薄膜物理与技术基本概念常识大全1
- 格式:doc
- 大小:173.50 KB
- 文档页数:9
第一章 1.真空的定义及其度量单位 概念:利用外力将一定密闭空间内的气体分子移走,使该空间内的气压小于 1 个大气压,则该空间内的气体的物理状态就被称为真空。
真空,实际上指的是一种低压的、稀薄的气体状态。
目前标准大气压定义:0摄氏度时,水银密度13.59509g/cm 3, 重力加速度 980.665cm/s 2时,760 mm 水银柱所产生的压强为1标准大气压。
1atm=1.01*105Pa=760Torr=1.0133*106 微巴 低真空 105-102 气态空间近似为大气状态,分子以热运动为主,分子之间碰撞频繁。
低真空,可以获得压力差而不改变空间的性质。
中真空102-10-1 中真空,气体分子密度与大气状态有很大差别。
气体分子的流动从黏滞流状态向分子状态过渡,气体对流现象消失。
气体中带电离子在电场作用下, 产生气体导电现象。
(离子镀、溅射镀膜等气体放电和低温等离子体相关镀膜技术) 高真空10-1-10-5 容器中分子数很少,分子平均自由程大于一般容器的线度,分子流动为分子流,分子与容器壁碰撞为主,在此真空下蒸发材料,粒子将按直线飞行。
(拉制单晶、表面镀膜、电子管生产) 超高真空 10-5-10-9 气体分子数更少,几乎不存在分子间碰撞,此时气体分子在固体表面上是以吸附停留为主。
入射固体表面的分子数达到单分子层需要的时间也较长,可以获得纯净表面。
(薄膜沉积、表面分析…) 极高真空 《10-9 气体分子入射固体表面的频率已经很低,可以保持表面洁净。
适合分子尺寸加工及纳米科学的研究。
理想气体状态方程: 1. 最可几速率 讨论速度分布Tn P k =T m PV R M=M RT M RT m kT v m 41.122===2. 平均速率 计算分子运动平均距离 M RT M RT m kT v a 59.188===ππ2.每个气体分子在与其它气体分子连续2次碰撞之间运动经历的路程称为分子自由程。
1、为什么要真空?真空的概念?真空的用途?答:真空蒸发、溅射镀膜和离子镀膜等常称为物理气相沉积(PVD法)是基本的薄膜制作技术。
他们均要求淀积薄膜的空间要有一定的真空度。
因此,真空技术是薄膜制作技术的基础,获得并保持所需的真空环境,是镀膜的必要条件。
所谓真空是指低于一个大气压的气体空间。
同正常的大气相比,是比较稀薄的气体状态。
粗真空(105~102Pa):真空浸渍工艺低真空(102~10-1):真空热处理高真空(10-1~10-6):分子按直线飞行超高真空(< 10-6):一得到纯净的气体;二获得纯净的固体表面2、分子的三种速率答:最可几速度:平均速度:均方根速度:3、气体的临界温度:对于每种气体都有一个特定的温度,高于此温度时,气体无论如何压缩都不会液化,这个温度称为该气体的临界温度。
利用临界温度来区分气体与液体。
高于临界温度的气态物质称为气体,低于临界温度称为蒸汽。
极限压强(极限真空):对于任何一个真空系统而言,都不可能得到绝对真空(p=0),而是具有一定的压强Pu,称为极限压强(或极限真空),这是该系统所能达到的最低压强,是真空系统是否满足镀膜需要的重要指标之一。
4、溅射:所谓溅射,是指何能粒子轰击固体表面(靶),使固体原子(或分子)从表面射出的现象。
5、CVD(化学气相沉积):化学气相沉积是一种化学气相生长法,简称CVD技术。
这种方法是把含有构成薄膜元素的一种或几种化合物的单质气体供给基片,利用加热、等离子体、紫外光乃至激光等能源,借助气相作用或在基片表面的化学反应(热分解或化学合成)生成要求的薄膜。
6、薄膜的组织结构:是指它的结晶形态,分为四种类型:无定型结构、多晶结构、纤维结构和单晶结构。
7、薄膜的缺陷:在薄膜的生长和形成过程中各种缺陷都会进入到薄膜之中。
这些缺陷对薄膜产生重要的影响。
他们与薄膜制作工艺密切相关。
点缺陷:在基体温度低时或蒸发过程中温度的急剧变化会在薄膜中产生许多点缺陷,这些点缺陷对薄膜电阻率产生较大影响。
真空基础1、 薄膜的定义2、 真空如何定义(概念)?利用外力将一定密闭空间内的气体分子移走,使该空间内的气压小于 1 个大气压,则该空间内的气体的物理状态就被称为真空。
注意:真空,实际上指的是一种低压的、稀薄的气体状态,而不是指“没有任何物质存在”! 3、 真空的分类?真空区域划分?有哪些单位制?如何换算?真空可分为:⎪⎪⎩⎪⎪⎨⎧→→→→atm 760/1 mmHg 1 torr 1mmHg in /lbf 1 PSI 1FPS dyne/cm 10 bar 1 CGS m /N 1 Pa 1SI MKS 2262==制)毫末汞柱制(=制)英制(=制)厘米克秒制(=制)制,即国际单位制( 1 N =105 dyne =0.225 lbf 1 atm =760 mmHg (torr )=1.013×105 Pa =1.013 bar4、真空泵可分为哪两大类?简述包括的常用真空泵类型及其工作压强范围。
5、分析说明实用的真空抽气系统为什么往往需要多种真空组成复合抽气系统?从大气压力开始抽气,没有一种真空泵可以涵盖从1 atm到10-8Pa的工作范围,真空泵往往需要多种泵组合构成复合抽气系统,实现以更高的抽气效率达到所需的高真空!6、按测量原理真空计如何分类?7、真空与薄膜材料制备有何关系?几乎所有的现代薄膜材料制备都需要在真空或较低的气压条件下进行,都涉及真空下气相的产生、输运和反应过程。
了解真空的基本概念和知识,掌握真空的获得和测量技术基础知识是了解薄膜材料制备技术的基础!8、气体分子平均自由程概念薄膜沉积的物理方法1、什么是物理气相沉积(PVD)?PVD镀膜的三个关键过程。
PVD的概念:在真空度较高的环境下,通过加热或高能粒子轰击的方法使源材料逸出沉积物质粒子(可以是原子、分子或离子),这些粒子在基片上沉积形成薄膜的技术。
其技术关键在于:如何将源材料转变为气相粒子(而非CVD的化学反应)!2、在工程基于气相粒子发射方式不同而将PVD技术分为哪几类?3、简述真空蒸发镀膜。
第一章真空的基本知识§1. 真空的定义、单位和真空区域的划分1.真空的定义气体的压强低于一个标准大气压的气态空间一标准大气压:g=980.665 cm/s2\T=273 K时,760mm水银柱高所施加的压强平衡状态下,气体宏观参量的重要关系式:P=nKT P=压强(Pa)2. 真空的单位:(1)帕(Pa) 1 Pa=1 N/M2=10达因/cm2(2)乇(torr)(3)mmHg(4)µbar(微巴) or bar1 torr=1 mmHg= 133.3 Pa1 Pa= 0.75×10-2 torr = 10达因/cm21 µbar= 1 达因/cm2 = 0.1 Pa3. 真空区域的划分(1) 粗真空:1×105 Pa > P >1×103 Pa (大约10 torr)(2) 低真空:1×103~ 1×10-1 Pa(3) 高真空:1×10-1~1×10-6 Pa(4) 超高真空:<1×10-6 Pan< 1010个/cm3,不少高科技器件或材料只能在超高真空下才能获得§2.稀薄气体的基本性质1.气体的三种速率表达式最可几速率:算术平均速率:均方根速率:2.平均自由程的定义:气体两次碰撞之间所走路程的统计平均值a) 考虑到其它气体分子在运动,及气体速率有一定分布,作如下修正:§ 3. 气体的输运1. 抽真空过程中气体流动的三个过程(1) 初始阶段(气压较高、流速较大)出现湍流,起作用的是气体的惯性力(2) 气压较低时:粘滞性流动—各层速度不同,起作用的是层间相互摩擦力(3) 气压更低:分子性流动—分子间相互摩擦可忽略,流动完全有分子与器壁碰撞,即:湍流-粘滞性流动-分子性流动2. 气体量,流量及其表达式(1) 定义:气体量:气体体积×压强,即PV,单位:牛·米-2·米3=牛顿·米流量Q:单位时间流过的气体量Q=PV/t=牛·米/秒(2) 流量表达式:(长圆管道情况)a) 粘滞性流动时:第2章真空的获得§3 机械泵1. 机械泵的Pu : 5*10-4乇机械泵的用途:抽低真空;扩散泵、分子泵的前级真空泵机械泵的结构:由工作室、进气管、排气阀、油腔、气镇阀、马达构成工作室包括:定子、转子、旋片旋片装于转子上并将定子分成三部分:吸气空间;膨胀压宿空间;排气空间。
薄膜行业基础知识薄膜行业是材料科学领域的一个重要分支,它涉及到各种薄膜材料的生产、加工和应用。
以下是关于薄膜行业基础知识的一些要点:1. 薄膜的定义与分类:薄膜是一种极薄的材料,通常厚度在几纳米到几毫米之间。
根据材料和用途的不同,薄膜可以分为塑料薄膜、金属薄膜、陶瓷薄膜、半导体薄膜等。
2. 薄膜的制备方法:薄膜的制备方法多样,包括物理气相沉积(PVD)、化学气相沉积(CVD)、溶胶-凝胶法、自旋涂覆、拉伸法等。
每种方法都有其特定的应用场景和优缺点。
3. 薄膜的特性:薄膜材料因其独特的物理和化学特性,在电子、光学、包装、建筑等多个领域有着广泛的应用。
例如,它们可以具有高透明度、良好的导电性、优异的阻隔性能等。
4. 薄膜的应用领域:- 电子行业:在半导体制造中,薄膜用于制造集成电路和微电子器件。
- 光学行业:薄膜用于制造反射镜、滤光片和增透膜等。
- 包装行业:薄膜用于食品和药品的包装,提供保护和延长保质期。
- 建筑行业:薄膜用于窗户的隔热和装饰,提高能效和美观性。
5. 薄膜的发展趋势:随着科技的进步,薄膜行业正朝着更高性能、更环保、更智能化的方向发展。
例如,纳米技术的应用使得薄膜的性能得到显著提升,而可降解薄膜的研发则响应了环保的需求。
6. 薄膜行业的挑战:薄膜行业面临的挑战包括提高生产效率、降低成本、减少环境污染以及开发新型薄膜材料。
这些挑战需要行业内外的合作和创新来克服。
7. 薄膜行业的未来展望:随着新材料和新技术的不断涌现,薄膜行业有望在新能源、柔性电子、生物医学等领域发挥更大的作用。
同时,薄膜行业也需要关注全球供应链的变化,以及新兴市场的需求。
薄膜行业是一个充满活力和创新的领域,它的发展不仅推动了科技进步,也极大地改善了人们的生活质量。
随着技术的不断进步,薄膜行业将继续在全球经济中扮演重要角色。
2014/12/271第一章真空技术许多薄膜技术是在真空下实现的,“真空”是许多薄膜制备的必要条件,因此,掌握一定的真空知识是必需的。
21.1.1真空的定义1.1 真空的基本概念压力低于一个大气压的任何气态空间气体处于平衡时,气体状态方程P = nkTP:压强(Pa),n:气体分子密度(个/m 3),k:玻尔兹曼常数(1.38×10-23J/K)V:体积(m 3),m:气体质量(kg),M:分子量(kg/mol)R:气体普适常数,T:绝对温度(K),R=N A ·k,N A :阿佛伽德罗常数(6.023×1023/mol)(个/m 3)如:在标准状态下,任何气体分子的密度n=3×1019个/cm 3P=1.33×10-4Pa, T=293K, n=3.2×1010个/cm 3“真空”是相对的31.1.2真空表示气体热运动概率:自由程:σ:分子直径l·P =0.667(cm.Pa)T = 25℃41.1.3真空度单位国际单位制:压强压强高,真空度低压强低,真空度高几种单位间换算:米千克秒制:1Pa = 1N/m 2 = 1Kg/m ·s 2 = 10达因/cm 2 =7.5 10-3Torr1毫米汞柱(mmHg )= 1/760 atm = 133.3Pa = 1.00000014Torr ≈1Torr 1巴(bar )= 105Pa51.1.4区域划分为了便于讨论和实际应用,常根据各压强范围内不同的物理特点把真空划分为粗真空、低真空、高真空和超高真空四个区域。
61.2 真空的获得工具——真空泵P ui :泵对i气体的极限压强(Pa)Q i :室内各种气源(Pa ·L/s)S i :泵对i气体的抽气速率(L/s)P i :i气体的分压(Pa)V:真空室容积(L)7真空泵的种类及工作原理1、机械泵:组成部件:定子、转子,嵌于转子的两个旋片以及弹簧工作原理:玻意-耳马略特定律,PV=K。
薄膜物理基础知识大全第一章:最可几速度:平均速度: 均方根速度:平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平均自由程。
常用压强单位的换算 1Torr=133.322 Pa 1 Pa=7.5×10-3 Torr1 mba=100Pa 1atm=1.013*100000Pa真空区域的划分、真空计、各种真空泵粗真空 1×105 to 1×102 Pa低真空 1×102 to 1×10-1 Pa高真空 1×10-1 to 1×10-6 Pa超高真空 <1×10-6 Pa旋转式机械真空泵油扩散泵复合分子泵属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的分子筛吸附泵钛升华泵溅射离子泵低温泵属于气体捕获泵,即通过各种吸气材料特有的吸气作用将被抽气体吸除,以达到所需真空。
不需要油作为介质,又称为无油泵绝对真空计:U 型压力计、压缩式真空计相对真空计:放电真空计、热传导真空计、电离真空计机械泵、扩散泵、分子泵的工作原理,真空计的工作原理第二章:1. 什么是饱和蒸气压、蒸发温度?在一定温度下,真空室内蒸发物质的蒸气与固体或液体平衡过程中所表现出来的压力规定物质在饱和蒸气压为10-2Torr 时的温度2. 克-克方程及其意义?3. 蒸发速率、温度变化对其影响?根据气体分子运动论,在气体压力为P 时,单位时间内碰撞单位面积器壁上的M RTM RT m kT v a 59.188===ππM RT M RT m kT v r 73.133===PkT 22πσλ=()s g v v V V T H dT dP -=RT H C P v v -=lnM RT M RT m kT v m 41.122===分子数量,即碰撞分子流量(通量或蒸发速率)J:蒸发源温度微小变化就可以引起蒸发速率的很大变化4.平均自由程与碰撞几率的概念。
蒸发分子在两次碰撞之间所飞行的平均距离热平衡条件下,单位时间通过单位面积的气体分子数为5.点蒸发源和小平面蒸发源特性?能够从各个方向蒸发等量材料的微小球状蒸发源称为点蒸发源(点源)。
这种蒸发源的发射特性具有方向性,使得在 alpha 角方向蒸发的材料质量和 cos(alpha) 成正比。
6.拉乌尔定律?如何控制合金薄膜的组分?在定温下,在稀溶液中,溶剂的蒸气压等于纯溶剂蒸气压乘以溶液中溶剂的物质的量分数在真空蒸发法制作合金薄膜时,为保证薄膜组成,经常采用瞬时蒸发法、双蒸发源法等。
7.MBE的特点?(分子束外延)外延: 在一定的单晶材料衬底上,沿衬底某个指数晶面向外延伸生长一层单晶薄膜。
1)MBE可以严格控制薄膜生长过程和生长速率。
MBE虽然也是以气体分子论为基础的蒸发过程,但它并不以蒸发温度为控制参数,而是以四极质谱、原子吸收光谱等近代分析仪器,精密控制分子束的种类和强度。
2)MBE是一个超高真空的物理淀积过程,即不需要中间化学反应,又不受质量输运的影响,利用快门可对生长和中断进行瞬时控制。
薄膜组成和掺杂浓度可以随源的变化作迅速调整。
3)MBE的衬底温度低,降低了界面上热膨胀引入的晶格失配效应和衬底杂质对外延层自掺杂扩散的影响。
4)MBE是一个动力学过程,即将入射的中性粒子(原子或分子)一个一个地堆积在衬底上进行生长,而不是一个热力学过程,所以它可以生长普通热平衡生长难以生长的薄膜。
5)MBE生长速率低,相当于每秒生长一个单原子层,有利于精确控制薄膜厚度、结构和成分,形成陡峭的异质结结构。
特别适合生长超晶格材料。
6)MBE在超高真空下进行,可以利用多种表面分析仪器实时进行成分、结构及生长过程分析,进行科学研究。
8.膜厚的定义?监控方法?厚度:是指两个完全平整的平行平面之间的距离。
理想薄膜厚度:基片表面到薄膜表面之间的距离。
监控方式见书上详解P50第二章:1.溅射镀膜与真空镀膜相比,有何特点?1)任何物质都可以溅射,尤其是高熔点金属、低蒸气压元素和化合物;2)溅射薄膜与衬底的附着性好;3)溅射镀膜的密度高、针孔少,膜层纯度高;4)膜层厚度可控性和重复性好。
5)溅射设备复杂,需要高压装置;6)成膜速率较低(0.01-0.5 m)。
2.正常辉光放电和异常辉光放电的特征?在正常辉光放电区,阴极有效放电面积随电流增加而增大,从而使有效区内电流密度保持恒定。
当整个阴极均成为有效放电区域后,只有增加阴极电流密度,才能增大电流,形成均匀而稳定的“异常辉光放电”,并均匀覆盖基片,这个放电区就是溅射区域。
3.射频辉光放电的特点?i.在辉光放电空间产生的电子可以获得足够的能量,足以产生碰撞电离;ii.由于减少了放电对二次电子的依赖,降低了击穿电压;iii.射频电压可以通过各种阻抗偶合,所以电极可以是非金属材料。
4.溅射的概念及溅射参数。
溅射是指荷能粒子轰击固体表面(靶),使固体原子或者分子从表面射出的现象。
1)溅射阈值2)溅射率及其影响因素3)溅射粒子的速度和能量分布4)溅射原子的角度分布5)溅射率的计算5.溅射机理溅射现象是被电离气体的离子在电场中加速并轰击靶面,而将能量传递给碰撞处的原子,导致很小的局部区域产生高温,使靶材融化,发生热蒸发。
溅射完全是一个动量转移过程该理论认为,低能离子碰撞靶时,不能直接从表面溅射出原子,而是把动量传递给被碰撞的原子,引起原子的级联碰撞。
这种碰撞沿晶体点阵的各个方向进行。
碰撞因在最紧密排列的方向上最有效,结果晶体表面的原子从近邻原子得到越来越多的能量。
当原子的能量大于结合能时,就从表面溅射出来6.二极直流溅射、偏压溅射、三极或四极溅射、射频溅射、磁控溅射、离子束溅射系统的结构和原理二极直流溅射:是依赖离子轰击阴极所发射的次级电子来维持辉光放电靶与基板的距离以大于阴极暗区的3-4倍为宜。
直流二极溅射射频二极溅射偏压溅射:结构、基片施加负偏压。
三极或四极溅射:热阴极发射的电子与阳极产生等离子体靶相对于该等离子体为负电位、为使放电稳定,增加第四个电极——稳定化电极射频溅射:等离子体中的电子容易在射频场中吸收能量并在电场内振荡,与工作气体的碰撞几率增大,从而使击穿电压和放电电压显著降低。
磁控溅射:使用了磁控靶在阴极靶的表面上形成一个正交的电磁场。
溅射产生的二次电子在阴极位降区内被加速成为高能电子,但是它并不直接飞向阳极,而在电场和磁场的作用下作摆线运动。
高能电子束缚在阴极表面与工作气体分子发生碰撞,传递能量,并成为低能电子。
离子束溅射系统:离子束由惰性气体或反应气体的离子组成,离子能量高,它们打到由薄膜材料构成的靶上,引起靶原子溅射,并在衬底上形成薄膜。
第四章:1. 离子镀膜系统工作的必要条件?1) 造成一个气体放电的空间;2) 将镀料原子(金属原子或非金属原子)引进放电空间,使其部分离化。
2. 离子镀膜的原理及薄膜形成条件?淀积过程μ为淀积原子在基片表面的淀积速率;ρ为薄膜质量密度;M 为淀积物质的摩尔质量;N A 阿佛加德罗常数。
溅射过程:j 是入射离子形成的电流密度3. 离子镀膜技术的分类?按薄膜材料气化方式分类:电阻加热、电子束加热、高频感应加热、阴极弧光放电加热等。
按原子或分子电离和激活方式分类:辉光放电型、电子束型、热电子型、电弧放电型、以及各种离子源。
4. 直流二极离子镀、三极和多阴极离子镀、活性反应离子镀、射频离子镀的原理和特点?直流二极离子镀:利用二极间的辉光放电产生离子、并由基板所加的负电压对其加速 轰击离子能量大,引起基片温度升高,薄膜表面粗糙,质量差;工艺参数难于控制。
附着力方面优于其它的离子镀方法。
三极和多阴极离子镀:1) 可实现低气压下的离子镀膜。
真空度比二级型离子镀的真空度大约高一个数量级。
所以,镀膜质量好,光泽致密2) 通过改变辅助阴极(多阴极)的灯丝电流来控制放电状态。
3) 避免了直流二极型离子镀溅射严重、成膜粗糙、温升高而难以控制的弱点。
活性反应离子镀:在离子镀膜基础上,若导入与金属蒸气起反应的气体,如O2、N2、C2H2、CH4等代替Ar 或掺入Ar 之中,并用各种不同的放电方式使金属蒸气和反应气体的分子、原子激活、离化、使其活化,促进其间的化学反应,在基片表面就可以获得化合物薄膜,这种方法称为活性反应离子镀法。
特点:1) 电离增加了反应物的活性,在温度较低的情况下就能获得附着性能良好的碳化物、氮化物薄膜。
2) 可以在任何材料上制备薄膜,并可获得多种化合物薄膜。
3) 淀积速率高。
4) 调节或改变蒸发速率及反应气体压力可以十分方便地制取不同配比、不同结构、不同性质的同类化合物。
5) 由于采用了大功率、高功率密度的电子束蒸发源,几乎可以蒸镀所有金属和化合物。
6) 清洁,无公害。
射频离子镀:j n n >41060A N n M ρμ-=316219100.6310/1.610j j n j cm s --==⨯⋅⨯(1)以蒸发源为中心的蒸发区;(2)以线圈为中心的离化区;(3)以基板为中心,使生成的离子加速,并沉积在基板特点:a) 蒸发、离化、加速三种过程可分别独立控制,离化率靠射频激励,而不是靠加速直流电场,基板周围不产生阴极暗区。
b) 在10-1-l0-3 Pa 的较低工作压力下也能稳定放电,而且离化率较高,薄膜质量好。
c) 容易进行反应离子镀。
d) 和其它离子镀方法相比,基板温升低而且较容易控制。
第五章:1. CVD 热力学分析的主要目的?预测某些特定条件下某些CVD 反应的可行性(化学反应的方向和限度)。
2. CVD 过程自由能与反应平衡常数的过程判据?小于零则反应3. CVD 热力学基本内容?反应速率及其影响因素?反应动力学是一个把反应热力学预言变为现实,使反应实际进行的问题;它是研究化学反应的速度和各种因素对其影响的科学。
反应速率τ是指在反应系统的单位体积中,物质(反应物或产物)随时间的变化率。
较低衬底温度下, τ随温度按指数规律变化。
较高衬底温度下,反应物及副产物的扩散速率为决定反应速率的主要因素。
4. 热分解反应、化学合成反应及化学输运反应及其特点?热分解反应(吸热反应):该方法在简单的单温区炉中,在真空或惰性气体保护下加热基体至所需温度后,导入反应物气体使之发生热分解,最后在基体上沉积出固体图层。
化学合成反应:指两种或两种以上的气态反应物在热基片上发生的相互反应。
化学合成反应法比热分解法的应用范围更加广泛。
可以制备单晶、多晶和非晶薄膜。
容易进行掺杂。
化学输运反应: 将薄膜物质作为源物质(无挥发性物质),借助适当的气体介质与之反应而形成气态化合物,这种气态化合物经过化学迁移或物理输运到与源区温度不同的沉积区,在基片上再通过逆反应使源物质重新分解出来5. CVD 的必要条件?1) 在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室;2) 反应产物除了形成固态薄膜物质外,都必须是挥发性的;3) 沉积薄膜和基体材料必须具有足够低的蒸气压6. 什么是冷壁CVD ?什么是热壁CVD ?特点是什么?冷壁CVD :器壁和原料区都不加热,仅基片被加热,沉积区一般采用感应加热或光辐射加热。