结构可靠度计算方法(一次二阶矩)
- 格式:ppt
- 大小:4.52 MB
- 文档页数:58
三、可靠度计算方法可靠度分析的主要方法:一次二阶矩方法、二次二阶矩方法、蒙特卡罗模拟法和概率有限法等。
一次二阶矩方法是目前最常用的方法之一,国际标准《结构可靠性总原则》以及我国第一层次和第二层次的结构可靠度设计统一标准如《工程结构可靠性设计统一标准》和《建筑结构可靠度设计统一标准》等,也都推荐采用一次二阶矩方法。
一次二阶矩方法(First-Order Reliability Method ,简称FORM )最初是根据线性功能函数和独立正态随机变量二阶矩所提出的计算方法。
这一方法的基本原理是:假定功能函数(n 21,,,X X X g Z L )=是基本变量X i (i =1,2,…,n )的线性函数,基本变量均服从正态分布或对数正态分布,且各基本变量之间相互统计独立,则可以由基本随机变量X i (i =1,2,…,n )的一阶矩、二阶矩计算功能函数Z 的统计均值Z μ和标准差Z σ,进而确定状态方程的可靠性指标β值。
对于非线性功能函数,可将功能函数展开成Taylor 级数,保留线性项,将Z 近似简化成基本变量X (n 21,,,X X X g Z L =)i (i =1,2,…,n )的线性函数,计算Z 的统计均值Z μ和标准差Z σ,再计算可靠性指标β值。
如果基本变量为非独立和非正态变量,则需要先对基本变量进行相应的处理,然后计算可靠性指标β值。
根据功能函数线性化点的取法不同以及是否考虑基本随机变量的分布类型,又分为均值一次二阶矩法(中心点法)、改进的一次二阶矩法(验算点法)和JC 法等。
3.1均值一次二阶矩法(中心点法)设基本变量X i (i =1,2,…,n )均服从正态分布或对数正态分布,且各基本变量之间相互统计独立,功能函数为()n 21,,,X X X g Z L =,相应的极限状态方程为()0,,,n 21==X X X g Z L线性功能函数情况:当功能函数()n 21,,,X X X g Z L =是基本变量X i (i =1,2,…,n )的线性函数时,即n n 2211X a X a X a Z +++=L这里,a 1、a 2、…、a n 为常数。
结构可靠度分析基础和可靠度分析方法1一般规定1.1当按本文方法确定分项系数和组合值系数时,除进行分析计算外,尚应根据工程经验对分析结果进行判断并进行调整。
1.1.1从概念上讲,结构可靠行设计方法分为确定性方法和概率方法。
在确定性方法中,设计中的变量按定值看待,安全系数完全凭经验确定,属于早期的设计方法。
概率方法为全概率方法和一次可靠度方法。
全概率方法使用随机过程模型及更准确的概率计算方法,从原理上讲,可给出可靠度的准确结果,但因为经常缺乏统计数据及数值计算上的复杂性,设计标准的校准很少使用全概率方法。
一次可靠度方法使用随机变量模型和近似的概率计算方法,与当前的数据收集情况及计算手段是相适应的。
所以,目前国内外设计标准的校准基本都采用一次可靠度方法。
本文说明了结构可靠度校准、直接用可靠指标进行设计的方法及用可靠指标确定设计表达式中作用,抗力分项系数和作用组合值系数的方法。
1.2按本文进行结构可靠度分析和设计时,应具备下列条件:1具有结构极限状态方程;2基本变量具有准确、可靠的统计参数及概率分布。
1.2.1进行结构可靠度分析的基本条件使建立结构的极限状态方程和基本随机变量的概率分布函数。
功能函数描述了要分析的结构的某一功能所处的状态:Z>0表示结构处于可靠状态;Z=0表示结构处于极限状态;Z<0表示结构处于失效状态。
计算结构可靠度就是计算功能函数Z>0的概率。
概率分布函数描述了基本变量的随机特征,不同的随机变量具有不同的随即特征。
1.3当有两个及两个以上的可变作用时,应进行可变作业的组合,并可采用下列规定之一进行:(1)设m种作业参与组合,将模型化后的作业在设计基准期内的总时段数,按照顺序由小到大排列,取任一作业在设计基准期内的最大值与其他作用组合,得出m种组合的最大作用,其中作用最大的组合为起控制作用的组合;(2)设m种作用参与组合,取任一作用在设计基准期内的最大值与其他作业任意时点值进行组合,得出m种组合的最大作用,其中作用最大的组合为起控制作用的组合。
关于可靠度分析的若干方法1.一次二阶矩法 (1)中心点法中心点法的基本思路就是将非线性功能函数在其随机变量均值(中心点)处Taylor 级数展开并取至一阶项,然后近似计算功能函数的平均值和标准差,而结构可靠度可用功能函数的均值和标准差来表示。
假设n x x x ,...,,21为结构中互不相关的n 个基本随机变量,其均值为),...,2,1(n i ix =μ标准差为),...,2,1(n i i x =σ,将功能函数Z=G(n x x x ,...,,21)在均值处Taylor 级数展开并取至一阶项:)(),...,,(121i n x i ni i x x x x x G G Z μμμμμ-⎪⎪⎭⎫⎝⎛∂∂+=∑= 由此可计算出功能函数的均值和标准差为:),...,,(21nx x x Z G μμμμ=∑=⎪⎪⎭⎫ ⎝⎛∂∂=ni x i Z i x G 122σσμ从而结构的可靠度可表示为:∑=⎪⎪⎭⎫ ⎝⎛∂∂==ni x i x x x Z Z inx G G 122),...,,(21σμμμσμβμ由以上论述可知,中心点法的最大的优势在于计算简便,不需要进行过多的数值计算,但其缺陷也是非常明显的:①不考虑随机变量的分布类型;②将非线性功能函数在基本随机变量均值处展开不合理,这是因为均值不一定在结构的极限状态面上,因此展开后的功能函数可能会较大地偏离原来的极限状态面;③对有相同力学含义但数学表达式不同的极限状态方程,求得的结构可靠指标值不同。
(2)验算点法(JC 法)验算点法的特点是能够考虑非正态的随机变量,在计算工作量增加不多的条件下,可对可靠指标β进行精度较高的计算。
对于极限状态方程中包含非正态分布的随机变量的情形,在进行其可靠度分析时,一般要把非正态随机变量当量化为正态随机变量。
当量正态化方法即为JC 法。
它的基本思想就是:①在设计验算点*x 处,当量正态随机变量*X (其均值*IX μ ,标准差为*IX σ)的分布函数值*I X F 与原随机变量(其均值*i x μ ,标准差为*I x σ)的分布函数值*I x F 相等;②在设计验算点*x 处,当量正态随机变量*X (其均值*IX μ ,标准差为*IX σ)的概率密度函数值*IX f 与原随机变量(其均值*ix μ ,标准差为*Ix σ)的概率密度函数值*Ix f 相等。
结构可靠度常用计算方法分析作者:孙虎来源:《山东工业技术》2017年第19期摘要:上世纪四十年代以来,工程技术人员逐渐意识到,在结构设计中,必需引入考虑不确定因素的可靠性模型。
卡宾奇在研究荷载及材料强度的离散性时,采用统计数学的方法,进而使概率方法在结构设计中得以应用。
本文主要对可靠度计算的常用方法进行了总结。
关键词:结构可靠度;方法;概率;可靠性DOI:10.16640/ki.37-1222/t.2017.19.2430 前言在对结构的可靠性进行分析时,可将其分为确定结构的失效模式和计算结构发生的失效概率。
可靠性分析的目的之一是计算失效概率,而可靠性分析是以确定失效模式以及建立各个失效模式的极限状态方程为基础的。
只有在变量间的函数关系已知时,才可以应用解析或数值方法计算失效概率。
1 一次二阶矩法仅考虑随机变量标准差和平均值来衡量结构可靠度大小的“二阶矩模式”,先后由迈尔、巴斯勒、尔然尼采和康奈尔[1]提出过,但这种模式是在康奈尔提出之后才得到重点关注。
现在,对结构可靠度影响因素的研究还停留在较浅的层面上,这也是由于随机变量的概率分布和参数难以准确确定。
通常依据概率论与数理统计的理论方法,并结合大量的数据样本对数据进行分析计算,可以得到随机变量的一阶矩和二阶矩。
一次二阶矩法的主要思想是,虽然随机变量的分布类型无法确定,但根据其平均值和标准差的概率分布类型可以求解可靠指标。
一次二阶矩法是对功能函数进行泰勒级数展开,并对展开式取常数项和一次项,让极限状态方程得以线性化,进而计算其可靠指标。
计算结构可靠度的一次二阶矩方法通常根据线性化点的选取,可分为以下两种方法:2 JC法任意分布下的任意相互独立的随机变量来计算求解结构的可靠指标时,均可以使用JC 法,这种方法是由拉克维茨和菲斯勒[2]提出来的。
后因这种方法被国际安全度联合委员会(JCSS)采用,因此又称为JC法。
我国分别于2001、1999年颁发的《建筑结构可靠度设计统一标准》和《公路工程结构可靠度设计统一标准》中在计算结构或构件的可靠度时就规定采用此法。
工业技术科技创新导报 Science and Technology Innovation Herald48在可靠性分析中,基本零件可靠度的计算是重要的一环。
对于电子产品来讲,可以查询相关的标准手册,而机械产品由于标准件少,数据缺乏,无法简单查得,必须进行计算。
利用概率设计法定量分析机械产品可靠性的主要步骤如下。
(1)失效模式的确定。
(2)根据失效的原因确定失效的判据。
(3)确定影响强度和应力的因素及相应的计算公式,建立功能函数。
(4)利用一次二阶矩法计算可靠度。
在计算时可以将零件实际受到的应力与材料强度代入求解,这是合乎人们的一般印象的。
但在工程实践中,经常发生应力远小于材料强度的断裂事故,这使人们反思,是否还有隐藏的导致材料断裂的机理。
1920年,Gr i f f it h提出了裂口理论,认为材料中存在微小裂纹,这些裂纹在应力大于某一临界值时,会发生极速扩展,造成零件断裂失效。
焊接结构由于工艺上的原因,普遍存在热裂纹、再热裂纹、冷裂纹、层状裂纹、应力腐蚀裂纹等微小裂纹,在进行可靠性分析时必须重点分析其发生裂纹扩展的概率。
1 应力-强度干涉模型从可靠性角度考虑,影响机械产品失效因素可概括为应力和强度两类。
当应力小于强度时,不会发生失效;当应力大于强度时,就会发生失效。
设应力为X,强度为Y。
X与Y都应为服从某分布的随机变量。
那么可靠度R就应为Y>X的概率,即R=P(Y>X)=P(Y-X>0)。
应力-强度干涉模型是机械产品可靠性设计的基础,但由于实际应用到的数据往往不是两个,而是包括应力、强度、载荷、尺寸等的n维随机向量。
因此需要把应力-强度干涉模型推广到n个随机变量的一般情况。
令Z =Y -X =G (x 1,x 2,…x n ),则R =P (Z >0)=P(G(x 1,x 2,…x n )>0)。
其中G称为功能函数。
设第i个变量的均值为μi ,标准差为σi ,对于G为线性函数的情形,可以推导出R=Φ(β),β=称为可靠度系数,Φ为标准正态函数。
结构可靠度常用计算方法分析上世纪四十年代以来,工程技术人员逐渐意识到,在结构设计中,必需引入考虑不确定因素的可靠性模型。
卡宾奇在研究荷载及材料强度的离散性时,采用统计数学的方法,进而使概率方法在结构设计中得以应用。
本文主要对可靠度计算的常用方法进行了总结。
标签:结构可靠度;方法;概率;可靠性0 前言在对结构的可靠性进行分析时,可将其分为确定结构的失效模式和计算结构发生的失效概率。
可靠性分析的目的之一是计算失效概率,而可靠性分析是以确定失效模式以及建立各个失效模式的极限状态方程为基础的。
只有在变量间的函数关系已知时,才可以应用解析或数值方法计算失效概率。
1 一次二阶矩法仅考虑随机变量标准差和平均值来衡量结构可靠度大小的“二阶矩模式”,先后由迈尔、巴斯勒、尔然尼采和康奈尔[1]提出过,但这种模式是在康奈尔提出之后才得到重点关注。
现在,对结构可靠度影响因素的研究还停留在较浅的层面上,这也是由于随机变量的概率分布和参数难以准确确定。
通常依据概率论与数理统计的理论方法,并结合大量的数据样本对数据进行分析计算,可以得到随机变量的一阶矩和二阶矩。
一次二阶矩法的主要思想是,虽然随机变量的分布类型无法确定,但根据其平均值和标准差的概率分布类型可以求解可靠指标。
一次二阶矩法是对功能函数进行泰勒级数展开,并对展开式取常数项和一次项,让极限状态方程得以线性化,进而计算其可靠指标。
计算结构可靠度的一次二阶矩方法通常根据线性化点的选取,可分为以下两种方法:2 JC法任意分布下的任意相互独立的随机变量来计算求解结构的可靠指标时,均可以使用JC法,这种方法是由拉克维茨和菲斯勒[2]提出来的。
后因这种方法被国际安全度联合委员会(JCSS)采用,因此又称为JC法。
我国分别于2001、1999年颁发的《建筑结构可靠度设计统一标准》和《公路工程结构可靠度设计统一标准》中在计算结构或构件的可靠度时就规定采用此法。
这种方法不仅计算过程简单,而且其计算精度可以达到工程实际的要求。
一次二阶矩法当基本状态变量X i (i =1,2,···,n )的概率密度未知,或者在概率密度函数复杂不易求其分布参数的积分时,可利用泰勒级数展开后忽略二次以上的项,只考虑它们的一阶原点矩和二阶中心矩这两个特征参数,近似地计算状态函数的均值和方差,求得可靠指标和破坏概率,故称作一次二阶矩法(First order second moment method),包括中心点法和验算点法。
中心点法中心点法[56]是早期结构可靠度研究所提出的分析方法,只考虑随机变量的平均值和标准差,作为一种简单的计算方法,对于结构功能函数为S R Z -=的可靠度问题,可靠度指标为ZZσμβ=当随机变量R 和S 服从正态分布时,式可变为22SRS R σσμμβ+-=上式表示的是两个随机变量的情形,对于多个随机变量的一般形式的结构功能函数),,,(21n X X X X g Z =其中:X 1,X 2,···,X n 为结构中的n 个相互独立的随机变量,其平均值为n X X X μμμ,,,21 ,标准差为n X X X σσσ,,,21 。
将功能函数在随机变量的平均值处展开泰勒级数展开,取一次项近似)()(),,,(121i X i ni in X L X X g g Z Z μμμμμ-∂∂+=≈∑= 函数的均值和方差分别为),,,(21n X Z Z g EZ μμμμμ ==≈∑=⎪⎪⎭⎫⎝⎛∂∂=-=≈ni X i X Z L ZZ i L LXg Z E 122)()(σμμσσ 由中心点法的可靠度指标的定义,从而有∑=⎪⎪⎭⎫ ⎝⎛∂∂≈=n i X iX X X X X Z Z inX g g 12)(),,,(21σμμμμσμβ 从式和的推导可以看出,中心点法使用了结构功能函数的的一次泰勒级数展开式和随机变量的的前两阶矩(均值和方差),故称为一次二阶矩方法,早期也称为二阶矩模式。