模电第一章详解
- 格式:ppt
- 大小:1.17 MB
- 文档页数:21
《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。
2、半导体奇妙特性:热敏性、光敏性、掺杂性。
3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。
4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。
它们在外电场作用下均能移动而形成电流,所以称载流子。
5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。
6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。
7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。
所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。
8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。
9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。
其死区电压:S i管约0。
5V,G e管约为0。
1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。
其导通压降:S i管约0.7V,G e管约为0.2 V 。
这两组数也是判材料的依据。
10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。
二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。
三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。
是硅管。
b 、二极管反偏截止。
f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。
习题1.1选择合适答案填入空内。
(1)在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。
A. 五价B. 四价C. 三价(2)当温度升高时,二极管的反向饱和电流将。
A. 增大B. 不变C. 减小(3)工作在放大区的某三极管,如果当I B从12μA增大到22μA时,I C从1mA变为2mA,那么它的β约为。
A. 83B. 91C. 100(4)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将。
A.增大B.不变C.减小解:(1)A ,C (2)A (3)C (4)A1.2 能否将1.5V的干电池以正向接法接到二极管两端?为什么?解:不能。
因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V时,管子会因电流过大而烧坏。
1.3 电路如图P1.3所示,已知u i=10sinωt(v),试画出u i与u O的波形。
设二极管正向导通电压可忽略不计。
图P1.3解图P1.3解:u i和u o的波形如解图P1.3所示。
1.4 电路如图P1.4所示,已知u i=5sinωt(V),二极管导通电压U D=0.7V。
试画出u i与u O的波形,并标出幅值。
图P1.4解图P1.4解:波形如解图P1.4所示。
1.5 电路如图P1.5(a)所示,其输入电压u I1和u I2的波形如图(b)所示,二极管导通电压U D=0.7V。
试画出输出电压u O的波形,并标出幅值。
图P1.5解:u O的波形如解图P1.5所示。
解图P1.51.6 电路如图P1.6所示,二极管导通电压U D=0.7V,常温下U T≈26mV,电容C对交流信号可视为短路;u i为正弦波,有效值为10mV。
试问二极管中流过的交流电流有效值解:二极管的直流电流I D=(V-U D)/R=2.6mA其动态电阻r D≈U T/I D=10Ω故动态电流有效值I d=U i/r D≈1mA 图P1.61.7现有两只稳压管,它们的稳定电压分别为6V和8V,正向导通电压为0.7V。
第一章常用半导体元件一半导体1 半导体三大特性搀杂特性热敏特性光敏特性2本征半导体指纯净的具有晶体结构的半导体。
3载流子(Carrier)运动电荷的粒子。
有温度环境就有载流子。
绝对零度(-273C)时晶体中无自由电子。
4本征激发(光照、加温度)会成对产生自由电子和空穴对自由电子(负电)空穴(正电)本征半导体载流子浓度为:n i=p i=K1T^(3/2)e^(-E GO/2kT)ni表示自由电子的浓度pi表示空穴的浓度5 N型半导体:电子型半导体(掺入五价元素,如磷)多数载流子:自由电子少数载流子:空穴自由电子数= 空穴数+ 施主原子6 P型半导体:空穴型半导体(掺入三价元素,如硅)多子:空穴少子:自由电子空穴数= 自由电子数+ 受主原子二PN结1 PN结是指使用半导体工艺使N型和P型半导体结合处所形成的特殊结构。
PN结具有单向导电性。
空间电荷区(耗尽层)P区出现负离子区,N区出现正离子曲2 PN结形成“三步曲”(1)多数载流子的扩散运动。
(2)空间电荷区的少数载流子的漂移运动。
(3)扩散运动与漂移运动的动态平衡。
3 PN结的单向导电性正向偏置P接电源正,N接电源负•削弱内电场,使PN结变窄。
•扩散运动>漂移运动。
•称为“正向导通”。
反向偏置P接电源负,N接电源正•增强内电场,使PN结变宽。
•扩散运动<漂移运动•称为“反向截止”5 PN结伏安特性•单向导电性–正向导通开启电压–反向截止饱和电流7 反向击穿当对PN结的外加反向电压超过一定的限度,反向电流急剧增加,称之为反向击穿。
•击穿有两种机理:–雪崩击穿低掺杂,耗尽层宽度较宽(少子,加速)–齐纳击穿高掺杂,耗尽层宽度较窄(强电场破坏共价键)8 PN结电容特性•PN结呈现电容效应•有两种电容效应势垒电容(和反向偏置有关)CT•PN结外加反向偏置时,引起空间电荷区体积的变化(相当电容的极板间距变化和电荷量的变化)扩散电容(和正向偏置有关)CDPN结外加正向偏置时,引起扩散浓度梯度变化出现的电容(电荷)效应。
第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7.PN结*PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
*PN结的单向导电性---正偏导通,反偏截止。
8.PN结的伏安特性二.半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴(正偏),二极管导通(短路);若V阳<V阴(反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2)等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴(正偏),二极管导通(短路);若V阳<V阴(反偏),二极管截止(开路)。
*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
第一章半导体物理基础一、半导体基础知识半导体是电子电路元器件的主要材料,其导电性能介于导体与绝缘体之间,具有特殊的导电性质。
1.本征半导体本征半导体是完全纯净、结构完整的半导体晶体。
2.杂质半导体杂质半导体是掺入杂质元素的半导体。
价电子数多于半导体元素的杂质称为施主杂质,少于半导体元素的杂质称为受主杂质,相应的元素分别称为施主元素与受主元素。
掺入施主杂质的杂质半导体称为电子型半导体或N型半导体,掺入受主杂质的杂质半导体称为空穴型半导体或P型半导体。
杂质半导体中数量多的那种载流子称为多子,另一种数量少的载流子称为少子,N型半导体中自由电子是多子,空穴是少子,P型半导体中自由电子是少子,空穴是多子。
3.载流子在半导体中的运动载流子在半导体中有两种运动方式,漂移运动和扩散运动。
漂移运动是载流子在外加电场力作用下沿电场方向的定向运动,由漂移运动产生的电流叫漂移电流。
漂移电流等于空穴与自由电子运动产生的电流之和。
扩散运动是载流子在浓度差的作用下产生的定向运动,由扩散运动产生的电流叫扩散电流。
二、PN结1.PN结的形成过程N型半导体和P型半导体的交界面处会产生PN结。
其形成机理为:P型区到N型区的过渡带两边浓度差很大,形成的扩散运动使过渡区域产生强烈的复合作用,产生一个空间电荷区,也叫耗尽区,扩散运动使过渡带内产生电位差和电场,称为接触电位差和内建电场,内建电场由N型区指向P型区,阻碍多子的扩散运动,促进过渡带中少子的漂移运动,当两者速度相等达到平衡状态后,过渡带中的接触电位差、内建电场强度、空间电荷区宽度均处于稳定值,PN结形成。
P、N的过渡带称为PN结,其宽度等于耗尽区的宽度。
2.PN结的伏安特性PN结的正偏(正向偏置)是指两端电压正极接在P区,负极接在N区,反之则称为反偏(反向偏置)。
正偏时PN结中会有较大的正向电流,且随着正偏电压增大迅速增大,一般认为正偏时PN是导通的,电阻很小。
反偏时PN结中只有很小的反向电流通过,在很大范围内随着反偏电压增大,反向电流变化不明显,具有与少子浓度关系较大的反向饱和电流,其数值很小,一般认为PN结在反偏下截止,电阻无穷大,相当于绝缘体,可以等效为电容,称为结电容。