2008年高考数学试卷(湖南.文)含详解
- 格式:doc
- 大小:774.00 KB
- 文档页数:10
y2008高考湖南理科数学试题及详解一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数31()i i-等于( )A.8B.-8C.8iD.-8i【答案】D【解析】由33412()()88ii i ii i--==-⋅=-,易知D 正确. 2.“12x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】B【解析】由12x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B.3.已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( )A.2B.5C.6D.8【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,4),(3,3),代入验证知在点(3,3)时,x y +最大值是33 6.+=故选C.4.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( )A.1B.2C.3D.4【答案】B【解析】2(2,3)N ⇒12(1)1(1)(),3c P c P c ξξ+->+=-≤+=Φ 12(1)(),3c P c ξ--<-=Φ31()()1,33c c --∴Φ+Φ= 311()()1,33c c --⇒-Φ+Φ=解得c =2, 所以选B.5.设有直线m 、n 和平面α、β.下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m∥α【答案】D【解析】由立几知识,易知D 正确.6.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A.1B.12+ C.32【答案】C 【解析】由1cos 21()2sin(2)2226x f x x x π-=+=+-, 52,42366x x πππππ≤≤⇒≤-≤max 13()1.22f x ∴=+=故选C. 7.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】由定比分点的向量式得:212,1233AC AB AD AC AB +==++112,33BE BC BA=+12,33CF CA CB=+以上三式相加得1,3AD BE CF BC++=-所以选A.8.若双曲线22221x ya b-=(a>0,b>0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)【答案】B【解析】233,22aex a e a a ac-=⨯->+23520,e e⇒-->2e∴>或13e<-(舍去),(2,],e∴∈+∞故选B.9.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD,AA1=1,则顶点A、B间的球面距离是()C.2D.4【答案】C【解析】112BD AC R===R∴=设11,BD AC O=则OAOB R===,2AOBπ⇒∠=,2l Rπθ∴==故选C.10.设[x]表示不超过x的最大整数(如[2]=2, [54]=1),对于给定的n∈N*,定义[][](1)(1),(1)(1)xnn n n xCx x x x--+=--+x∈[)1,+∞,则当x∈3,32⎡⎫⎪⎢⎣⎭时,函数x n C的值域是( )A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⋃⎪⎝⎭[)28,56 D.16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦【答案】D【解析】当x∈3,22⎡⎫⎪⎢⎣⎭时,328816,332C==当2x→时,[]1,x=所以8842xC==;当[)2,3时,288728,21C⨯==⨯当3x→时,[]2,x=88728,323xC⨯==⨯故函数xC8的值域是16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦.选D.二、填空题:本大题共5小题,每小题5分,共25分。
y2008高考湖南理科数学试题及全解全析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数31()i i -等于( )A.8B.-8C.8iD.-8i 【答案】D【解析】由33412()()88i i i i i i--==-⋅=-,易知D 正确. 2.“12x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件 B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件【答案】B【解析】由12x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B.3.已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( )A.2B.5C.6D.8 【答案】C 【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,4),(3,3),代入验证知在点 (3,3)时,x y +最大值是33 6.+=故选C. 4.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( )A.1B.2C.3D.4【答案】B【解析】2(2,3)N ⇒12(1)1(1)(),3c P c P c ξξ+->+=-≤+=Φ 12(1)(),3c P c ξ--<-=Φ31()()1,33c c --∴Φ+Φ= 311()()1,33c c --⇒-Φ+Φ=解得c =2, 所以选B.5.设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α【答案】D【解析】由立几知识,易知D 正确.6.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1 C. 32【答案】C【解析】由1cos 21()2sin(2)2226x f x x x π-=+=+-, 52,42366x x πππππ≤≤⇒≤-≤max 13()1.22f x ∴=+=故选C. 7.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】由定比分点的向量式得:212,1233AC AB AD AC AB +==++ 12,33BE BC BA =+12,33CF CA CB =+以上三式相加得 1,3AD BE CF BC ++=-所以选A. 8.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点的距离 大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)1【答案】B【解析】233,22aex a e a a ac-=⨯->+23520,e e⇒-->2e∴>或13e<-(舍去),(2,],e∴∈+∞故选B.9.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD,AA1=1,则顶点A、B间的球面距离是()C.2D.4【答案】C【解析】112BD AC R===R∴=设11,BD AC O=则OA OB R===,2AOBπ⇒∠=,2l Rπθ∴==故选C.10.设[x]表示不超过x的最大整数(如[2]=2, [54]=1),对于给定的n∈N*, 定义[][](1)(1),(1)(1)xnn n n xCx x x x--+=--+x∈[)1,+∞,则当x∈3,32⎡⎫⎪⎢⎣⎭时,函数8x C的值域是( )A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⋃⎪⎝⎭[)28,56 D.16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦【答案】D【解析】当x∈3,22⎡⎫⎪⎢⎣⎭时,328816,332C==当2x→时,[]1,x=所以8842xC==;当[)2,3时,288728,21C⨯==⨯当3x→时,[]2,x=88728,323xC⨯==⨯故函数xC8的值域是16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦.选D.二、填空题:本大题共5小题,每小题5分,共25分。
y2008高考湖南理科数学试题及全解全析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数31()i i-等于( )A.8B.-8C.8iD.-8i【答案】D【解析】由33412()()88ii i ii i--==-⋅=-,易知D 正确. 2.“12x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】B【解析】由12x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B.3.已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( )A.2B.5C.6D.8【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,4),(3,3),代入验证知在点(3,3)时,x y +最大值是33 6.+=故选C.4.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( )A.1B.2C.3D.4【答案】B 【解析】2(2,3)N ⇒12(1)1(1)(),3c P c P c ξξ+->+=-≤+=Φ 12(1)(),3c P c ξ--<-=Φ31()()1,33c c --∴Φ+Φ= 311()()1,33c c --⇒-Φ+Φ=解得c =2, 所以选B.5.设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α 【答案】D【解析】由立几知识,易知D 正确.6.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1 C.32【答案】C【解析】由1cos 21()2sin(2)2226x f x x x π-=+=+-, 52,42366x x πππππ≤≤⇒≤-≤max 13()1.22f x ∴=+=故选C. 7.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】由定比分点的向量式得:212,1233AC AB AD AC AB +==++12,33BE BC BA =+12,33CF CA CB =+以上三式相加得1,3AD BE CF BC ++=-所以选A.8.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)1【答案】B【解析】233,22aex a e a a ac-=⨯->+23520,e e⇒-->2e∴>或13e<-(舍去),(2,],e∴∈+∞故选B.9.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD,AA1=1, 则顶点A、B间的球面距离是()C.2D.4【答案】C【解析】112BD AC R===R∴=设11,BD AC O=则OAOB R===,2AOBπ⇒∠=,2l Rπθ∴==故选C.10.设[x]表示不超过x的最大整数(如[2]=2, [54]=1),对于给定的n∈N*, 定义[][](1)(1),(1)(1)xnn n n xCx x x x--+=--+x∈[)1,+∞,则当x∈3,32⎡⎫⎪⎢⎣⎭时,函数8x C的值域是( )A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⋃⎪⎝⎭[)28,56 D.16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦【答案】D【解析】当x∈3,22⎡⎫⎪⎢⎣⎭时,328816,332C==当2x→时,[]1,x=所以8842xC==;当[)2,3时,288728,21C⨯==⨯当3x→时,[]2,x=88728,323xC⨯==⨯故函数xC8的值域是16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦.选D.二、填空题:本大题共5小题,每小题5分,共25分。
数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.223 B.23 C.24 D.13(7)函数y =cos x (x ∈R)的图象向左平移2个单位后,得到函数y=g(x )的图象,则g(x )的解析式为A.-sin xB.sin xC.-cos xD.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 3,则角B 的值为A.6πB.3πC.6π或56πD.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x、y满足10,0,2,x yxx-+≤⎧⎪⎨⎪≤⎩则yx的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f(x)的图象如右图,那么导函数y=f(x)的图象可能是(12)双曲线22221x ya b-=(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PE2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)(x+1x)9展开式中x2的系数是.(用数字作答)(14)若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是 . (153,则其外接球的表面积是.(16)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、ab∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD 2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11,n n a a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为B.23D.13解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==11AA = 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π解:由222a +c -b得222(a +c -b )2ac即cos =2B ,6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)AA解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。
绝密★启用前2008年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注间事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设(1,2),(3,4),(3,2),(2)a b c a b c =-=-=+=则A.(15,12)-B.0C.-3D.-112. 321(2)2x x-的展开式中常数项是 A.210 B.1052 C.14D.-1053.若集合{1,2,3,4},{05,},P Q x x x R ==<<∈则 A. “x R ∈”是“x Q ∈”的充分条件但不是必要条件 B. “x R ∈”是“x Q ∈”的必要条件但不是充分条件 C. “x R ∈”是“x Q ∈”的充要条件D. “x R ∈”既不是“x Q ∈”的充分条件也不是“x Q ∈”的必要条件 4.用与球必距离为1的平面去截面面积为π,则球的体积为 A.323πB.83πC.D. 35.在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨⎪⎩的点(,)x y 的集合用阴影表示为下列图中的6.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A.-2 B.2 C.-98 D.98 7.将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是A.512π B.512π- C.1112π D.1112π-8. 函数221()1(32)34f x n x x x x x=-++--+的定义域为A.(,4][2,)-∞-+∞B. (4,0)(0,1)-⋃C.[4,0)(0,1]-D.[4,0)(0,1]-⋃9.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为A.100B.110C.120D.180 10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子: ①1122;a c a c +=+②1122;a c a c -=-③1212;c a a c >④1212.c c a a <其中正确式子的序号是 A.①③ B.②③ C.①④ D.②④二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上.11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 . 12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,3,30,a b c ===︒则A = . 13.方程223xx -+=的实数解的个数为 .14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 . 15.圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 ,和圆C 关于直线0x y -=对称的圆C ′的普通方程是 .三、解答题:本大题共6分小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满12分) 已知函数2()sincos cos 2.222x x xf x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ωϕϕϕπ++>>∈的形式,并指出()f x 的周期;(Ⅱ)求函数17()[,]12f x ππ在上的最大值和最小值 17.(本小题满分12分)已知函数322()1f x x mx m x =+-+(m 为常数,且m >0)有极大值9. (Ⅰ)求m 的值;(Ⅱ)若斜率为-5的直线是曲线()y f x =的切线,求此直线方程. 18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11.A ABB (Ⅰ)求证: ;AB BC ⊥(Ⅱ)若1AA AC a ==,直线AC 与平面1A BC 所成的角为θ,二面角1,.2A BC A πϕθϕ--+=的大小为求证:19.(本不题满分12分)如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,怎样确定广告的高与宽的尺寸(单位:cm ),能使矩形广告面积最小?20(本小题满分13分)已知双同线2222:1(0,0)x y C a b a b-->>的两个焦点为:(2,0),:(2,0),(3,7)F F P -点的曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为22,求直线l 的方程 21.(本小题满分14分)已知数列12{}{},13n n x a b a an a λ=+=和满足:4,(1)(321)n n n n n b a n +-=--+,其中λ为实数,n 为正整数.(Ⅰ)证明:当18{}n b λ≠-时,数列是等比数列;(Ⅱ)设n S 为数列{}n b 的前n 项和,是否存在实数λ,使得对任意正整数n ,都有 12?n S >-若存在,求λ的取值范围;若不存在,说明理由.2008年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.第小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.A 7.A 8.D 9.B 10.B二、填空题:本题考查基础知识和基本运算,第小题5分,满分25分. 11.1012.30°(或6π) 13.2 14.0.9815.(3,-2),(x +2)2+(y -3)2=16(或x 2+y 2+4x -6y -3=0)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设(1,2),(3,4),(3,2),(2)a b c a b c =-=-=+=则A.(15,12)-B.0C.3-D.11- 解:2(1,2)2(3,4)(5,6)a b +=-+-=-,(2)(5,6)(3,2)3a b c +=-⋅=-,选C2. 31021(2)2x x -的展开式中常数项是 A.210 B.1052 C.14 D.-105解:31010320211010211(2)()2()22r r r r rr r r r T C x C x x ---++=-=-,令32020r r -+=得4r =所以常数项为4410451011052()22T C -=-=3.若集合{1,2,3,4},{05,},P Q x x x R ==<<∈则 A. “x R ∈”是“x Q ∈”的充分条件但不是必要条件 B. “x R ∈”是“x Q ∈”的必要条件但不是充分条件 C. “x R ∈”是“x Q ∈”的充要条件D. “x R ∈”既不是“x Q ∈”的充分条件也不是“x Q ∈”的必要条件 解:x P x Q ∈⇒∈反之不然故选A4.用与球心距离为1的平面去截面面积为π,则球的体积为A.323πB.83πC.D. 3解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒,所以根据球的体积公式知348233R V ππ==,故D 为正确答案. 5.在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨<⎪⎩的点(,)x y 的集合用阴影表示为下列图中的解:在坐标系里画出图象,C 为正确答案。
y 2008高考湖南理科数学试题及全解全析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数31()i i -等于( )A.8B.-8C.8iD.-8i【答案】D【解析】由33412()()88i i i i ii--==-⋅=-,易知D 正确.2.“12x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】B【解析】由12x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B. 3.已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( )A.2B.5C.6D.8【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,4),(3,3),代入验证知在点(3,3)时,x y +最大值是33 6.+=故选C.4.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( )A.1B.2C.3D.4【答案】B【解析】2(2,3)N ⇒ 12(1)1(1)(),3c P c P c ξξ+->+=-≤+=Φ12(1)(),3c P c ξ--<-=Φ31()()1,33c c --∴Φ+Φ=311()()1,33c c --⇒-Φ+Φ=解得c =2, 所以选B.5.设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α 【答案】D【解析】由立几知识,易知D 正确. 6.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1B.2C.32【答案】C【解析】由1cos 21()sin 2sin(2)2226xf x x x π-=+=+-,52,42366x x πππππ≤≤⇒≤-≤m ax 13()1.22f x ∴=+=故选C. 7.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,D C BD =2,C E E A =2,AF FB =则AD BE CF ++ 与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】由定比分点的向量式得:212,1233AC AB AD AC AB +==++12,33B E B C B A =+ 12,33C F C A C B =+以上三式相加得1,3A DB EC F B C ++=-所以选A.8.若双曲线22221x y ab-=(a >0,b >0)上横坐标为32a 的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( )A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)1【答案】B【解析】233,22aex a e a a ac-=⨯->+23520,e e⇒-->2e∴>或13e<-(舍去),(2,],e∴∈+∞故选B.9.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD,AA1=1, 则顶点A、B间的球面距离是()A.2B.2D.4【答案】C【解析】112BD AC R===R∴=设11,BD AC O=则O A O B R===,2A O Bπ⇒∠=,2l Rπθ∴==故选C.10.设[x]表示不超过x的最大整数(如[2]=2, [54]=1),对于给定的n∈N*, 定义[][](1)(1),(1)(1)xnn n n xCx x x x--+=--+x∈[)1,+∞,则当x∈3,32⎡⎫⎪⎢⎣⎭时,函数8xC的值域是( )A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⋃⎪⎝⎭[)28,56 D.16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦【答案】D【解析】当x∈3,22⎡⎫⎪⎢⎣⎭时,328816,332C==当2x→时,[]1,x=所以8842xC==;当[)2,3时,288728,21C⨯==⨯当3x→时,[]2,x=88728,323xC⨯==⨯故函数xC8的值域是16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦.选D.二、填空题:本大题共5小题,每小题5分,共25分。
2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用) 第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数y=(x +1)(x-a )为偶函数,则a = (A)-2 (B) -2 (C)1 (D)2(3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k )(C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,x =log a 2log a 3,y =,5log 21a z =loga 3,则 (A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且AD BC 2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞+∞的反函数是 .(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BCA 、C 两点的球面距离为3π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3c C π==. (Ⅰ)若△ABC,求a ,b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积. (18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:频数205030(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?⊥此时||的值是多少?(22)(本小题满分14分)设函数f (x )=ax 3+bx 2-3a 2x +1(a 、b ∈R )在x =x 1,x =x2处取得极值,且|x 1-x 2|=2. (Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k kn k n n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N =( D )A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <答案:D解析:本小题主要考查集合的相关运算知识。
2008年普通高等学校招生全国统一考试(陕西卷)文科数学(必修+选修Ⅰ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.sin330︒等于( B ) A.B .12-C .12D解:1sin 330sin 302︒=-=-2.已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合()UA B =( D )A .{3}B .{4,5}C .{3,4,5}D .{1245},,,解:{1,3}A =,{3,4,5}B ={3}A B ⇒=所以()UA B ={1245},,,3.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 解:设样本中松树苗的数量为x ,则15020300004000xx =⇒=4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B ) A .64B .100C .110D .120解:设公差为d ,则由已知得112421328a d a d +=⎧⎨+=⎩1101109101210022a S d =⎧⨯⇒⇒=⨯+⨯=⎨=⎩ 50y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A或 B.或C.-D.-解:圆的方程22(1)3x y -+=,圆心(1,0)到直线的距离等于半径m⇒==m ⇒=m ⇒=-6.“1a =”是“对任意的正数x ,21ax x+≥”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:1a=1221a x x x x ⇒+=+≥=>,显然2a =也能推出,所以“1a =”是“对任意的正数x ,21ax x+≥”的充分不必要条件。
绝密★启用前2008年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号两位。
2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂具他答案标号。
3.答第Ⅱ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色笔迹签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草....................稿纸上答题无效.......。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:如果事件A、B互斥,那么球的表面积公式S=4πR2P(A+B)=P(A)+P(B)其中R表示球的半径如果事件A、B相互独立,那么球的体积公式V=43πR2P(A·B)=P(A)·P(B)球的体积公式V=43πR2其中R表示球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)若A为全体正实数的集合,B=(-2,-1,1,2),则下列结论中正确的是(A)A∩B={-2,-1} (B)(C R A)∪B=(-∞,0)(C)A∪B={0,+∞} (D)(C R A)∩B={-2,-1}(2)若AB=(2,4),AC=(1,3),则BC=(A)(1,1)(B)(-1,-1)(C)(3,7)(D)(-3,-7)(3)已知m,n是两条不同直线,α,β,Υ是三个不同平面.下列命题中正确的是(A)若α⊥Υ,β∥Υ,则α∥β(B)若m⊥α,n⊥α,则m∥n(C)若m∥α,n∥α,则m∥n (D)若m∥α,m∥β,则a∥β(4)a<0是方程ax2+1=0有一个负数根的(A)必要不充分条件(B)充分必要条件(C)充分不必要条件(D)既不充分也不必要条件(5)在三角形ABC中,AB=5,AC=3,BC=7,则∠BAC大小为(A)23π(B)56π(C)34π(D)3π(6) 函数f(x)=(-1)2+1(x≤0)的反函数为(A)f--1(x)=1-(x≥1) (B) f--2(x)=1+(x≥1)(C )f --1(x(x ≥2) (B) f --1(x)=1+(x ≥2)(7)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1, …a 8中奇数的个数为 (A)2 (B)3 (C)4 (D)5(8)函数y=sin (2x +3π)图象的对称轴方程可能是 (A )x =-6π (B )x =-12π (C )x =6π(D )x=12π(9)设函数数f (x )=2x +1x-1(x <0),则f (x )(A)有最大值 (B )有最小值 (C )是增函数(D )是减函数(10)若过A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为(A )((B )[] (C )((D )[] (11)若A 为不等式组 0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x+y =a 扫过A 中的那部分区域的面积为 (A )34 (B)1 (C)74(D)212.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数为(A )C 38A 66 (B )C 23A 23 (C )C 28A 26 (D )C 28A 25(在此卷上答题无效) 绝密★启用前2008年普通高等学校招生全国统一考试(安徽卷) 数 学(文科)第Ⅱ卷(非选择题 共90分) 考生注意事项:请用0.5毫米黑色笔迹签字在答题卡上作答,在试题卷上答题无效.................. 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)函数的定义域为 .(14)已知双曲线2212x y n n--=1的离心率为3,则n = (15)在数列{a n }中,a n =4n -52,a 1+ a 2+…+ a a =an 2+bn ,n ∈N *,其中a ,b 为常数,则ab = .(16)已知点A ,B ,C ,D 在同一球面上,AB ⊥平面BCD ,BC ⊥CD .若AB =6,AC =213,AD =8,则B ,C 两点间的球面距离是 .三、解答题本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 已知函数f (x )=cos(2x -3π)+2sin(x -4π)sin(x -4π). (Ⅰ)求函数f (x )的最小正周期; (Ⅱ)求函数f (x )在区间[-12π,2π]上的值域. (18)(本小题满分12分)在某次普通话测试中,为测试字发音水平,设置了10张卡片,每张卡片上印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片中随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行,求这二位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率;(Ⅱ)若某位被测试者从这10张卡片中一次随机抽取3张,求这3张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率.(19)(本小题满分12分)如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =4π,OA ⊥底面ABCD ,OA =2,M 为OA 的中点. (Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离.(20)(本小题满分12分) 已知函数f (x )=323(1)132a x x a x -+++,其中a 为实数. (Ⅰ)已知函数f (x )在x =1处取得极值,求a 的值;(Ⅱ)已知不等式2()1f x x x a '--+>对任意(0,)a ∈+∞都成立,求实数x 的取值范围.(21)(本小题满分12分)设数列{a n }满足a 1=a , a n+1=ca n +1-c , n ∈N*,其中a ,c 为实数,且c ≠0. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设11,,(1),22n n a e b n a n ===-∈N*,求数列{b n }的前n 项和S n ; (Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c ≤1.(22)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ; (Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求AB DE +的最小值.详解如下:一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).若A 为位全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)RC A B =-∞C .(0,)AB =+∞D . }{()2,1R C A B =-- 解:R C A 是全体非正数的集合即负数和0,所以}{()2,1R C A B =--(2).若(2,4)AB =,(1,3)AC =, 则BC =( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)解:向量基本运算 (1,3)(2,4)(1,1)BC AC AB =-=-=--(3).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖解:定理:垂直于一个平面的两条直线互相平行,故选B 。
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3B .6C .9D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C 2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式4.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C 【解析】由0ln 111<<-⇒<<-x x e,令x t ln =且取21-=t 知b <a <c6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算 9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C 【易错提醒】容易漏掉1414C C 项或该项的负号10.函数x x x f cos sin )(-=的最大值为( ) A .1 B .2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题 11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AE OA OE ,∴321=O O 【高考考点】球的有关概念,两平面垂直的性质13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .【答案】 2 【解析】设过M的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴k x x 421=+,2221)1(4kk x x -=,由题意144=⇒=k k ,于是直线方程为x y = 421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴ABF △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ················································································ 3分 由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++,··································································· 2分 112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分(Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=,332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分 20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥. ········································································· 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分EF =CE CF CG EF ⨯==EG ==. AB CDEA 1B 1C 1D 1 FH G13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113AG AC CG =-=.11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DBDE D =,所以1AC ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42AC AC AC <>==,n n n 所以二面角1A DE B --的大小为arccos42. ················································· 12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,, 26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g . 综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=, 故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==······················································· 9分又AB ==AEBF 的面积为121()2S AB h h =+ 1525(14k =+==≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。
绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。
第Ⅰ卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kk n k n n P k C p p -=-一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.“x y =”是“x y =”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为A .0B .2C .3D .6 3.若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是 A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)4.若01x y <<<,则A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y<5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 6.函数sin ()sin 2sin2x f x xx =+是A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数7.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C. D. 8.10101(1)(1)x x++展开式中的常数项为A .1B .1210()C C .120C D .1020C 9.设直线m 与平面α相交但不.垂直,则下列说法中正确的是 A .在平面α内有且只有一条直线与直线m 垂直 B .过直线m 有且只有一个平面与平面α垂直 C .与直线m 垂直的直线不.可能与平面α平行 D .与直线m 平行的平面不.可能与平面α垂直 10.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是11.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为A .1180B .1288C .1360D .148012.已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是A . [4,4]-B .(4,4)-C . (,4)-∞D .(,4)-∞-ABCD-绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)文科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。
2008年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共10小题,第小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},则 A.M ∩N ={4,6}B.M ∪N =UC.( U N )∪M =UD. ( U N )∩N =N【B 】2.“|x -1|<2”是“x <3”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D.即不充分也不必要条件【A 】3.已知变量x 、y 满足条件⎪⎩⎪⎨⎧≤-≤≥,,,021y x y x 则x +y 是最小值是A.4B.3C.2D.1 【C 】4.函数f (x )=x 2(x ≤0)的反函数是A. f -1(x )=x (x ≥0)B. f -1 (x )= -x (x ≥0)C. f -1(x )=x (x ≤0)D. f -1(x )= x 2(x ≤0)【B 】5.已知直线m 、n 和平面α、β满足m ⊥n ,α⊥β,则 A. n ⊥βB. n ∥β或n βC. n ⊥αD. n ∥α或n α【D 】6.下列不等式成立的是 A.log 32<log 23<log 25 B.log 32<log 25<log 23 C.log 23<log 32<log 25D.log 23<log 25<log 32【A 】7.在ΔABC 中,AB =3,AC =2,BC =10,则=∙AC AB A.23-B.32-C.32 D.23 【D 】8.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度要启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法的种数是 A.15B.45C.60D.75【C 】9.长方体ABCD -A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =3,AA 1=1,则顶点A 、B 间的球面距离是 A.42π B.22πC.π2D.π22【B 】10.若双曲线12222=-by a x (a >0,b >0)的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是 A.(]2,1B.[)+∞,2C.(]12,1+D.[)+∞+,12【C 】二、填空题:本大题共5小题,第小题5分,共25分.把答案填在横线上. 11.已知向量a =(1,3),b =(-2,+∞),则|a +b |= 2 .12.从某地区.则该地区生活不能自理的老人中男性比女性约多 60 人. 13.记(2x +x1)n的展开式中第m 项的系数为b m ,若b 2=2b 4,则n = 5 . 14.将圆x 2+y 2=1沿x 轴正向平移1个单位后得到圆C ,则圆C 的方程是(x -1)2+y 2=1;若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率是3333-或.15.设[x ]表示不超过x 的最大整数(如[2]=2,[45]=1),对于给定的n ∈N*,定义)1][()1()1][()1(C +-⋯-+-⋯-=x x x x x n n n x n,x ∈[1,+∞),则231C =316;当x [2,3)时,函数x1C 的值域是⎥⎦⎤ ⎝⎛28,318. 三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是21,且面试是否合格互不影响.求: (Ⅰ)至少有1人面试合格的概率: (Ⅱ)没有人签约的概率.解 用A ,B ,C 分别表示事件甲、乙、丙面试合格.由题意知A ,B ,C 相互独立,且P (A )=P (B )=P (C )=21. (Ⅰ)至少有1人面试合格的概率是1-P (C B A ) =1-87)21(1)()()(3===C P B P A P . (Ⅱ)没有人签约的概率为)()()(C B A P C B A P C B A P ++=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ++ =83)21()21()21(333=++ 17.(本小题满分12分) 已知函数f (x )=cox 2.sin 2sin 22x xx +- (Ⅰ)求函数f (x )的最小正周期; (Ⅱ)当x 0∈(0,4π)且f (x 0)=524时,求f (x 0+6π)的值.解 由题设有f (x )=cos x +sin x =)4sin(2π+x .(Ⅰ)函数f (x )的最小正周期是T =2x . (Ⅱ)由f (x 0)=524得524)4sin(20=+πx ,即sin .54)4(0=+πx 因为x 0∈(0,4π),所以).2,4(40πππ∈+x从而cos 53)54(1)4(sin 1)4(2020=-=+==+ππx x .于是]6)4sin[(2)46sin(2)4(000πππππ++=++=+x x x f]6sin )4cos(6cos )4[sin(200ππππ+++=x x102364)21532354(2+=⨯+⨯=18.(本小题满分12分)如图所示,四棱锥P -ABCD 的底面积ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面积ABCD ,P A =3.(Ⅰ)证明:平面PBE ⊥平面P AB ; (Ⅱ)求二面角A -BE -P 的大小.解 解法一(Ⅰ)如图年示,连结BD ,由ABCD 是菱形且∠BCD =60°知,ΔBCD 是等边三角形.因为E 是CD 的中点,所以BE ⊥CD ,又AB ∥CD ,所以BE ⊥AB .又因为P A ⊥平面ABCD ,BE 平面ABCD ,所以P A ⊥BE .而P A ∩AB=A ,因此BE ⊥平面P AB .又BE 平面PBE ,所以平面PBE ⊥平面P AB .(Ⅱ)由(Ⅰ)知,BE ⊥平面P AB ,PB 平面P AB ,所以PB ⊥BE . 又AB ⊥BE ,所以∠PBA 是二面角A -BE -P 的平面角. 在Rt ΔP AB 中,tan ∠PBA =3=ABPA,∠PBA =60°. 故二面角A -BE -P 的大小是60°.解法二 如图所示,以A 为原点,建立空间直角坐标系.则相关各点的坐标分别是A (0,0,0),B (1,0,0),C (0,23,23),D (0,23,21),P (3,0,0),E (0,23,1). (Ⅰ)因为)0,23,0(=BE ,平面P AB 的一个法向量是0n =(0,1,0),所以BE 和0n 共线.从而BE ⊥平面P AB .又因为BE 平面BEF ,所以平面PBE ⊥平面P AB .(Ⅱ)易知PB), BE =(0,122,0), 设1n =(x 1,y 1,z 1)是平面PBE的一个法向量,则有1111100,000.x y x y z ⎧+⨯=⎪⎨⨯+⨯=⎪⎩ 所以y 1=0,x 11.故可取1n,0,1). 而平面ABE 的一个法向量是2n =(0,0,1). 于是,cos <1n ,2n >=12121||2n n n n =||.故二面角A-BE-P 的大小是60.19.(本小题满分13分)已知椭圆的中心在原点,一个焦点是F (2,0),且两条准线间的距离为λ(λ>4). (Ⅰ)求椭圆的方程;(Ⅱ)若存在过点A (1,0)的直线l ,使点F 关于直线l 的对称点在椭圆上,求λ的取值范围.解 (Ⅰ)设椭圆的方程为22221x y a b +=(a >b >0).由条件知c =2,且22a c=λ,所以a 2=λ,b 2=a 2-c 2=λ-4.故椭圆的方程是221(4).4x y λλλ+=-> (Ⅱ)依题意,直线l 的斜率存在且不为0,记为k ,则直线l 的方程是y=k(x-1).设点F (2,0)关于直线l 的对称点为F 2(x 0,y 0),则00002(1),221.2y x k yk x +⎧=-⎪⎪⎨⎪=--⎪⎩解得02022,12.1x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩ 因为点F ′(x 0,y 0)在椭圆上,所以222222()()11 1.4k k k λλ+++=-即λ(λ-4)k 4+2λ(λ-6)k 2+(λ-4)2=0.设k2=t,则λ(λ-4)t2+2λ(λ-6)t+(λ-4)2=0.因为λ>4,所以2 (4) (4)λλλ-->0.。
yx绝密 ★ 启用前2008年普通高等学校招生全国统一考试 (湖南卷)文科数学一.选择题1.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M .B MN U =C .U M N C u = )( D. N N M C u = )( 【答案】B【解析】由{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,易知B 正确. 2.“21<-x ”是“3<x ”的( )A .充分不必要条件 B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】A【解析】由21<-x 得13x -<<,所以易知选A.3.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( )A .4 B.3 C.2 D.1 【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点(1,1)时,x y +最小值是11 2.+=故选C.4.函数)0()(2≤=x x x f 的反函数是( ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD【答案】B【解析】用特殊点法,取原函数过点(1,1),-则其反函数过点(1,1),-验证知只有答案B 满足.也可用1直接法或利用“原函数与反函数的定义域、值域互换”来解答。
5.已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则( ).A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n【答案】D【解析】易知D 正确.6.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 【答案】A【解析】由322log 21log 3log 5<<< , 故选A.7.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( ) A .23-B .32-C .32D .23 【答案】D【解析】由余弦定理得1cos ,4CAB ∠=所以1332,42AB AC ⋅=⨯⨯=选D. 8.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( ) A .15 B .45 C .60 D .75 【答案】C【解析】用直接法:11122135353515301560,C C C C C C ++=++=或用间接法:22224635903060,C C C C -=-=故选C.9.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( )A .42π B .22π C .π2D .2π2 【答案】 B【解析】112BD AC R ===R ∴=设11,BD AC O =则OA OB R ===,2AOB π⇒∠=,2l R πθ∴==故选B.10.双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A .B .)+∞C .1]D .1,)+∞ 【答案】C【解析】200a ex a x c -=+20(1)a e x a c ⇒-=+2(1),a a e a c⇒+≥- 1111,a e c e∴-≤+=+2210,e e ⇒--≤11e ⇒-≤≤而双曲线的离心率1,e >1],e ∴∈故选C.二.填空题11.已知向量)3,1(=,)0,2(-=,则b a +=_____________________. 【答案】2 【解析】由(1,3),||13 2.a b a b +=-∴+=+=12.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多_____________人。
y x2008高考湖南文科数学试题及全解全析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}4,6M N = .B M N U =C .U M N C u = )( D. N N M C u = )(【答案】B【解析】由{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,易知B 正确.2.“21<-x ”是“3<x ”的( )A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D.既不充分也不必要条件【答案】A【解析】由21<-x 得13x -<<,所以易知选A.3.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( )A .4 B.3 C.2 【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点 (1,1)时,x y +最小值是11 2.+=故选4.函数)0()(2≤=x x x f 的反函数是( ) )0()(.1≥=-x x x fA )0()(.1≥-=-x x x fB )0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD【答案】B 【解析】用特殊点法,取原函数过点(1,1),-则其反函数过点(1,1),-验证知只有答案B 满足.也可用直接法或利用“原函数与反函数的定义域、值域互换”来解答。
15.已知直线m 、n 和平面α、β满足,,m n m ααβ⊥⊥⊥,则( ).A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n【答案】D【解析】易知D 正确.6.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<<【答案】A【解析】由322log 21log 3log 5<<< , 故选A.7.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( )A .23-B .32-C .32D .23 【答案】D【解析】由余弦定理得1cos ,4CAB ∠=所以1332,42AB AC ⋅=⨯⨯=选D. 8.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( )A .15B .45C .60D .75【答案】C【解析】用直接法:11122135353515301560,C C C C C C ++=++=或用间接法:22224635903060,C C C C -=-=故选C.9.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( ) A .42π B .22π C .π2D .2π2 【答案】B【解析】112BD AC R ===R ∴=设11,BD AC O =则OAOB R === ,2AOB π⇒∠=,2l R πθ∴==故选B.10.双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A. B.)+∞ C.1] D.1,)+∞【答案】C 【解析】200a ex a x c -=+20(1)a e x a c ⇒-=+2(1),a a e a c⇒+≥- 1111,a e c e∴-≤+=+2210,e e ⇒--≤11e ⇒-≤≤ 而双曲线的离心率1,e>1],e ∴∈故选C.二、填空题:本大题共5小题,每小题5分,共25分。
y2008高考湖南理科数学试题及全解全析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数31()i i-等于( )A.8B.-8C.8iD.-8i【答案】D【解析】由33412()()88ii i ii i--==-⋅=-,易知D 正确. 2.“12x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】B【解析】由12x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B.3.已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( )A.2B.5C.6D.8【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,4),(3,3),代入验证知在点(3,3)时,x y +最大值是33 6.+=故选C.4.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( )A.1B.2C.3D.4【答案】B 【解析】2(2,3)N ⇒12(1)1(1)(),3c P c P c ξξ+->+=-≤+=Φ 12(1)(),3c P c ξ--<-=Φ31()()1,33c c --∴Φ+Φ= 311()()1,33c c --⇒-Φ+Φ=解得c =2, 所以选B.5.设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α 【答案】D【解析】由立几知识,易知D 正确.6.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1 C.32【答案】C【解析】由1cos 21()2sin(2)2226x f x x x π-=+=+-, 52,42366x x πππππ≤≤⇒≤-≤max 13()1.22f x ∴=+=故选C. 7.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】由定比分点的向量式得:212,1233AC AB AD AC AB +==++12,33BE BC BA =+12,33CF CA CB =+以上三式相加得1,3AD BE CF BC ++=-所以选A.8.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)1【答案】B【解析】233,22aex a e a a ac-=⨯->+23520,e e⇒-->2e∴>或13e<-(舍去),(2,],e∴∈+∞故选B.9.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD,AA1=1, 则顶点A、B间的球面距离是()C.2D.4【答案】C【解析】112BD AC R===R∴=设11,BD AC O=则OA OB R===,2AOBπ⇒∠=,2l Rπθ∴==故选C.10.设[x]表示不超过x的最大整数(如[2]=2, [54]=1),对于给定的n∈N*, 定义[][](1)(1),(1)(1)xnn n n xCx x x x--+=--+x∈[)1,+∞,则当x∈3,32⎡⎫⎪⎢⎣⎭时,函数8x C的值域是( )A.16,283⎡⎤⎢⎥⎣⎦B.16,563⎡⎫⎪⎢⎣⎭C.284,3⎛⎫⋃⎪⎝⎭[)28,56 D.16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦【答案】D【解析】当x∈3,22⎡⎫⎪⎢⎣⎭时,328816,332C==当2x→时,[]1,x=所以8842xC==;当[)2,3时,288728,21C⨯==⨯当3x→时,[]2,x=88728,323xC⨯==⨯故函数xC8的值域是16284,,2833⎛⎤⎛⎤⋃⎥⎥⎝⎦⎝⎦.选D.二、填空题:本大题共5小题,每小题5分,共25分。
yx2008高考湖南文科数学试题及全解全析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}4,6MN = .B MN U =C .U M N C u = )( D. N N M C u = )( 【答案】B【解析】由{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,易知B 正确. 2.“21<-x ”是“3<x ”的( )A .充分不必要条件 B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】A【解析】由21<-x 得13x -<<,所以易知选A.3.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( )A .4 B.3 C.2 D.1 【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点(1,1)时,x y +最小值是11 2.+=故选C.4.函数)0()(2≤=x x x f 的反函数是( ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD【答案】B【解析】用特殊点法,取原函数过点(1,1),-则其反函数过点(1,1),-验证知只有答案B 满足.也可用直接法或利用“原函数与反函数的定义域、值域互换”来解答。
15.已知直线m 、n 和平面α、β满足,,m n m ααβ⊥⊥⊥,则( ).A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n【答案】D【解析】易知D 正确.6.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 【答案】A【解析】由322log 21log 3log 5<<< , 故选A.7.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( ) A .23-B .32- C .32 D .23【答案】D【解析】由余弦定理得1cos ,4CAB ∠=所以1332,42AB AC ⋅=⨯⨯=选D. 8.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( ) A .15 B .45 C .60 D .75 【答案】C【解析】用直接法:11122135353515301560,C C C C C C ++=++=或用间接法:22224635903060,C C C C -=-=故选C.9.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( )A .42π B .22π C .π2D .2π2 【答案】 B【解析】112BD AC R ===R ∴=设11,BD AC O =则OA OB R ===,2AOB π⇒∠=,2l R πθ∴==故选B.10.双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A. B.)+∞ C.1] D.1,)+∞ 【答案】C【解析】200a ex a x c -=+20(1)a e x a c ⇒-=+2(1),a a e a c⇒+≥- 1111,a e c e∴-≤+=+2210,e e ⇒--≤11e ⇒≤≤+ 而双曲线的离心率1,e>1],e ∴∈故选C.二、填空题:本大题共5小题,每小题5分,共25分。
把答案填在对应题号后的横线上。
11.已知向量)3,1(=a ,)0,2(-=b ,则||a b +=_____________________. 【答案】2 【解析】由(1,3),||13 2.a b a b +=-∴+=+=12.从某地区则该地区生活不能自理的老人中男性比女性约多_____________人。
【答案】60【解析】由上表得15000(2321)23060.500-⨯=⨯= 13.记nxx )12(+的展开式中第m 项的系数为m b ,若432b b =,则n =__________. 【答案】5【解析】由211(2)()2,rn rr n r rn r r n n T C x C x x---+=⋅=⋅⋅得2233222,n n nn C C --⋅=⨯⋅ 所以解得 5.n =y14.将圆122=+y x 沿x 轴正向平移1个单位后所得到圆C ,则圆C 的方程是________,若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率为_____________. 【答案】22(1)1x y -+=, 3±【解析】易得圆C 的方程是22(1)1x y -+=,直线l 的倾斜角为30,150,所以直线l 的斜率为3k =±15.设[]x 表示不超过x 的最大整数,(如[]145,22=⎥⎦⎤⎢⎣⎡=)。
对于给定的n N *∈,定义[][][),,1,)1()1()1()2)(1(+∞∈+--+---=x x x x x x n n n n C x n则328C =________; 当[)3,2∈x 时,函数xC 8的值域是_________________________。
【答案】16,3 28(,28]3【解析】328816,332C ==当2x =时,288728,21C ⨯==⨯当3x →时,[]2,x = 所以88728,323xC ⨯==⨯故函数x C 8的值域是28(,28]3.三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约。
甲表示只要面试合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。
设每人 面试合格的概率都是21,且面试是否合格互不影响。
求: (I )至少有一人面试合格的概率; (II )没有人签约的概率。
解:用A,B,C 分别表示事件甲、乙、丙面试合格.由题意知A,B,C 相互独立,且1()()().2P A P B P C ===(I )至少有一人面试合格的概率是1()P A B C -⋅⋅3171()()()1().28P A P B P C =-=-=(II )没有人签约的概率为()()()P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅ ()()()()()()()()()P A P B P C P A P B P C P A P B P C ⋅⋅+⋅⋅+⋅⋅ 3331113()()().2228=++=17.(本小题满分12分) 已知函数x xx x f sin 2sin 2cos)(22+-=. (I )求函数)(x f 的最小正周期;(II )当)4,0(0π∈x 且524)(0=x f 时,求)6(0π+x f 的值。
解:由题设有()cos sin f x x x =+=π)4x +.(I )函数()f x 的最小正周期是2π.T =(II )由524)(0=x f 0π)4x +=即0π4sin(),45x += 因为)4,0(0π∈x ,所以0ππ(,).442x π+∈从而0π3cos().45x +===于是)6(0π+x f 00ππ))]4646x x ππ=++=++00ππ)cos cos()sin ]4646x x ππ=+++4312()552=+⨯=18.(本小题满分12分)如图所示,四棱锥P ABCD -的底面ABCD 是边长为1的菱形,060=∠BCD , E 是CD 的中点,PA ⊥底面ABCD ,3=PA 。
(I )证明:平面PBE ⊥平面PAB ; (II )求二面角A —BE —P 的大小。
解:解法一(I )如图所示, 连结,BD 由ABCD 是菱形且060=∠BCD 知,BCD △是等边三角形. 因为E 是CD 的中点,所以,BE CD ⊥又,AB CD //所以,BE AB ⊥又因为PA ⊥平面ABCD ,BE ⊂平面ABCD ,所以,BE PA ⊥而,AB A =PA因此 BE ⊥平面PAB.又BE ⊂平面PBE ,所以平面PBE ⊥平面PAB.(II )由(I )知,BE ⊥平面PAB, PB ⊂平面PAB, 所以.PB BE ⊥又,BE AB ⊥所以PBA ∠是二面角A BE P --的平面角. 在Rt PAB △中, tan 3,60.PAPBA PBA AB∠==∠=. 故二面角A BE P --的大小为60.解法二:如图所示,以A 为原点,建立空间直角坐标系.则相关各点的坐标分别是(000),A ,,(100),B ,,33(0),2C ,13(0),2D ,(003),P ,3(10).E , (I )因为3(0,0),2BE =平面PAB 的一个法向量是0(010),n =,,所以BE 和0n 共线. 从而BE ⊥平面PAB. 又因为BE ⊂平面PBE ,所以平面PBE ⊥平面PAB.(II )易知3(10,3),(0,0),PB BE =-=,设1n 111()x y z =,,是平面PBE 的一个法向量, P A BCE D则由1100n PB n BE ⎧⋅=⎪⎨⋅=⎪⎩,得111111000002x y x y z ⎧+⨯-=⎪⎨⨯++⨯=⎪⎩,所以111.y x ==0, 故可取1n 1).=,而平面ABE 的一个法向量是2(001).n =,,于是,1212121cos ,.2||||n n n n n n ⋅<>==.故二面角A BE P --的大小为60.19.(本小题满分13分)已知椭圆的中心在原点,一个焦点是)0,2(F ,且两条准线间的距离为)4(>λλ。
(I )求椭圆的方程;(II )若存在过点A (1,0)的直线l ,使点F 关于直线l 的对称点在椭圆上,求λ的取值范围。
解:(I )设椭圆的方程为22221(0).x y a b a b+=>>由条件知2,c =且22,a cλ=所以2,a λ=222 4.b a c λ=-=- 故椭圆的方程是221(4).4x y λλλ+=>- (II )依题意, 直线l 的斜率存在且不为0,记为k ,则直线l 的方程是(1).y k x =- 设点(20)F ,关于直线l 的对称点为00(),F x ',y 则00002(1)2212y x k yk x +⎧=-⎪⎪⎨⎪⋅=--⎪⎩, 解得02022121x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩, 因为点00()F x ',y 在椭圆上,所以222222()()11 1.4k k k λλ+++=- 即422(4)2(6)(4)0.k k λλλλλ-+-+-=设2,k t =则22(4)2(6)(4)0.t t λλλλλ-+-+-=因为4,λ>所以2(4)0.(4)λλλ->-于是, 当且仅当23[2(6)](4)()2(6)0.(4)λλλλλλλλ⎧∆=--⎪*-⎨->⎪-⎩-4, 上述方程存在正实根,即直线l 存在.解()*得16,34 6.λλ⎧≤⎪⎨⎪<<⎩所以164.3λ<≤ 即λ的取值范围是164.3λ<≤20.(本小题满分13分)数列{}n a 满足,2,021==a a 222(1cos)4sin ,1,2,3,,22n n n n a a n ππ+=++=(I )求43,a a ,并求数列{}n a 的通项公式; (II )设1321k k S a a a -=+++,242k k T a a a =+++,*2()2kk kS W k N T =∈+, 求使1k W >的所有k 的值,并说明理由。