MATLAB--simulink-通信系统建模与仿真--第四章部分习题答案
- 格式:doc
- 大小:220.50 KB
- 文档页数:6
最新资料欢迎阅读智慧树知到《数学建模与系统仿真》章节测试[ 完好答案 ]智慧树知到《数学建模与系统仿真》章节测试答案第一章单元测试1、数学模型是对于现实世界的一个特定对象,一个特定目的,依据独有的内在规律,做出一些必需的假定,运用合适的数学工具,获取一个数学结构 .A:错B:对答案 : 【对】2、数学建模是利用数学方法解决实质问题的一种实践. 即经过抽象、简化、假定、引进变量等办理过程后,将实质问题用数学方式表达,成立起数学模型,而后运用先进的数学方法及计算机技术进行求解,是对实质问题的完好解答和真切反应,结果然切靠谱。
A:对B:错答案 : 【错】3、数学模型是用数学符号、数学公式、程序、图、表等刻画客观事物的实质属性与内在联系的理想化表述 . 数学建模就是成立数学模型的全过程 ( 包含表述、求解、解说、查验 ).A:对B:错答案 : 【对】4 、数学模型 (Mathematical Model): 重过程 ; 数学建模(Mathematical Modeling):重结果。
A:错B:对答案 : 【错】5、人口增添的Logistic模型,人口增添过程是先慢后快。
A:错B:对答案 : 【错】6、MATLAB的主要功能有A:符号计算B:画图功能C:与其余程序语言交互的接口D:数值计算答案: 【符号计算 ;画图功能 ;与其余程序语言交互的接口;数值计算】7、Mathematica的基本功能有A:语言功能 (Programing Language)B:符号运算 (Algebric Computation)C:数值运算 (Numeric Computation)D:图像办理 (Graphics )答案 : 【语言功能 (Programing Language);符号运算 (Algebric Computation);数值运算 (Numeric Computation);图像办理 (Graphics )】8、数值计算是以下哪些软件的一个主要功能A:MapleB:JavaC:MATLABD:Mathematica答案 : 【Maple;MATLAB;Mathematica】9、评阅数学建模论文的标准有:A:完好一致的结果B:表述的清楚性C:建模的创建性D:论文假定的合理性答案:【表述的清楚性 ;建模的创建性 ;论文假定的合理性】10、对于中国 ( 全国 ) 大学生数学建模比赛 (CUMCM)描绘正确的选项是A:2年举办一次B:一年举办一次C:开始于 70 年月初D:一年举办 2 次答案 : 【一年举办一次】第二章单元测试1、权衡一个模型的好坏在于它能否使用了高妙的数学方法。
4.5 控制系统的数学模型MATLAB 实训1.练习并掌握TF 模型、ZPK 模型、SS 模型的建立方法。
2.练习并掌握TF 模型、ZPK 模型、SS 模型间的转换方法。
3.练习并掌握求取多个模块串联、并联、反馈后总的模型的方法。
4.练习并掌握模型数据的还原方法。
1.写出以下系统的多项式模型,并将其转换为零极点模型;(1)2153173261552115.35291)(23452341++++++-+-=s s s s s s s s s s G >> n1=[91,-52,3.5,-11,52];d1=[1,15,26,73,31,215];sys1=tf(n1,d1)[z1,p1,k1]=tf2zp(n1,d1)sys1zp=zpk(z1,p1,k1)运行结果如下:Transfer function:91 s^4 - 52 s^3 + 3.5 s^2 - 11 s + 52-------------------------------------------s^5 + 15 s^4 + 26 s^3 + 73 s^2 + 31 s + 215z1 =0.7705 + 0.5468i0.7705 - 0.5468i-0.4848 + 0.6364i-0.4848 - 0.6364ip1 =-13.4656-1.3473 + 1.9525i-1.3473 - 1.9525i0.5801 - 1.5814ik1 =91Zero/pole/gain:91 (s^2 - 1.541s + 0.8927) (s^2 + 0.9697s + 0.6401)--------------------------------------------------------------------------(s+13.47) (s^2 - 1.16s + 2.837) (s^2 + 2.695s + 5.627)(2)21.311395.2251315239.5621.635.711017.38)(23456723452++-+-++++-+-=s s s s s s s s s s s s s G >> n2=[1,-38.7,101,-71.5,63.1,562.39];d2=[1,2,5,-31,51,-22.5,39,311.21];sys2=tf(n2,d2)[z2,p2,k2]=tf2zp(n2,d2)sys2zpkmx=zpk(z2,p2,k2)Transfer function:s^5 - 38.7 s^4 + 101 s^3 - 71.5 s^2 + 63.1 s + 562.4---------------------------------------------------------------------------s^7 + 2 s^6 + 5 s^5 - 31 s^4 + 51 s^3 - 22.5 s^2 + 39 s + 311.2z2 =35.94372.95890.5590 + 1.9214i0.5590 - 1.9214i-1.3206p2 =-2.5015 + 3.1531i-2.5015 - 3.1531i1.9492 + 1.0027i1.9492 - 1.0027i0.2072 - 1.7349i-1.3097k2 =1Zero/pole/gain:(s-35.94) (s-2.959) (s+1.321) (s^2 - 1.118s + 4.004)--------------------------------------------------------------------------------------------------(s+1.31) (s^2 - 3.898s + 4.805) (s^2 - 0.4143s + 3.053) (s^2 + 5.003s + 16.2)2.写出以下系统的零极点模型,并将其转换为多项式模型,并将其展开成为部分分式形式;(1))11.5)(9.4)(5.3)(6.2)(3.1()02.6)(5.0(36)(1+++++++=s s s s s s s s s G >> z=[-0.5;-6.02];>> p=[0;-1.3;-2.6;-3.5;-4.9;-5.11];>> k=36;>> sys=zpk(z,p,k)Zero/pole/gain:36 (s+0.5) (s+6.02)--------------------------------------------------s (s+1.3) (s+2.6) (s+3.5) (s+4.9) (s+5.11)>> [n,d]=zp2tf(z,p,k)n =0 0 0 0 36.0000 234.7200 108.3600d =1.0000 17.4100 116.1430 367.5889 544.8325 296.2114 0>> systfxs=tf(n,d)Transfer function:36 s^2 + 234.7 s + 108.4-------------------------------------------------------------------------------s^6 + 17.41 s^5 + 116.1 s^4 + 367.6 s^3 + 544.8 s^2 + 296.2 s>> [r,p,k]=residue(n,d);>> [r';p']ans =9.1407 -14.8730 17.4236 -14.7227 2.6656 0.3658-5.1100 -4.9000 -3.5000 -2.6000 -1.3000 0即部分分式分解结果为 s s s s s s s G 3658.03.16656.26.27227.145.34236.179.4873.1411.51407.9)(++++-+++-+=(2))6)(5)(4)(2()5.3)(3)(1(15.9)(22+-++-++=s s s s s s s s s G >> z=[-1;-3;3.5];>> p=[0;0;-2;-4;5;6];>> k=9.15;>> sys=zpk(z,p,k)Zero/pole/gain:9.15 (s+1) (s+3) (s-3.5)-------------------------------s^2 (s+2) (s+4) (s-5) (s-6)>> [n,d]=zp2tf(z,p,k)n =0 0 0 9.1500 4.5750 -100.6500 -96.0750d =1 -5 -28 92 240 0 0>> systfxs=tf(n,d)Transfer function:9.15 s^3 + 4.575 s^2 - 100.7 s - 96.08---------------------------------------------------s^6 - 5 s^5 - 28 s^4 + 92 s^3 + 240 s^2>> [r,p,k]=residue(n,d);>> [r';p']ans =0.5004 -0.4183 0.0715 0.1123 -0.2659 -0.40036.0000 5.0000 -4.0000 -2.0000 0 0即部分分式分解结果为 24003.02659.021123.040715.054183.065004.0)(s s s s s s s G --++++---= 3.已知系统的状态空间表达式,写出其SS 模型,并求其传递函数矩阵(传递函数模型),若状态空间表达式为⎩⎨⎧+=+=DuCx y Bu Ax x ,则传递函数矩阵表达式为: D B A sI C s G +-=-1)()(。
第3章采样和量化3-1答:输入:syms t wXf=fourier(5*cos(6*pi*t)+3*sin(8*pi*t))输出:Xf=pi*(5*dirac(w+6*pi)+3*i*dirac(w+8*pi)-3*i*dirac(w-8*pi)+5*dirac(w-6*pi))matlab程序:t=0:0.02:8;L=length(t);xt=5*cos(6*pi*t)+3*sin(8*pi*t);f1=fft(xt);fs=10;Ts=1/fs;t1=8:-0.02:0;f=1./t1;Pt=zeros(1,L);for i=1:8:LPt(i)=1;endXst=xt.*Pt;f2=fft(Xst);f3=fs*f1;f4=ifft(f3);subplot(2,2,1)plot(f,f1)axis([0 10 -1000 3000])xlabel('f');ylabel('x(f)');subplot(2,2,2)plot(f,f2)axis([0 10 -200 400])xlabel('f');ylabel('Xs(f)');subplot(2,2,3)plot(f,f3)axis([0 10 -2000 4000])xlabel('f');ylabel('Xr(f)');subplot(2,2,4)plot(t,f4)xlabel('t');ylabel('Xr(t)');axis([0 6 -50 50])510-1000010002000fx (f )510-2000200fX s (f )510-2000020004000fX r (f )0246tX r (t )3-2答:matlab 程序: t=0:0.02:8;L=length(t);xt=5*cos(6*pi*t)+3*sin(8*pi*t); f1=fft(xt); fs=7;Ts=1/fs; t1=8:-0.02:0; f=1./t1;Pt=zeros(1,L); for i=1:8:L Pt(i)=1; endXst=xt.*Pt; f2=fft(Xst); f3=fs*f1; f4=ifft(f3); subplot(2,2,1) plot(f,f1)axis([0 10 -1000 3000]) xlabel('f');ylabel('x(f)'); subplot(2,2,2) plot(f,f2)axis([0 10 -200 400]) xlabel('f');ylabel('Xs(f)'); subplot(2,2,3) plot(f,f3)axis([0 10 -2000 4000]) xlabel('f');ylabel('Xr(f)'); subplot(2,2,4) plot(t,f4)xlabel('t');ylabel('Xr(t)'); axis([0 6 -50 50])510-1000010002000fx (f )510-2000200fX s (f )510-2000020004000fX r (f )0246-5050tX r (t )3.5信号()5sin(10)x t t π=,(a )信号的动态范围为25.84,49.93,98.09,194.42 dB SNR =。
matlab第四章课后作业解答第四章习题解答1、求下列多项式的所有根,并进行验算。
(3)267235865x x x x-+-(4)4)32(3-+x 解:>> p=zeros(1,24); >> p(1)=5;p(17)=-6;p(18)=8;p(22)=-5; >> root=roots(p)root =0.97680.9388 + 0.2682i0.9388 - 0.2682i0.8554 + 0.5363i0.8554 - 0.5363i0.6615 + 0.8064i0.6615 - 0.8064i0.3516 + 0.9878i0.3516 - 0.9878i-0.0345 + 1.0150i-0.0345 - 1.0150i-0.4609 + 0.9458i-0.4609 - 0.9458i-0.1150 + 0.8340i-0.1150 - 0.8340i-0.7821 + 0.7376i-0.7821 - 0.7376i-0.9859 + 0.4106i-0.9859 - 0.4106i-1.0416-0.7927>> polyval(p,root)ans =1.0e-012 *-0.07120.0459 - 0.0081i0.0459 + 0.0081i-0.0419 + 0.0444i-0.0419 - 0.0444i0.0509 + 0.0929i0.0509 - 0.0929i-0.2059 + 0.0009i-0.2059 - 0.0009i-0.0340 + 0.0145i-0.0340 - 0.0145i0.1342 + 0.0910i0.1342 - 0.0910i0.0025 + 0.0027i0.0025 - 0.0027i-0.0077 + 0.4643i-0.0077 - 0.4643i-0.3548 - 0.1466i-0.3548 + 0.1466i-0.0251-0.0073(4) >> p1=[2 3];>> p=conv(conv(p1,p1),p1)-[0 0 0 4]; >> root=roots(p)root =-1.8969 + 0.6874i-1.8969 - 0.6874i-0.7063>> polyval(p,root)ans =1.0e-014 *-0.7105 - 0.6217i-0.7105 + 0.6217i6、求解下列方程组在区域1,0<<βα内的解-=+=.sin 2.0cos 7.0,cos 2.0sin 7.0βαββαα 解:以初值)5.0,5.0(),(00=βα进行求解>> fun=inline('[0.7*sin(x(1))+0.2*cos(x(2))-x(1),0.7*cos(x(1))-0.2*sin(x(2))-x(2)]');>> [x,f,h]=fsolve(fun,[0.5 0.5])Optimization terminated: first-order optimality is less than options.TolFun.x =0.5265 0.5079f =1.0e-007 *-0.1680 -0.2712h =1因而,该方程组的近似根为5079.0,5265.0==βα。
《MATLAB及应用》实验指导书班级:姓名:学号:总评成绩:汽车工程系电测与汽车数字应用中心目录实验04051001 MATLAB语言基础1实验04051002 MATLAB科学计算及绘图4实验04051003 MATLAB综合实例编程6实验04051001MATLAB 语言基础1实验目的1) 熟悉MATLAB 的运行环境 2) 掌握MATLAB 的矩阵和数组的运算 3) 掌握MATLAB 符号表达式的创建 4) 熟悉符号方程的求解2实验内容说明:从下面的题目、第1~4章课后习题中任选10题,学号为奇数的选择奇数号题,学号为偶数的选择偶数号题,并在答案之前标注题目来源,例如“课本第1章题2”、“指导书题3”等。
可以采用notebook 格式输出结果(关于notebook 请查阅其他参考资料,或上网搜索) 例如:课本第4章题1.一个半径为r 的求体积V 和表面积A 分别为:334r V π=、24r A π= a.给出以下程序的伪代码描述:计算当30≤≤r 米时的V 和A ,并同时绘制V 相对于A 的图形。
b.编写和运行部分a 中所描述的程序。
解:clc,clear; r=0:0.1:3; V=4/3*pi*r.^3; A=4*pi*r.^2; plot(A,V);grid on; xlabel('Surface Area'); ylabel('Volume');1.在一个已知的测量矩阵T(100×100)中,删除整行全为0的行,删除整列内容全为0的整列(判断某列元素是否为0方法:检查T(: ,i).*(T(: ,j))是否为0)。
2.假设汽车系在下列各年度的人口统计如表所示试用一个二维矩阵STU表示上述数据,并请计算出下列各数值:(1)汽车系在2002~2006年之间的每年平均新生、毕业生人数。
(2)5年来汽车系共有多少毕业生?(3)在哪几年,新生数目比毕业生多?(4)5年来每年的毕业生对新生的比例平均值为何?3.完成下列矩阵运算:(1) 使用randn 产生一个(10×10)的矩阵A(2) 计算B=(A+A ’)/2。
第4章数值运算习题 4 及解答1 根据题给的模拟实际测量数据的一组t和)(t y试用数值差分diff或数值梯度gradient指令计算)(t y',然后把)(t y和)(t y'曲线绘制在同一张图上,观察数值求导的后果。
(模拟数据从prob_data401.mat 获得)〖目的〗●强调:要非常慎用数值导数计算。
●练习mat数据文件中数据的获取。
●实验数据求导的后果●把两条曲线绘制在同一图上的一种方法。
〖解答〗(1)从数据文件获得数据的指令假如prob_data401.mat文件在当前目录或搜索路径上clearload prob_data401.mat(2)用diff求导的指令dt=t(2)-t(1);yc=diff(y)/dt; %注意yc的长度将比y短1plot(t,y,'b',t(2:end),yc,'r')grid on(3)用gradent 求导的指令(图形与上相似)dt=t(2)-t(1);yc=gradient(y)/dt;plot(t,y,'b',t,yc,'r')grid on〖说明〗● 不到万不得已,不要进行数值求导。
● 假若一定要计算数值导数,自变量增量dt 要取得比原有数据相对误差高1、2个量级以上。
● 求导会使数据中原有的噪声放大。
2 采用数值计算方法,画出dt tt x y x ⎰=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。
〖提示〗● 指定区间内的积分函数可用cumtrapz 指令给出。
● )5.4(y 在计算要求不太高的地方可用find 指令算得。
〖目的〗● 指定区间内的积分函数的数值计算法和cumtrapz 指令。
● find 指令的应用。
〖解答〗dt=1e-4;t=0:dt:10;t=t+(t==0)*eps;f=sin(t)./t;s=cumtrapz(f)*dt;plot(t,s,'LineWidth',3)ii=find(t==4.5);s45=s(ii)s45 =1.65413 求函数x ex f 3sin )(=的数值积分⎰=π0 )(dx x f s ,并请采用符号计算尝试复算。
《Simulink建模与仿真》§2.11、>> A=[1 2 3;4 5 6]A = 1 2 34 5 62、>> B=[1 2 3]B = 1 2 33、>> C=[4;5;6]C =4564、>> A(2,3)ans =6(说明:ans是answer的缩写,默认的输出符号)5、MATLAB中分号(;)的作用有两点:一是作为矩阵或向量的分行符,二是作为矩阵或向量的输出开关控制符。
即如果输入矩阵或向量后键入分号,则矩阵与向量不在MATLAB命令窗中显示,否别将在命令窗口中显示。
6、冒号操作符(:)的应用。
冒号操作符在建立矩阵的索引与引用时非常方便且直接。
如上述对多维矩阵F的建立中,冒号操作符表示对矩阵F第一维与第二维所有元素按照其顺序进行引用,从而对F进行快速赋值,无需一一赋值。
如>> B=2:5 %对向量进行赋值;B = 2 3 4 5>> B(1:3)=2 %向量B从第2个到第3个元素全部赋值为2B = 2 2 2 5>> C=6:-2:0 %将向量C放行递减赋值.初始值为6,终止位为0,步长为一2C = 6 4 2 07、冒号的使用很灵活:§2.2 矩阵单元的基本运算1、矩阵的加减法>>a=[1 2 3;4 5 6]a =1 2 34 5 6>> b=[0 2 1;2 5 3]b =0 2 12 5 3>> c=a+bc =1 4 46 10 9>> d=a-bd =1 0 22 0 3矩阵与标量的加法与减法是指标量本身与矩阵所有元素进行相应运算,如若B=1,则>> e=a+Be =2 3 45 6 72、矩阵的乘方与除法>>a =1 2 34 5 6>> b=[1 2;0 3;2 1]b =1 20 32 1>> c=a*bc =7 1116 29在Matlab中,矩阵除法有两种形式,即左除(\)和右除(/)。