机变量及其分布列在实际问题中的应用,同时培养自己的数学建模和解决实际问题的能力。
高三二轮复习概率、离散型随机变量及其分布列专题复习(人教A版)教学设计一、教学内容分析本课是复习人教A版选修2-3章的内容。
这节的内容是必修3的统计概率知识的延伸,也是学习统计学的理论基础,起到承上启下的作用。
离散型随机变量的分布列从整体研究随机现象,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每个值的概率大小,反映了随机变量的概率分布,揭示了离散型随机变量的统计规律,在考点中通常会与随机变量的数学期望和方差一起考。
从近几年的高考观察,这部分内容有加强命题的趋势,一般以实际情境为主,需要学生具备一定的建模能力,建立合适的分布列,通过均值和方差解释实际问题。
二、学情分析在前面的复习中,尤其是一轮复习,学生已经复习了一遍离散型随机变量的分布列的相关内容,复习了排列组合的相关内容,并且学习了几种常见的概率模型,以及二项分布等特色的分布。
有了这些知识及一些方法上的准备,但还不够系统化。
处于这一阶段复习的学生部分已经有很好的思维能力,但整体的基础比较薄弱,计算能力普遍较差,对数学图形,符号,文字三种言语的相互转化,以及处理抽象问题的能力还有待提高。
三、教学策略分析学生是教学的主体,本节课要给学生提供各种参与机会,通过投影个别提问等方式来检验学生的复习情况。
四、教学目标、重点、难点目标: 掌握离散型随机变量的分布列及其期望的求法重点: 求离散型随机变量的分布列难点:求分布列中各对应值的概率设计分析:作为复习课,对学生的要求是理解离散型随机变量的分布列的概念,会求其数学期望。
主要是要通过实际例题结合古典概型的概率,会分析随机变量的取值,包含的情况,得出概率,列出分布列,求出期望,这也是这一节的重点,这一节比较难的点是,求出各个值的概率,因为学生往往无法分析该怎么求概率,用哪种求法。
五、教学过程设计1、高考热点分析2、求随机变量的分布列一般可以分为4种类型(1)、茎叶图类型(2)、直方图类型(3)、表格类型(4)、函数类型3、引入练习某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4现从这10人中随机选出2人作为该组代表参加座谈会.1设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;2设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数112 34321C C C+=学期望.解:1由古典概型,PA =∴事件A 发生的概率为2随机变量X 的所有可能取值为0,1,2PX =0=PX =1=PX =2=∴随机变量X 的分布列为:EX =总结求随机变量分布列、及期望的一般步骤一、先确定随便变量的可能取值二、 分别写出各个取值对应的概率 三、列出表格形成分布列 四、根据期望公式求出期望这一题主要引起学生的回忆,从一个简单的分布列来引入,学生做的时候难点在随机变量的取值,概率。
离散型随机变量的分布列教学目标:1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题.教学重点:1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 教学过程一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数值则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个数值的情形.二、讲解新课:1. 分布列:设离散型随机变量ξ可能取得值为:x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ3.二点分布:如果随机变量X 的分布列为:三、例子例1.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n . ∴ 7474)1(===n n P ξ,717)0(===n n P ξ,7272)1(==-=n n P ξ. 所以从该盒中随机取出一球所得分数ξ的分布列为说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1. 例2.某一射手射击所得的环数ξ的分布列如下:求此射手“射击一次命中环数≥7”的概率.分析:“射击一次命中环数≥7”是指互斥事件“ξ=7”、“ξ=8”、“ξ=9”、“ξ=10”的和,根据互斥事件的概率加法公式,可以求得此射手“射击一次命中环数≥7”的概率.。
2.1 离散型随机变量及其分布列(第1课时)一、教学目标【核心素养】对离散型随机变量及其分布列概念的学习,初步形成从实际问题到数学问题的数学建模思想.【学习目标】1.了解随机变量的概念.2.理解离散型随机变量的概率分布列及其特征.3.学会解答一些简单分布列的运算.【学习重点】离散型随机变量分布列制表.【学习难点】1.正确选取离散型随机变量及概率的运算.2.掌握如何将实际问题划归为离散型随机变量的分布列方法.二、教学设计(一)课前设计1.预习任务任务1-阅读教材,了解离散型随机变量的的概念及性质.任务2-离散型随机变量分布列的性质及表格的制作.2.预习自测1.已知:①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X ;③某篮球下降过程中离地面的高度X ;④某立交桥经过的车辆数X .其中不是离散型随机变量的是( ) A.①中的X B.②中的X C.③中的X D.④中的X 解:C2.袋中有大小相同的5个小球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X 所有可能取值的个数是( ) A.5 B.9 C.10 D.25 解:B由于本试验属于有放回抽取,所以所有1,2,3,4,5肯能号码都可被抽取到.然后抽取的数字之和是相同值得时候只能看作1次取值.所以最后可能组合就有9组不重复可能取值.3.某一随机变量X 的概率分布列如下表,且2.12=+n m ,则2nm -的值为( )A.-0.2B.0.2C.0.1D.-0.1 解:B利用概率=∑=ni i p 11.(二)课堂设计问题探究一 、离散型随机变量的定义●活动一 感知随机变量引例:某一时间段内公交站等公交的乘客人数;某固定电话在某时间段内接到的电话数量;一批注入某种毒素的动物在确定时间段内死亡的数量;长途汽车在1000KM 的行驶路程中到达目的地所用的时间等等. 讨论:(1)变量:可变的量;在函数中常见;常用x,y,z 等字母表示一些不确定的数值关系.(2)随机性:偶然性的一种形式;是对某一事件发生的不确定性的描述. (3)离散性:数据的分散性,不具备连续的特征(如:连续型数据-10≤x ≤9;离散型数据:x =-10,-1,0,1,9). 引入(1)在随机试验的实际结果与数学之间,自然地或人为地建立起一种数学数字对应关系,使每一个可能的结果都对应着一个实数,那么随机试验的结果就可以用取值对应的任一个变量来表示,这个变量叫随机变量,随机变量常用X 、Y 、ξ、η等表示(区别于连续型函数)(x f ).(2)离散型随机变量:如果对于随机变量可能取的值有限多个或无限多个,但可以按一定次序一一列出,这样的随机变量叫做离散型随机变量(如:掷骰子点6出现的次数X ;抛硬币正面出现的次数N ;流水生产线上发生故障点的个数M ).注意:①并不是所有的随机变量都能一一列出.例如汽车的使用寿命;从发电站到用户家庭的线路故障点;一天中雷雨天气的发生时间等等.②相反的,如果随机变量可以取定区间内的任意一个数值,这样的变量称之为连续型随机变量.●活动二随机变量类型的判别、选取、取值实例感知,如何在实际情景中选取随机变量:例1.重庆至武汉的高铁路段设立有固定的100个安全检测点,请能否将此监测点看作随机变量?属于离散型或是连续型?如何选取随机变量?例2.三峡大坝水位检测站承担对长江沿岸(0,168m)水位任务检测工作.该水位站检测到的水位数据是否属于随机变量?是连续型或是离散型?例3.一个盒子里面装有5个红球4个黄球3个白球.一次实验中取出依次不放回取出3个球.根据题意如何选取随机变量.例4.在一次关于电视娱乐节目的调查中,对100个家庭进行了调查分析.发现有观看关于娱乐节目、生活节目、电视剧节目、电影节目.请对以上调查结果做出合理的分析,给出随机变量的的选取意见.随机变量从本质上讲就是以随机试验的每一个可能结果对应的某个函数的自变量.即随机变量的取值实质上是试验所对应的结果数,但这些数是预先知道的所有可能的值,而不知道具体是哪一个值,也就充分验证了实验结果具有随机性的特征.问题探究二、离散型随机变量的分布列及其性质●活动一列分布列表(1)分布列的定义表示概率在所有试验结果中的分布情况的列表.(2)分布列的表示①设定离散型随机变量X 可能的取值为nx x x ,,,21⋅⋅⋅.②求出X 取定每一个值i x (n i ,,3,2,1⋅⋅⋅=)的概率i i p x X P ==)(. ③列出概率分布表则该表格为离散型随机变量X 的概率分布列,简称X 的分布列. ●活动二 结合实例,认知分布列性质思考:分布列的概率问题是否与之前所学概率知识有相通之处?例1.已知随机变量X 的分布列为33)21()(i C i X P == (i =0,1,2,3)则==)2(X P ;详解:83)21()2(323===i C X P点拔:考察组合在概率中的基本算法. 例2.已知随机变量X 的分布列为则x = .详解:3.0)5.02.0(1)2(=+-==X P . 点拔:概率的性质.通过以上案例的分析,我们不难发现: 离散型随机变量分布列的性质由概率的性质可知,任一离散型随机变量的分布列都具有下面两个性质: ①0(1,2,3,,)i p i n ≥=L , ②11ni i p ==∑点拔:1.理解分布列的两大性质,熟练掌握概率的算法及运用它来解决一些实际问题.2.重点理解性质②,对于求取分布列中的某些参数具有重要指导意义. 三、课堂总结 【知识梳理】1.连续型随机变量、离散型随机变量的概念与区别.2.如何在实际问题中筛选出随机变量并建立变量关系.3.离散型随机变量分布列的概率性质:①0(1,2,3,,)i p i n ≥=L ,;②=∑=ni i p 1 1.4.随机变量分布列的表格制作步骤:①选取随机变量的可能取值;②计算随机变量取值对应的概率;③制作概率分布列表格. 【重难点突破】1.若X 是一个随机变量,λ、μ是常数.则有如下情况:μλ+=X Y ;X X Y μλ+=2; 2)(μλ+=X Y ......中的Y 也是一个随机变量.提示:类比于理解函数中x 与f (x )的对应关系.2.掌握离散型随机变量分布列的两大性质,学会应用其概率特征解决一些参数问题.3.在具体划归分布列的应用中,关键明确变量的取值,正确求取值对应的概率四、随堂检测1.抛掷两颗骰子,如果将所得点数之和记为X,那么X=4表示的随机试验结果是()A.两颗都是4点B.一颗是1点,另一颗是3点C.两颗都是2点D.一颗是1点,另一颗是3点,或者两颗都是2点【知识点:随机变量的概念】解:D2.下列4个表格中,可以作为离散型随机变量分布列的一个是()A.B.C.D.【知识点:概率分布列的性质;互斥事件】 解:C3.随机变量X 的概率分布规律为)4,3,2,1()1()(=+==n n n an X P 其中a 是常数,则)2521(<<X P 的值为 .【知识点:分布列的性质;互斥事件概率】解:654.设X 是离散型随机变量,其分布列如下表所示.则=q ( ). A.1 B.221±C.221+D.221-【知识点:分布列的性质;互斥事件概率】 解:D 五、课后作业 ★基础型 自主突破1.如果X 是一个离散型随机变量,则假命题是( ) A.X 取每一个可能值的概率都是非负数; B.X 取所有可能值的概率之和为1;C.X 取某几个值的概率等于分别取其中每个值的概率之和;D.X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和 【知识点:真假命题;分布列的性质】解:由分布列性质①可知1≥i p ≥0,(n i ,,3,2,1⋅⋅⋅=),故A 是真命题;分布列性质②=∑=ni i p 1 1 可知B 、C 是真命题.故D 是假命题.2.①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( ) A.① B .② C.③ D.①③【知识点:离散型随机变量的定义】解:②中的区间取值是随机的,但是数值是连续的,是不能一一列出的,这样的数据属于连续型随机变量.故选D.3.设离散型随机变量ξ的概率分布如下,则a 的值为( )A .12B .16C .13D .14【知识点:分布列性质】解:由概率分布列性质=∑=ni i p 11可知31,1)4()3()2()1(===+=+=+=a X P X P X P X P 故选C .4、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( ) A .1B .12C .13D .14【知识点:等比数列通项式及前n 项和公式;分布列性质】解:21,113211==-=⋅⋅⋅++⋅⋅⋅+++=∑∞=λλλλλλλn i i p 故选B .5、已知随机变量X 的分布列为:()12k p X k ==, ,3,2,1=k ,则()24p X <≤=( ) A.163B.41C.161 D.165【知识点:互斥事件概率问题;分布列性质】 解:,1632121)4()3()42(43=+==+==≤<X p X p X p 故选A .6、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A.一枚是3点,一枚是1点B.两枚都是2点C.两枚都是4点D.一枚是3点,一枚是1点或两枚都是2点【知识点:离散型随机变量;数学思想:分类讨论】解:一枚骰子可取点数范围从1、2、3、4、5、6;X =2+2=4 或X =1+3=4的讨论组合方式,故选D .★★能力型 师生共研7.设随机变量X 的分布列为()()21,2,3,,,k P X k k n λ==⋅=⋯⋯,则 λ= .【知识点:等比数列通项式及前n 项和公式;分布列性质】 解:31,11222223211==-=⋅⋅⋅++⋅⋅⋅+++=∑∞=λλλλλλλn i i p8.一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为【知识点:组合;数学思想:分类讨论】解:由于抽取的过程中是不放回取球.可能情况数1035 C ,分类讨论情况如下(不论先后):①1,2,3.②1,3,4③1,3,5 ④2,3,4 ⑤2,3,5 ⑥3,4,5.⑦4,5,1⑧4,5,2⑨5,1,2⑩4,2,1.故X 的可能取值为3,4,5.9.某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?【知识点:离散型随机变量;数学思想:转化】解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.★★★探究型 多维突破11、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.【知识点:分布列;数学思想:转化、分类讨论】解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为12、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n 21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.【知识点:分布列,互斥事件概率;数学思想:转化、分类讨论】解:依题意,原物体在分裂终止后所生成的数目X 的分布列为∴(10)(2)(4)(8)P X P X P X P X ≤==+=+==87814121=++. 自助餐1.下列随机变量中,不是离散随机变量的是( )A.从10只编号的球 ( 0号到9号) 中任取一只,被取出的球的号码ξB.抛掷两个骰子,所得的最大点数ξC.[0 , 10]区间内任一实数与它四舍五入取整后的整数的差值ξD.一电信局在未来某日内接到的 电话呼叫次数ξ【知识点:离散型随机变量】2.甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξ( )A.4.06.01⨯-kB.76.024.01⨯-kC.6.04.01⨯-kD.24.076.01⨯-k【知识点:互斥事件概率;数学思想:转化、分类讨论】解:B 若甲投1次球,则包含两层信息---甲乙两人共投球1次;甲乙两人共投球2次,即概率76.0)4.01)(4.01(4.0)1(=--+==ξP ;若甲投2次球,则包含两层信息---甲乙两人共投球3次;甲乙两人共投球4次,即概率1824.0)4.01)(4.01(4.0)4.01(4.04.0)4.01()2(=--⋅-+⋅-==ξP .同理可得出==)(k P ξ76.024.01⨯-k .3.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( )A.0B.21 C.31 D.32 【知识点:对立事件概率】4.设随机变量ξ的分布列为)5,4,3,2,1(15)(===k k k P ξ,则)2521(<<ξP 等于( ) A.21B.91C.61D.51【知识点:互斥事件概率;数学思想:分类讨论】解:D5.已知随机变量ξ的分布列为:),3,2,1(21)(⋅⋅⋅===k k P k ξ,则=≤<)42(ξP ()A.163B.41C.161D.165【知识点:互斥事件概率;数学思想:分类讨论】解:A6.已知随机变量ξ的概率分布为:则==)10(ξP ( ) A.932 B.1032 C.931 D.1031 【知识点:分布列;数学思想:观察法】解:D7.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( ) A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 【知识点:计数原理,独立事件概率;数学思想:组合】解:B8.在一批产品中共12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数ξ的所有可能取值是【知识点:离散型随机变量】解:0,1,2,3.9.设随机变量ξ只能取5,6,7,…,16这12个值,且取每个值的概率相同,则=>)8(ξP ,)146(≤<ξP =【知识点:对立事件、互斥事件概率;数学思想:分类讨论、正反面】 解:31121121121121)8(=+++=>ξP ;65)121121(1)6(1)146(=+-=≤-=≤<ξξP P .10.已知随机变量ξ的分布列是:=≤≤)42(ξP【知识点:分布列;数学思想:分类讨论】解:0.711.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子出现的点数(最上面的数字);(4)某个人的属相随年龄的变化.【知识点:离散型随机变量】解:(1)某人射击一次,可能命中的环数是0环,1环,…,10环结果中的一个而且出现哪一个结果是随机的,因此是随机变量.(2)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此投掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,是随机变量.(3)投一颗骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪个结果是随机的,因此是随机变量.(4)属相是人出生时便确定的,不随年龄的变化而变化,不是随机变量.12.设b,c 分别是先后抛掷一枚骰子得到的点数.(1)设A =},,02|{2R x c bx x x ∈<+-求φ≠A 的概率;(2)设随机变量|,|c b -=ξ求ξ的分布列. 【知识点:二次方程根的判别,对立事件概率;数学思想:分类讨论】 解:b,c 的所有可能取值从1-6.当b =1,c =1,2,3,4,5,6; 08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =2,c =1,2,3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =3,c =2,3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ; 当b =4,c =3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =5,c =4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =6,c =5,6;08)2(4)(4222<-=--=-=∆c b c b ac b .故当φ≠A 时概率18536261=-;5,4,3,2,1,0=ξ其分布列如下:。
离散型随机变量及其分布列凌海市第三高级中学数学组孙朋教学目标:知识与技能:会求出某些简单的离散型随机变量的概率分布。
过程与方法:认识概率分布对于刻画随机现象的重要性。
情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。
教学重点:离散型随机变量的分布列的概念教学难点:求简单的离散型随机变量的分布列授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:一、引入:(1)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球2次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?二、讲解新课:1随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示例1、一个袋中装有5个白球和5个黑球,若从中任取3个,则其中所含白球的个数就是一个随机变量,求的取值范围,并说明的不同取值所表示的事件。
练习写出下列各随机变量可能的取值,并说明它们各自所表示的随机试验的结果(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数;(2)抛掷两个骰子,所得点数之和Y;(3)某城市1天之中发生的火警次数X;(4)某林场树木最高达30米,最低是米,则此林场任意一棵树木的高度2 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量练习: 下列试验的结果能否用离散型随机变量表示?(1)从学校回家要经过4个红绿灯口,可能遇到红灯的次数!(2)连续不断地投篮,第一次投中需要的投篮次数(3)任意抽取一瓶某种标有2500m 的饮料,其实际量与规定量之差;(4)某城市1天之内的温度;(5)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的等级。
3 分布列:设离散型随机变量ξ可能取得值为1,2,…,3,…,ξ取每一个值i (i=1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列4 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:⑴P i ≥0,i =1,2,…;⑵P 1P 2 (1)对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ例2、袋子中有3个红球,2个白球,1个黑球,这些球除颜色外完全相同,现要从中摸一个球出来,若摸到黑球得1分,摸到白球得0分,摸到红球倒扣1分,试写出从该盒内随机取出一球所得分数X的分布列三课堂练习某一射手射击所得环数ξ分布列为求此射手“射击一次命中环数≥7”的概率注:求离散型随机变量ξ的概率分布的步骤:(1)确定随机变量的所有可能的值i(2)求出各取值的概率ξ=i=i(3)画出表格四、小结:⑴根据随机变量的概率分步(分步列),可以求随机事件的概率;⑵两点分布是一种常见的离散型随机变量的分布,它是概率论中最重要的几种分布之一 3 离散型随机变量的超几何分布五、课后作业:六、板书设计(略)。
2.1.2 离散型随机变量的分布列
一、教学目标:
1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;
2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题。
二、教学重点:离散型随机变量的分布列的概念。
教学难点:求简单的离散型随机变量的分布列。
三、教学方法:讨论交流,探析归纳 四、教学过程
一)、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示。
2. 离散型随机变量:随机变量 只能取有限个数值 或可列无穷
多个数值
则称
为离散随机变量,在高中阶段我们只研究随机变
量 取有限个数值的情形。
二)、讲解新课:
1. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,
ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表
为随机变量ξ的概率分布,简称ξ的分布列。
2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1。
由此你可以得出离散型随机变量的分布列都具有下面两个性质:
⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)
对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ 3.二点分布:如果随机变量X 的分布列为:
三)、典例分析
例1、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列。
分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率。
说明:1、在写出ξ的分布列后,要及时检查所有的概率之和是否为1。
2、求随机变量X 的分布列的步骤:
(1)确定X 的可能取值(1,2,)i x i =…;(2)求出相应的概率()i i P X x p ==; (3)列成表格的形式。
例2、某一射手射击所得的环数ξ的分布列如下:
求此射手“射击一次命中环数≥7”的概率。
例3、用X 表示投掷一枚均匀的骰子所得的点数,利用X 的分布列求出下列事件发生的概率:1掷出的点数是偶数;2掷出的点数大于3而不大于5;3掷出的点数超过1。
例4、某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布。
四)、课堂小结:
1、随机变量的概念及其分布,注意随机变量性质的应用;
2、求随机变量X 的分布列的步骤: (1)确定X 的可能取值(1,2,)i x i =…;。