弯曲与扭转组合变形实验0911
- 格式:ppt
- 大小:1.09 MB
- 文档页数:21
弯扭组合变形实验(内力素)变形实验是土木工程、机械结构与力学研究领域中应用广泛的手段之一,用以研究各类受力物体在外力作用下的内力及变形特性的变化。
在这项实验中,我们选取了一种特殊的变形实验,即弯曲扭组合变形实验(内力素),介绍如下:一、实验目的弯曲扭组合变形实验(内力素)主要用于研究材料在弯曲及扭转时结构上产生的内力与变形情况。
此类实验可以观察材料的强度特性,如材料的刚度、断裂强度特性及扭曲强度特性等,同时也可以帮助我们掌握材料的断裂模式,对设计及使用有较大的指导作用。
二、实验环境弯曲扭组合变形实验(内力素)需要使用相应的设备,其中最重要的是“弯曲扭组合变形实验仪”。
该仪器利用驱动力中心支撑件可搭载一条杆件,将外力施加在杆件上,以此来观察杆件内部的变形及产生的内力。
一次弯曲扭组合变形实验需要对一定大小的杆件、材料板及驱动力中心支撑件等设备进行安装。
三、实验步骤1. 安装杆件:先将杆件安装在驱动力中心支撑件上,然后用螺栓从外部将杆件支撑件固定,使之不受外力影响。
2. 加载实验:将所需外力施加到杆件上,通过驱动力中心支撑件将外力施加到杆件上。
外力的施加通常由步进电机控制。
3. 观测变形:采用轴心变形测量装置或激光测量仪探头来监测杆件的变形情况及内力的变化特点。
4. 结果分析:将获得的现场数据导入计算机进行分析,从而获得杆件内力与变形规律。
四、安全注意1. 操作者必须掌握实验知识,熟悉实验环境和安全注意事项,以减少可能发生的错误。
2. 使用完试验仪器后,应将电源断开以及必要的安全保险,以防事故发生。
3. 实验前,应当将实验杆件清理干净,对弯曲扭组合变形实验仪检查确认无损坏。
4. 建议实验过程中应有多人在场进行指导,以确保操作人员安全。
弯曲扭组合变形实验(内力素)是一种重要的变形实验方法,既可以让我们更好理解材料特性,也可以帮助优化结构设计,是一种十分有用的实验方法。
但是,实验中也有一定的危险性,因此实验中应加强安全注意。
弯扭组合实验实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT乐享科技弯扭组合实验实验报告经营管理乐享实验二弯扭组合试验一、实验目的1.用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角;2.测定圆轴上贴有应变片截面上的弯矩和扭矩;3.学习电阻应变花的应用。
二、实验设备和仪器1.微机控制电子万能试验机;2.电阻应变仪;3.游标卡尺。
三、试验试件及装置弯扭组合实验装置如图一所示。
空心圆轴试件直径D 0=42mm ,壁厚t=3mm , l 1=200mm ,l 2=240mm (如图二所示);中碳钢材料屈服极限s σ=360MPa ,弹性模量E =206GPa ,泊松比μ=。
图一 实验装置图四、实验原理和方法1、测定平面应力状态下一点处的主应力大小和主平面的方位角;圆轴试件的一端固定,另一端通过一拐臂承受集中荷载P ,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所示。
在圆轴某一横截面A -B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方向分别沿0°和±45°。
根据平面应变状态应变分析公式:αγαεεεεεα2sin 22cos 22xyyx yx --++=(1)可得到关于εx 、εy 、γxy 的三个线性方程组,解得:4545045450εεγεεεεεε-=-+==--xy y x (2)图三 应变花示意图图四 圆轴上表面微体的应力状xxxx 图五 圆轴下表面微体的应力状由平面应变状态的主应变及其方位角公式:2221222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεε (3)0min max 2()2()xy xyx y tg γγαεεεε=-=---或yx xy tg εεγα--=02 (4) 将式(2)分别代入式(3)和式(4),即可得到主应变及其方位角的表达式。
弯扭组合变形实验报告在科学研究领域中,变形实验是一种常见的实验方法,用于研究物体在外力作用下的变形规律。
而在变形实验中,弯扭组合变形实验是一种常见且重要的实验方法,可以用来研究材料的弯曲和扭转变形特性。
本报告将对弯扭组合变形实验进行详细的描述和分析。
我们需要了解弯扭组合变形实验的基本原理。
在弯扭组合变形实验中,试样将同时受到弯曲和扭转的作用,这种双重变形方式会导致试样表面和内部的变形状态复杂多样。
通过对试样进行弯扭组合变形实验,可以得到材料在不同变形模式下的力学性能参数,如弯曲强度、扭转强度等,从而更全面地了解材料的力学性能。
弯扭组合变形实验的操作步骤也非常关键。
首先,需要选择合适的试样形状和尺寸,然后将试样固定在试验机上,施加合适的弯曲和扭转载荷,同时记录试样的变形情况和载荷大小。
在实验过程中,需要确保试样受力均匀,避免出现局部过载或集中变形的情况,以保证实验结果的准确性和可靠性。
在进行弯扭组合变形实验时,需要注意一些实验技巧。
首先,应该根据试样的材料和形状特性合理选择试验条件,如载荷大小、加载速度等,以确保实验结果具有代表性。
其次,在实验过程中应及时观察试样的变形情况,注意是否出现裂纹或变形不均匀的现象,及时调整实验条件以保证实验的顺利进行。
在实验结束后,需要对实验数据进行分析和处理。
通过对试样在弯扭组合变形过程中的力学性能参数进行计算和统计,可以得到材料的弯曲和扭转性能指标,如弯曲模量、扭转刚度等。
这些数据对于材料的设计和应用具有重要的参考价值,可以帮助工程师更好地选择和使用材料。
总的来说,弯扭组合变形实验是一种重要的材料力学性能测试方法,通过该实验可以全面了解材料在弯曲和扭转载荷下的性能表现。
在进行弯扭组合变形实验时,需要注意选择合适的试验条件、掌握实验技巧,并对实验数据进行准确分析和处理。
希望本报告对弯扭组合变形实验有所帮助,能够促进材料力学性能研究的进展。
实验名称:弯扭组合变形实验一、实验目的:1. 通过实验,了解和掌握材料在弯扭组合变形下的力学性能。
2. 熟悉和掌握弯扭组合变形的测量方法和数据处理技巧。
3. 通过实验,验证理论知识和计算方法的正确性。
二、实验设备:1. 材料试验机2. 弯曲和扭转加载装置3. 千分尺4. 数据记录仪三、实验材料:1. 实验材料为Q235钢,其化学成分和力学性能如下:-碳(C)含量:0.12%-锰(Mn)含量:0.3%-硅(Si)含量:0.3%-磷(P)含量:0.035%-硫(S)含量:0.035%-屈服强度:235MPa-抗拉强度:375MPa-伸长率:26%四、实验步骤:1. 将试样安装在试验机上,确保试样与加载装置之间的接触良好。
2. 设置试验机的弯曲和扭转加载参数,包括加载速度、加载时间等。
3. 开始加载,同时记录试样的弯曲和扭转角度以及载荷大小。
4. 当试样发生断裂时,停止加载,记录断裂载荷和断裂角度。
5. 清理实验现场,整理实验数据。
五、实验数据:1. 试样尺寸:长度100mm,宽度10mm,厚度2mm。
2. 弯曲加载参数:加载速度1mm/min,加载时间1min。
3. 扭转加载参数:加载速度1r/min,加载时间1min。
4. 实验数据记录如下:-弯曲角度:0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。
-扭转角度:0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。
-弯曲载荷:0N,2.5N,5N,7.5N,10N,12.5N,15N,17.5N,20N,22.5N,25N,27.5N,30N。
弯扭组合变形实验报告在本次实验中,我们将探讨弯扭组合变形的现象及其可能的影响。
弯扭组合变形是一种常见的材料变形方式,特别是在金属材料中。
通过施加弯曲和扭转力,可以使材料发生复杂的变形,这既可以用于制造工艺中,也可以用于材料性能的研究。
我们进行了一组简单的实验,选取了不同种类的金属材料进行弯扭组合变形。
通过在材料上施加不同方向和大小的力,我们观察到了材料发生的变形情况。
在弯曲力的作用下,材料产生了弯曲变形,而扭转力则使材料发生了扭转变形。
当两种力同时作用在材料上时,就会出现弯扭组合变形的情况,这种变形形式更加复杂,具有更多的变形模式。
接着,我们对不同金属材料在弯扭组合变形过程中的性能进行了比较。
我们发现,一些材料在受到弯扭组合变形后,其强度和硬度有所提高,但塑性却有所下降。
这说明弯扭组合变形可以提高材料的强度,但也可能导致其脆性增加。
而对于另一些材料来说,弯扭组合变形后,其塑性反而有所提高,但强度和硬度可能会降低。
因此,在实际应用中,需要根据具体材料的性能需求来选择是否采用弯扭组合变形工艺。
我们还研究了弯扭组合变形对材料微观结构的影响。
通过金相显微镜的观察,我们发现在弯扭组合变形后,材料的晶粒结构发生了明显的变化。
晶粒可能会发生细化,晶界的移动和变形也会加剧。
这些微观结构的变化对材料的性能有着重要影响,因此对于材料的微观结构进行研究是十分必要的。
总的来说,弯扭组合变形是一种重要的材料变形方式,可以有效改善材料的性能,但也可能导致一些负面影响。
因此,在工程实践中,需要充分考虑弯扭组合变形对材料性能的影响,合理选择工艺参数,以实现最佳的效果。
希望通过本次实验,可以更深入地了解弯扭组合变形的机理及其在材料加工中的应用。
弯扭组合变形实验报告薄壁圆管弯扭组合变形应变测定实验一.实验目的1.用电测法测定平面应力状态下主应力的大小及方向;2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力。
二.实验仪器和设备1.弯扭组合实验装置;2.YJ-4501A/SZ 静态数字电阻应变仪。
三.实验原理薄壁圆管受力简图如图1所示。
薄壁圆管在P 力作用下产生弯扭组合变形。
薄壁圆管材料为铝合金,其弹性模量E为72 2m GN , 泊松比μ为0.33。
薄壁圆管截 图1面尺寸、如图2所示。
由材料力学分析可知,该截面上的内力有弯矩、剪力和扭矩。
Ⅰ-Ⅰ截面现有A 、B 、C 、D 四个测点,其应力状态如图3所示。
每点处已按 –450、00、+450方向粘贴一枚三轴450应变花,如图4所示。
图2 图3 图4四.实验内容及方法1. 指定点的主应力大小和方向的测定薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。
若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为()()()⎥⎦⎤⎢⎣⎡-+--±++-=--245020454*******1211εεεεμεεμμσσE主应力方向计算公式为()()04545045452εεεεεεα----=--tg 或()45450454522εεεεεα+---=--tg2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变 2MdM εε=然后由虎克定律可求得弯矩M 引起的正应力2MdM M E E εεσ== b. 扭矩M n 引起的剪应力的测定 图5 用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可测得扭矩M n 在450方向所引起的线应变 4ndn εε=由广义虎克定律可求得剪力M n 引起的剪应力 ()214nd nd n G E εμετ=+=c. 剪力Q 引起的剪应力的测定用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的线应变 4QdQ εε=由广义虎克定律可求得剪力Q 引起的剪应力 ()214QdQd Q G E εμετ=+=五.实验步骤1. 接通测力仪电源,将测力仪开关置开。