当前位置:文档之家› 热处理

热处理

热处理
热处理

金属热处理上网课程教材

目录

第1章绪论

1.1 热处理在金属材料制造过程的意义

1.2 热处理的基本类型

第2章均质化退火

2.1 铸造合金的组织和性质

2.2 均质化退火时合金组织和性能的变化

2.3 均质化退火条件

第3章再结晶退火

3.1 加工组织的回复

3.2 再结晶

3.3 再结晶晶粒的成长

3.4 二次再结晶

3.5 集合组织

3.6 回复、再结晶退火条件

第四章相变态退火

4.1 相变态的基本类型和其原理

4.2 钢铁的相变态退火

4.3 非金属的相变态退火

第五章单向性转变合金的淬火和时效

5.1 固溶化及固溶处理

5.2 过饱和固溶体分解的热力学

5.3 时效析出过程与组织

5.4 时效时材料特性的变化

5.5 淬火及时效之条件

第6章多相性转变合金的淬火和时效

6.1 麻田散铁变态的基本理论

6.2 钢的麻田散铁变态

6.3 钢的淬火

6.4 钢的回火

6.5非铁金属的麻田散铁变态

第7章加工热处理

7.1 热加工时的组织变化

7.2 时效硬化型合金的加工热处理

第8章化学热处理

8.1 化学热处理的基本类型

8.2 钢的化学热处理

8.3 非铁金属的化学热处理

第一章绪论

1.1 热处理在金属材料制造过程的意义

◎金属热处理:

~借助热作用(温度的改变)改变金属内部的组织结构来获得所需之性能。

?退火(annealing):普通退火、完全退火。

~使金属材软化并且可消除金属内部之残留应力,为提高其塑性加工性以及被削性的提升。

?淬火(quenching):

~使高温固溶之状态冻结至室温。

?回火(tempering):

~施予回火可解决因为材料太硬或太脆所造成之塑性加工性的降

低。

?时效(aging):

~自然时效:室温下,固溶的溶质原子扩散聚集。

人工时效:不同于室温下,固溶的溶质原子扩散聚集。

◎钢材的热处理:

(1)钢锭的热处理:

~主要是在不同室温下的退火。

(2)钢材加工中、成品的热处理:

~依制造性能和使用性能之要求而调整热处理。

?各钢材的正火处理~获得均一的组织和优良的综合机械性能。

?高强度调质钢的淬火回火处理~达到要求的机械性能。

?不锈钢板和钢带的固溶处理~改善耐蚀性。

?热锻轧钢材~依使用者的要求决定热处理之方式。

?冷加工钢材~胚料热处理、中间热处理和成品热处理。

◎非铁金属的热处理:

?主要基本流程,但可做变化:

均质化热加工退火冷加工固溶处理时效

?板材热处理之例:

均质化退火热轧延退火冷轧延的中间退火

最后退火

?粉末冶金的热处理:

~主要是烧结。

例如:钨丝

swaging :一边旋转,一边施予四周应力加压,使其变薄,再抽丝。

◎金属热处理的作用与目的:

(1)改善制造性能:

均质化退火~改善热加工性能。

中间退火~改善冷加工性能。

正火、球状化退火~改善高炭钢在制造刀具时的机械加工性能。

(2)提高使用性能:

淬火后时效或回火~提高强度。

加工后的退火~提高延性或韧性。

1.2 热处理的基本类型

◎热处理的基本过程:

~加热保温冷却

◎热处理的基本参数:

~加热速度、加热温度、保温时间、冷却速度、热处理周期。

◎热处理的形式:

(1)基本热处理:

~热作用为主要过程的热处理,热作用对于于内部的组织、结构和性能起决定性的影响。

~金属的成分、形状和尺寸在热处理的前后并不会发生大的改变。

例:均质化退火、回复?再结晶退火、相变态退火、淬火、时效、回火。

(2)加工热处理:

~塑性变形与热作用结合起来的热处理。唯有能提高金属内部晶体缺陷密度的塑性加工和能发生固体相变态的热作用结合起来,才能

显著地改变材料的组织结构,并明显地提高材料性能的制造工程

即是加工热处理。

~由塑性加工增加差排,使其达到细晶,为了达到超塑性。

例:Intermediate-Thermo-Mechanical-Treatment (ITMT)

Final-Thermo-Mechanical-Treatment (FTMT)

(3)化学热处理:

~化学作用和热作用结合起来的热处理。由于热作用和化学作用同时发生,使某些金属或非金属的元素渗入金属中,亦即化学热处理

不只可以改变金属内部的组织,而且还可以改变其化学成分(一般

指表面成分)。

~化学热处理的主要目的是改善材料的表面性质(如表面硬度、耐磨性、耐腐蚀性等)。有些特殊情况的化学热处理可以去除金属内部

的有害元素。

第二章均质化处理

◎均质化退火:

对象~铸件或铸锭。

目的~在高温下藉由扩散来消除或减少在铸件冷却时实际结晶条件下,结晶内成分不均一和偏离平衡的组织状态,可让原子充分

扩散且使第二相溶解,以改善材料的制造性能和使用性能。

2.1 铸造合金的组织及性质

2.1.1 铸造合金的组织特征

◎理想状态下,冷却速率需无限慢,根据相图在凝固过程中,在凝固至单相区时其为均一之固溶体。

◎实际状态下,因为冷却速率过快,其偏离之相图使处于非平衡条件下,造成结晶内成分不均一和偏离平衡的组织状态,可利用均质化退火来

改善之。

(a)晶内偏析、树枝状组织

凝固时,浓度之分布愈往晶界处愈高,这种浓度分布不均的情况称为偏析。且共晶反应与包晶反应皆会造成微观的偏析(此乃因为

固相限不平衡之相图)

(b)非安定第二相的析出

由于实际偏移相图的影响,在凝固时,当温度到了共晶温度时,会有共晶反应发生,所以除了主要相的析出外,在晶界上亦会有

非平衡第二相的晶出。

(c)过饱和固溶体

因为急速之冷却下,使得溶过多之溶质原子。

2.1.2 铸造合金的性能特征

(1)脆性非平衡第二相的晶出

~晶界上脆、硬性之晶出第二相造成材料易于塑性加工时破裂,导致其塑性降低。

偏析、非平衡第二相的晶出

 ~由于偏析与非平衡第二相在晶界的晶出,因不同元素且成分不均,异种原子因导电性的不同造成电位差,电子的流动使得破坏异种原子间的接口,而造成腐蚀。

~所以偏析、非平衡第二相的晶出会导致耐蚀性的降低。

(3)偏析、非平衡第二相的晶出

 ~由于偏析与非平衡第二相在晶界的晶出,在实际相图中,其固相限会比理论相图低,所以如果加热温度超过共晶温度则会造成在晶界

上的非平衡第二相的溶解或者沿晶界周围的溶解,此情况称之为过

烧。

 

~偏析、非平衡第二相的晶出造成塑性加工或热处理时发生局部溶化。

 

(4)铸造组织经塑性加工后(轧延、挤压等)

~不同化学成分的微区域,会被拉长并形成带状组织。

例如:晶界上,本来是球状的晶出第二相,但在经过轧延、挤压后,其晶出的第二相会沿受力方向而被拉长形成带状并排的分

布,此种带状分布容易因为受力的方向不同而有不同的性

能。

~造成材料之异方性(anisotropy)、与晶界断裂。

(5)非平衡的铸造组织

~非平衡的铸造组织,高温加工时,由于第二相的溶解,形成非平

衡相。

~高温使用时发生creep现象。此时,由于浓度的分布不均,即使受力并未超过材料的降服强度,原子亦会因高温而扩散聚集,造成变

形。

◎实施均质化退火~

?铸造时,由于凝固的速度很快,来不及朝安定化之组织转变,所

以当实施均质化退火时,温度的提升可以增加原子的扩散速率,

使得更快朝安定化之组织转变。

?为了改善铸造合金中的偏析、非平衡铸造组织

实施均质化退火可达到:

~溶质原子的均质化、过饱和固溶原素的析出、非平衡第二相的

溶解。

2.2 均质化退火时合金组织和性能之变化

2.2.1 均质化退火时的组织变化

(1)微观偏析的消除与非平衡第二相的溶解

~在铝合金中,其微观偏析的消除与非平衡第二相的溶解会同时发生。

(2)过饱和固溶元素的析出

~在升温的过程中,其过多的固溶原子会析出

(3)介金属化合物的安定化、聚集和球状化

~非安定之第二相与均质化留下之第二相,会聚集成球状化。

~球状化之第二相,可减少加工时裂缝的形成和成长。

(4)结晶粒的成长

~晶粒在均质化过程中,会逐渐成长,使晶粒粗大。

2.2.2 均质化退火时的性能变化

(1)制造性能的变化:

?塑性性能的提高(热轧延、挤型速率等)

~非平衡第二相的溶解、介金属化合物的聚集与球状化,使晶

界上脆化现象减少。

?提高机械加工性能、减少铸锭破裂

~均质化后,其合金内部元素组织分布均匀,可以降低残留应力。

(2)使用性能的变化:

?提高机械性能、耐腐蚀性

~对于铸造品而言,均质化退火可以稳定零件的尺寸和形状

,防止使用过程发生creep 和机械性能的逐渐变化。

?提高可塑性、耐腐蚀性、减少异方性

~对于加工制品而言,乃至影响最后强度的变化。

2.3 均质化退火条件

2.3.1 加热温度

?均质化退火是基于原子扩散。根据扩散第一定律,单位时间通

过单位元面积的某元素原子数( J )正比于该截面 x 方向上该元素

的浓度梯度( ? C ? ? x ):

J = - D( ? C ? ? x ) ; D = D0 exp(-Q ? RT )

其中,Q 是扩散活化能

原子由浓度高往浓度低的地方进行扩散

且温度越高扩散速率越快

?一般采用的均质化退火温度为 0.9~0.95T m

T m:为实际的铸锭开始熔化温度

2.3.2 保温时间

?保温时间取决于非安定第二相的溶解以及围观偏析的消除

?非安定第二相的溶解所需时间(τs)与这些相的厚度( m )之间的关

系:

τs =k× m n

其中,k 与n :由均质化退火温度以及合金的种类而定。

:非安定第二相的溶解所需时间。

m :非安定第二相的厚度。

于铝合金,n 值在1.5~2.5范围内

将固溶体dendritic cell 中的浓度分布视为正弦波形,则由扩散

论推导出残留微观偏析系数δ:

δ=exp(-Dπ2 t ? l2 )

均质化度h =1-δ

dendritic cell ( l )愈小,非安定第二相愈微细( m小)

~均质化过程愈快。

加热速度及冷却速度

加热速度的控制以铸件不产生裂纹和大的变形为原则。

~对于加热过程中有固溶元素析出的合金而言:

 必需考虑到以改变加热速度来控制析出分散相的分布。

?加热速度太快,因为分散相来不及成核,导致析出较为稀

疏,而无法抑制再结晶的形成。

?加热速度较慢,因为分散相有较多时间成核,而形成较多

可抑制再结晶的分散相。

◎冷却速度

 ?冷却速度太快

~产生淬火效应。

 ?冷却速度太慢

~析出粗大的第二相。

第三章回复?再结晶退火

3.1 加工组织的回复

3.1.1 回复过程及性能变化

◎冷加工后,材料处于准安定状态,且当温度升高回复时,其材料之内部组织会有所改变。

?回复即为消除此准安定组织

目的:1.回复材料之可塑性

2.满足产品的使用性

如:尺寸的稳定性、耐蚀性的提升

(1)回复过程

1.回复过程的本质是点缺陷运动(低温回复),和差排运动与重新组

合(高温回复)。

2.差排运动与重新组合:

差排的交叉滑移(cross slip)和上升运动(climbing)

多角化 ( polygonization ) ~ dislocation cell

形成亚晶 ( subgrain ) 以及变形胞状亚组织转变性亚晶

亚晶粗大化 (subgrain growth )

3.叠差能(stacking fault energy)

?叠差能愈高,其扩张差排(extended dislocation)愈窄,表示会有较多的差排可互相抵消而软化。

~形成亚晶、亚晶的粗大化愈容易。

?叠差能低者,其扩张差排(extended dislocation)愈宽,有时甚至加温至熔点也不会进行回复。

4.不纯物在母合金中会形成原子云( Cottrell atmosphere )

~因为外来原子与原金属之大小不同,使得产生应变能,其外来原子的易聚集,阻碍差排的滑移和上升运动,而阻挡了亚晶的形成,

便是阻挡回复的进行。

~形成亚晶、亚晶的粗大化不容易。

(2)回复时的性能变化

1.在回复阶段时,金属的某些性能(假设是P ),是随着温度和时间而改

变:

㏑( P-P0) =-A exp(-Q ? RT ) ? t

其中,P 是退火后的性能; P0是退火前的性能

A 是常数; T 是绝对温度

t 是时间

~晶回复后,其P值会逐渐接近P0值,表示回复后性质会

接近于原来之材料性质。

P

T1

T2

T3

P0

T4

t (时间)

其中,T4 > T3> T2 >T1

由图看出,当退火温度愈高则愈易回复原来性质

2.各种金属的本质不同,在回复过程中的结构变化会不一样

~性能的变化不同。

例如:

?黄铜:其拉伸强度性能是在再结晶时才有明显的下降趋势因为其叠差能较低,扩张差排宽,所以回复过程被

抑制。回复时只是点缺陷的运动、差排密度变化不

大。

?铝材:其拉伸强度性能在回复时即有明显的下降趋势,即

叠差能越高之金属,回复阶段软化之程度愈高。回

复时亚晶形成以及粗大化

?Cu基、Ni基合金:

在回复过程中,由于不纯物或合金元素形成的气团 (atmosphere)阻碍差排的运动,造成在回复退火时反而有强化现象发生。

Cu基、Ni基合金

黄铜

Recovery Recrystallization Grain growth t (时间)

3.强度性质与差排结构、晶粒大小有关:

?回复时只是点缺陷的运动、差排密度变化不大

~加工硬化将保留

?回复时亚晶形成以及粗大化~加工硬化降低

4.强度与亚晶大小的关系:

Hall-Petch relation

σs=σ0 + k d –1/2

σs是yield stress ;σ0 是frictional stress

k 是常数; d 是结晶粒的直径

~由式子可看出:

当亚晶愈小(即d小) 则σs yield stress 愈大

ASME 热处理工艺卡(模拟)

X X X 热处理工艺卡 Heat Treatment Instruction 工艺卡编号 Doc. No.HTI12-01 第 Page 1 1 页共 of 1 1 页 工程项目名称Project Name / 产品编号 Product No GJ12-02 图号/修改号 Dwg./Rev. No. HCHM35.3.3 产品名称 Product Name 高过出口集 箱 件号Part No.NA 零部件名称 Part Name NA 规格 Dimension 219×16 数量 Quantit y 1 重量 kg Weight 506.035 材料Material 15CrMoG 最大厚度 mm Max. THK. 12 热处理类型 Type of H.T. 制造后热处理 Post Fabrication H.T. 热处理方法 Method of H.T. 整体炉内 Heating as a whole in c losed furnace 工艺规程编号 Procedure No. HZWY0903- 2009 说明: Detail: Sketch 1. 按XXX 0901-2009 压力容器热处理规 程操作。 2. 应安装由 2 个窄条固定的 6 支铠装热 电偶。窄条厚 3mm,宽 40mm,见右图。 3. 窄条由螺栓锁紧和固定,每个窄条上 所安装的 3 个铠装热电偶头,被紧固 在容器的上、中和下部,如右图所示。 1. The heat treatment is Performed in compliance with XXX0901- 2009(Heat treatment for pressure vessels). 2. 9 armoured thermocouple shall be fixed by 2 strips separately, Thickness is 3mm width is 40mm,See the sketch on right. 3. The strips are fixed and tightened by bolts.Three heads of the armoued thermocouple shall be placed and fixed at备注: Remark:

焊接工艺参数

焊接工艺参数 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

焊接工艺指导书 电弧焊工艺 1 接口 焊条电弧焊的接头主要有对接接头、T形接头、角接接头和搭接接头四种。 1.1 对接接头 对接接头是最常见的一种接头形式,按照坡口形式的不同,可分为I形对接接头(不开坡口)、V形坡口接头、U形坡口接头、X形坡口接头和双U形坡口接头等。一般厚度在6mm以下,采用不开坡口而留一定间隙的双面焊;中等厚度及大厚度构件的对接焊,为了保证焊透,必须开坡口。V形坡口便于加工,但焊后构件容易发生变形;X形坡口由于焊缝截面对称,焊后工件的变形及内应力比V形坡口小,在相同板厚条件下,X形坡口比V形坡口要减少1/2填充金属量。U形及双U形坡口,焊缝填充金属量更少,焊后变形也很小,但这种坡口加工困难,一般用于重要结构。 1.2 T形接头 根据焊件厚度和承载情况,T形接头可分为不开坡口,单边V形坡口和K形坡口等几种形式。T形接头焊缝大多数情况只能承受较小剪切应力或仅作为非承载焊缝,因此厚度在30mm以下可以不开坡口。对于要求载荷的T形接头,为了保证焊透,应根据工件厚度、接头强度及焊后变形的要求来确定所开坡口形式。 1.3 角接接头 根据坡口形式不同,角接接头分为不开坡口、V形坡口、K形坡口及卷边等几种形式。通常厚度在2mm以下角接接头,可采用卷边型式;厚度在2~8mm以下角接接头,往往不开坡口;大厚度而又必须焊透的角接接头及重要构件角接头,则应开坡口,坡口形式同样要根据工件厚度、结构形式及承载情况而定。 1.4 搭接接头 搭接接头对装配要求不高,也易于装配,但接头承载能力低,一般用在不重要的结构中。搭接接头分为不开坡口搭接和塞焊两种型式。不开坡口搭接一般用于厚度在12mm 以下的钢板,搭接部分长度为3~5δ(δ为板厚) 2 焊条电弧焊工艺参数选择 2.1 焊条直径 焊条直径可根据焊件厚度、接头型式、焊缝位置、焊道层次等因素进行选择。焊件厚度越大,可选用的焊条直径越大;T形接头比对接接头的焊条直径大,而立焊、仰焊及横焊比平焊时所选用焊条直径应小些,一般立焊焊条最大直径不超过5mm,横焊、仰焊不超过4mm;多层焊的第一层焊缝选用细焊条。焊条直径与厚度的关系见表4 2.2 焊接电流是焊条电弧焊中最重要的一个工艺参数,它的大小直接影响焊接质量及焊缝成形。当焊接电流过大时,焊缝厚度和余高增加,焊缝宽度减少,且有可能造成咬边、烧穿等缺陷;当焊接电流过小时,焊缝窄而高,熔池浅,熔合不良,会产生未焊透、夹渣等缺陷。选择焊接电流大小时,要考虑焊条类型、焊条直径、焊件厚度以及接头型式、

热处理工艺规程

浙江 X X 重型锻造有限公司 热处理中心 文件名称:热处理工艺规程 文件编号:HT/GC-01-A 制定:日期:2010.9.10 审核:日期:2010.9.12 批准:日期:2010.9.15 版次:A/0 共12页受控号:生效日期:2010.9.15

热处理工艺规程 1.0热处理工艺规范 1.1退火及其目的 把钢加热到其一适当温度并保温,然后缓慢冷却的热处理方法,称为退火。根据退火的目的和工艺特点,可分为去应力退火,再结晶退火、完全退火、不完全退火、等温退火、球化退火和均匀化退火等。 退火的目的主要有以下几点: (1)降低硬度,改善切削加工性能。 (2)细化晶粒,改善钢中碳化物的形态和分布,为最终热处理做好组织准备。 (3)消除内应力,消除由于塑性变形加工、切削加工或焊接造成的内应力以及铸件内残留的内应力,以减小变形和防止开裂。 (4)使碳化物球状化.降低硬度。 (5)改善或消除钢在铸造、锻造和焊接过程中形成的各种组织缺陷,防止产生白点。 在大多数情况下,退火一般为预备热处理,通常安排在铸造或锻造之后.粗加工之前,目的是为了降低硬度.改善切削加工性能,细化组织,为最终热处理做组织准备。对于一些要求不很高的工件,退火也可作为最终热处理。消除内应力退火往往在铸造、焊接、压力加工或粗加工之后。 1.2均匀化退火 (1)定义: 均匀化退火也称扩散退火,是把钢加热到远高于Ac3或Acm的温度,经长时间保温,然后缓慢冷却的热处理工艺。 (2)目的: 是使钢的成分均匀化,消除成分偏析。在高温下,钢中原子具有大的活动能量,有利于原子进行充分的扩散,从而消除成分偏析及组织的不均匀性。以减轻钢在热加工时产生脆裂的倾向和消除铸钢件内应力,并提高其力学性能。 (3)范围: 适用于铸钢件及具有成份偏析的锻轧件。 (4)工艺: 加热温度为Ac3+150~200℃,保温时间为10~20h ,随炉缓冷至350 ℃以下出炉。由于退火的加热温度很高,保温时间又长,很容易引起晶粒长大,需在退火后进行细化晶粒的处理,如进行压力加工使晶粒碎化,或通过完全退火、正火使晶较细化。 1.3再结晶退火 (1)目的: A、消除加工硬化,降低硬度。 B、消除冷塑性变形后的内应力。 (2)范围: 主要用于冷变形加工的工件。如工件经冷冲压或拉伸后,为降低硬度,便于继续进行冷变形加工,均需进行再结晶退火,也称工序间退火。对于某些冷变形加工零件,为消除加工硬化及内应力,再结晶退火也可作为最终热处理。 (3)工艺: 再结晶退火温度 Ac1-50~150℃。碳钢的再结晶退火温度一般为600~700℃。由于再结晶温度与钢的化学成分及冷塑性变形量有关,因此应根据具体情况确定。温度太高,晶粒会明显长大;温度过低,再结晶过程不能完全进行,晶粒大小不均匀。保温后空冷。 1.4去应力退火 (1)定义:

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作 热处理工艺在机械制造中占有十分重要的地位。随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。减少批量报废的质量事故发生。 热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。 但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。 本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。 1 、问题设置 点击“文档”(File)或“新问题”(New problem),创建新问题。在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。 图1 设置新问题 2、初始化设置 完成问题设置后,进入前处理设置界面。首先修改公英制,将默认的英制

热处理工艺规程(工艺参数)

热处理工艺规程(工艺参数) 编制: 审核: 批准: 生效日期: 受控标识处:

分发号: 目录 1.主题内容与适用范围 (1) 2.常用钢淬火、回火温度 (1) 要求综合性能的钢种 (1) 要求淬硬的钢种 (4) 要求渗碳的钢种 (6) 几点说明 (6) 3.常用钢正火、回火及退火温度 (7) 要求综合性能的钢种 (7) 其它钢种 (8) 几点说明 (8) 4.常用钢去应力温度 (10) 5.各种热处理工序加热、冷却范围 (12) 淬火………………………………………………………………………………………………1 2 正火及退火 (14) 回火、时效及去应力 (15) 工艺规范的几点说明 (16) 6.化学热处理工艺规范 (17) 氮化 (17) 渗碳 (20) 7.锻模热处理工艺规范 (22) 锻模及胎模 (22) 切边模 (24) 锻模热处理注意事项 (25) 8.有色金属热处理工艺规范 (26) 铝合金的热处理 (26) 铜及铜合金 (26)

9.几种钢锻后防白点工艺规范 (27) 第Ⅰ组钢 (27) 第Ⅱ组钢 (28) 1.主题内容与适用范围 本标准为“热处理工艺规程”(工艺参数),它主要以企业标准《金属材料技术条件》B/HJ-93年版所涉及的金属材料和技术要求为依据(不包括高温合金),并收集了我公司生产常用的工具、模具及工艺装备用的金属材料。 本标准适用于汽轮机、燃气轮机产品零件的热处理生产。 2.常用钢淬火、回火温度 要求综合性能的钢种:

注:①采用日本材料时,淬火温度为960~980℃,回火温度允许比表中温度高10~30℃。 ②有效截面小于20mm者可采用空冷。 要求淬硬的钢种(新HRC>30)

钢制管道焊后热处理工艺规程完整

锅炉管焊接热处理工艺规程 1 总则 本工艺规程适用于低碳和低合金钢锅炉管道焊接接头消除残余应力的焊后热处理,不涉及发生相变和改变金相组织的其他热处理方法。 2 、引用标准及参考文献 NB/T47015—2011 《压力容器焊接规程》 SH3501—2011 《石油化工有毒可燃介质管道工程施工及验收规》 GB50236—2011 《现场设备、工业管道焊接工程施工及验收规程》 3、焊前预热 3.1材料性能分析 部分锅炉管道采用低合金耐热钢,材料具有良好的热稳定性能,是高温热管道的常用材料,由于材料中存在铬、钼合金成分,材料的淬硬倾向大,施工中采用焊前预热、焊后热处理的工艺措施,来获得性能合格的焊接接头。 3.2管道组成件焊前预热应按表1的规定进行,中断焊接后需要继续焊接时,应重新预热,焊接是保持层间温度不小于150℃。 3.3 当环境温度低于10℃时,在始焊处100mm围,应预热到50℃以上。 表1 管道组成件焊接前预热要求

4 设备和器材 4.1焊后热处理必须采用自动控制记录的“热处理控制柜”控制温度。4.2“热处理控制柜”需满足下列要求: 4.2.1能自动控制、记录热处理温度。 4.2.2控制柜、热电偶和补偿导线组合后的温度误差≤±10℃。 4.2.3柜所有仪表、仪器需经法定计量单位校验合格,使用时校验合格证须在有效期。 4.3热电偶 4.3.1焊接接头焊后热处理须采用热电偶测温控温。 4.3.2热电偶需满足如下要求: 4.3.2.1量程为热处理最高温度的1.5倍,精度等级为1.0;控温柜和补偿导线的组合温差波动围≤±10℃。 4.3.2.1按校验周期进行强制校验,使用时校验合格证须在有效期。 4.4加热器 4.4.1焊后热处理必须采用可实现自动指示控制记录的电加热绳或履带加热板加热。 4.4.2管壁厚大于25mm的焊接接头宜采用感应法加热。 4.5热处理设备由经培训合格的专人管理和调试,使用时应放置在防雨防潮的台架上。 4.6保温材料 热处理所用保温材料应为绝缘无碱超细玻璃棉或复合硅酸盐毡,且应有质量证明及合格证。

东莞热处理厂大全

东莞热处理厂-东莞热处理公司 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 东莞热处理厂——东莞市久富五金科技有限公司位于东莞市桥头镇华夏第一工业区华夏一路1号P栋,东莞市热处理厂是一家最专业的热处理工厂。公司引进全新最先进的网带炉自动生产线,盐浴炉生产线、真空炉、退火炉、光亮炉,为您提供渗碳淬火、碳氮共渗、气体氮化、离子氮化、不锈钢固溶、等温盐浴淬火、真空淬火、调质、正火、回火、退火、时效、铝合金T6、T4服务。 东莞热处理厂——东莞市佳鑫金属科技有限公司已经发展成为集设计、生产、销售、服务于一体的企业。专业对外热处理加工、销售:螺丝、五金冲压件及技术咨询指导。 经营范围: 1、中,高碳钢、合金钢之机械零件,刀具,弹片,链条,五金冲压件等光亮淬火处理。 2、低碳钢,低合金钢之铁片,针车零件,自行车零件,螺丝等小五金零件表面渗碳,碳氮共渗光亮热处理。 3、粉末冶金之齿轮轴承表面处理。 4、模具钢(如:SKD11,SKD61),高速钢(SKH9,ASP23)等模具钢材真空热处理,包装热处理,表面氮化处理。 5、不锈钢(SUS420J2,STAVAX)零件光亮热处理。

6、数控高频表面淬火,局部淬火。 7、各种材料(如铍青铜合金)之固溶处理,退火处理,析出处理。 8、硬度测试,扭力测试,金相检测,失效分析,易损件寿命研究。 9、自动化环保染黑处理。 东莞热处理厂——东莞市万江金晟五金机械厂成立于2001年,位于珠江三角洲的东莞市万江区。公司通过多年的积累,拥有真空炉、高频机、渗碳炉、氮化炉、井式淬火炉、箱式淬火炉、台车炉、回火炉、液压校正机等设备多台,成为一家大型专业的热处理加工公司。东莞市万江金晟五金机械厂主要服务于珠三角地区模具厂、模胚厂、机械厂、设备厂、精密机械加工厂、五金厂等大、中、小企业。业务范围是:工模具的真空淬火、氮化;黑色金属的真空淬火、普通淬火、调质、正火、退火、渗碳、氮化、高频淬火、发黑、校正等;有色金属的真空淬火、普通淬火、时效、退火等热处理加工。 东莞热处理厂——东莞市特力模具钢材热处理有限公司是一间以科技为导向,集生产和致力于新工艺开发为一体的综合性热处理加工企业,东莞特力热处理厂是一家具有实力有规模的热处理加工企业,已与多家热处理企业联盟技术分享,为客户的产品解决疑难杂症。主要经营范围:真空热处理(各种压铸模,塑胶模,冷冲模热处理)、氮化、高频热处理、调质、正火、退火(去应力)、渗碳、发黑、压力淬火,阳极氧化等。主要设备:真空淬火炉、高压气淬炉,高频设备,氮化炉,渗碳炉、箱式炉、井式炉、洛式硬度测试机,显微硬度计等先进齐全的热处理配套设备。

数值模拟在焊接中的应用

数值模拟在焊接中的应用 摘要:焊接是一复杂的物理化学过程,借助计算机技术,对焊接现象进行数值模拟,是国内外焊接工作者的热门研究课题,并得到了越来越广泛的应用。概括介绍了数值分析方法,综述了国内外焊接数值模拟在热过程分析、残余应力分析、焊接热源分析方面的研究现状及发展趋势。 关键词:焊接;数值模拟;研究现状 焊接是一个涉及电弧物理、传质传热、冶金和力学的复杂过程,单纯采用理论方法,很难准确的解决生产实际问题。因此,在研究焊接生产技术时,往往采用试验手段作为基本方法,其模式为“理论—试验—生产”,但大量的焊接试验增加了生产的成本,且费时费力。计算机技术的飞速发展给各个领域带来了深刻的影响。结合数值计算方法和技术的不断改进,工程和科学中越来越多的问题都可以采用计算机数值模拟的方法进行研究。采用科学的模拟技术和少量的实验验证,以代替过去一切都要通过大量重复实验的方法,不仅可以节省大量的人力和物力,而且还可以通过数值模拟解决一些目前无法在实验室里直接进行研究的复杂问题。用数值方法仿真实际的物理过程,有时被称为“数值实验”。作为促进科学研究和提高生产效率的有效手段,数值实验的地位已经显得越来越重要了。在工程学的一些领域中,已经视为和物理实验同等重要。与焊接生产领域采用的传统经验方法和实验方法相比,数值模拟方法具有以下优点: (l)可以深入理解焊接现象的本质,弄清焊接过程中传热、冶金、和力学的相互影响和作用; (2)可以优化结构设计和工艺设计,从而减少实验工作量,缩短生产周期,提高焊接质量,降低工艺成本。 一、焊接数值模拟中的数值分析方法 数值模拟是对具体对象抽取数学模型,然后用数值分析方法,通过计算机求解。经过几十年的发展,开发了许多不同的科学方法,其中有:(1)解析法,即数值积分法;(2)蒙特卡洛法; (3)差分法;(4)有限元法。数值积分法用在原函数难于找到的微积分计算中。常用的数值积分法有梯形公式、辛普生公式,高斯求积法等。蒙特卡洛法又称随机模拟法。即对某一问题做出一个适当的随机过程,把随机过程的参数用由随机样本计算出的统计量的值来估计,从而由这个参数找出最初所述问题中的所含未知量。差分法的基础是用差商代替微商,相应的就把微分方程变为差分方程来求解。差分法的主要优点是对于具有规则的几何特性和均匀的材料特性问题,其程序设计和计算简单,易于掌握理解,但这种方法往往局限于规则的差分网格,不够灵活。在焊接研究中差分法常用于焊接热传导、熔池流体力学氢扩散等问题的分析。有限元法起源于20世纪50年代航空工程中飞机结构的矩阵分析,现在它已被用来求解几乎所有的连续介质和场的问题。在焊接领域,有限元法已经广泛的用于焊接热传导、焊接热弹塑性应力和变形分析、焊接结构的断裂力学分析等。在工程应用中,上述数值方法常相互交叉和渗透。 二、焊接熔池的传热与流体流动模拟进展 焊接熔池的传热和流体流动计算机模拟是焊接模拟领域的一个重要领域,同时也是焊接冶金模拟中最为复杂的一个方向之一。因为焊接过程中大部分非平衡的物理、化学反应都在短时间内集中在焊接熔池这一局部高温区域内,这部分区域存在着很大程度上的成分、组织和性能的不均匀性。而对焊接熔池的物理测试十分困难,且费用大,因此大部分的研究是基于数值模拟的基础进行的。对焊接熔池的数值模拟有助于人们从更深层次上理解焊接过程的物理实质,模拟的结果有利于实现对焊接过程的控制。但目前关于焊接熔池的传热与流体流动模型都是建立在大量的假设和简化基础上的[1~3],因而模拟结果与实际有一定的出入,需要

模拟热处理作业指导书

一、适用范围 该要求适用于制造核电设备紧固件用棒材。 二、引用文件 GB/T228-2002 金属材料室温拉伸试验方法 GB/T229-2007 金属材料夏比摆锤冲击试验方法 GB/T230.1-2004 金属洛氏硬度试验第一部分:试验方法(A、B、C、 D、E、F、G、H、K、N、T标尺) GB/T231.1-2002 金属布氏硬度试验第一部分:试验方法 GB/T4338-2006 金属材料高温拉伸试验方法 三、核电紧固件用棒材模拟热处理技术要求 核电紧固件用棒材在入厂化学成分复验后,紧固件生产之前需进行模拟热处理。涉及材料42CrMo4(42CrMoE)、42 CDV4(40CrMoV)、X12Cr13(12Cr13)、X6CrNiCu17-04(05Cr17Ni4Cu4Nb)、X6NiCrTiMoVB25-15-2(06Cr15Ni25Ti2MoAlVB)660、C45E/C45R(45)。 1、取样 每批(同一钢厂、同一炉罐号、同一规格直径)钢棒采购量的4%(至少2根),截取后送热处理车间进行模拟热处理。 一批钢棒数量不超过500支,作两组试验(直径φ≥16mm,截取540mm 样棒2根,直径φ<16mm,截取340mm样棒2根) 一批钢棒数量超过500支,做四组试验(直径φ≥16mm,截取540mm 样棒4根,直径φ<16mm,截取340mm样棒4根) 截取样棒时应随机抽取 2)模拟热处理

具体要求按下表1进行 3)车样(热处理后的样棒) 试样应按以下规定截取: 试样轴线应与棒材轴线平行,其轴线与表面的距离应为: φ≤25 mm 时,在棒材轴线处: 25 mm<φ≤50mm时,距表面12.5 mm处: φ>50mm时,位于d/2半径处。 试样上与试验有关的部位应与样棒端部保持一定距离,该距离不得小于钢棒直径。 4)试验项目 a、室温拉伸试验 b、高温拉伸试验 拉伸试样和高温拉伸试样采用GB/T228-2002中规定的d=10mm的圆形横截面比例试样 c、冲击试验 冲击试样采用GB/T229-2007中规定的标准夏比V型缺口冲击试样,冲击试样为三块一组,试样应并排截取,试样缺口轴线垂直于钢棒表面。对于奥氏体钢棒,试验温度为室温(20℃);对碳钢、低合金钢和马氏体不锈钢棒,试验温度为0℃。 若该批钢棒直径小于等于15mm,则不进行冲击试验。 d、硬度试验 硬度试验在每根试样的不同位置进行测定,为验证每批钢棒的均匀性,每根试样测六组数据,硬度最高的钢棒与最低的钢棒的布氏硬度值

焊接、热处理工艺卡

焊接热处理工艺卡 精品

工艺曲线图: 注意事项: 1. 在加热范围内任意两点的温差应小于 50℃; 2. 保温厚度以40~60mm 为宜; 3. 升、降温时,300℃以下可不控温; 4. 焊后热处理必须在焊接完毕后24h 内进行。 编制 日期 审批 日期 焊接施工工艺卡 企业名称:安徽电力建设第二工程公司 设计卡编号:APCC-GD-WPS-001 产品名称:P91中大口径管焊接工艺卡 所依据的工艺评定报告编号:APCC-PQR-115 焊接位置:2G 、5G 、6G 自动化程度:手工焊 母 材 坡 口 简 类号 B 级号 Ⅲ 与 类号 B 级号 Ⅲ 钢号 SA335-P91 与 母材厚度范围:√对接接头 角接接头 70mm 焊缝金属厚度范围:δ≤h ≤δ+4mm 管子直径范围:√对接接头 角接接头 φ406 其 他: / 坡口检查 √外观检查VT √着色PT 磁粉MT 装配点焊 √手工焊Ds 氩弧焊Ws 二氧化碳气体焊Rb 焊材要求 √焊丝清洁 √焊条烘焙 焊剂温度 焊前预热: 火焰预热 √电阻预热 预热温度:150~200℃ 层间温度:200~300℃ 焊嘴尺寸: M10×L65×φ6 钨极型号/尺寸: Wce-20,φ2.5 焊接技术: 导电嘴与工件距离: / 清理方法: 机械法清理 无摆动或摆动焊: 略摆动 焊接方向: 由左至右、由下至上 工 艺 参 数 层 道 次 焊接方法 焊材 极 性 焊接参数 焊剂或 气体 保护气体流量L/Min 背面保护气体流 量L/Min 气体后拖 保护时间S 牌号 规 格 (mm ) 电流(A ) A 电压 (V ) 焊速 mm/Min 150~250 200~300 ≤300℃ 温度(℃) 时间 6(h ) 80~100℃/2 ≤90℃/h ≤90℃/h 750~770℃

金属热处理工-职业技能鉴定中心

金属热处理工 1.职业概况 1.1 职业名称 金属热处理工。 1.2 职业定义 操作金属热处理设备,进行改变金属工件的组织、改善金属工件性能等加工的人员。 1.3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4 职业环境条件 高温,有毒,有害(粉尘、噪声、辐射)。 1.5 职业能力特征 具有一般的计算能力和空间感、形体知觉和色觉;手指、手臂灵活,动作协调。 1.6 基本文化程度 初中毕业。 1.7 培训要求 1.7.1 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于500标准学时;中级不少于400标准学时;高级不少于300标准学时;技师不少于300标准学时;高级技师不少于200标准学时。 1.7.2 培训教师

培训初级、中级、高级的教师应具有本职业技师及以上职业资格证书或本专业中级及以上专业技术职务任职资格;培训技师的教师应具有本职业高级技师职业资格证书或本专业高级专业技术职务任职资格;培训高级技师的教师应具有本职业高级技师职业资格证书2年以上或本专业高级专业技术职务任职资格。 1.7.3 培训场地设备 培训场地应具有满足教学需要的标准教室和热处理工艺装备。 1.8 鉴定要求 1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得结业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下条件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得结业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经人力资源和社会保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。 ——高级(具备以下条件之一者)

热处理炉温度场的三维数值模拟

文章编号:100221639(2001)0120017203 热处理炉温度场的三维数值模拟 匡 琦,潘健生,叶健松 (上海交通大学高温材料及高温测试开放实验室,上海200030) 摘要:提出了一个描述热处理炉三维非线性温度场的有限元模型,该模型综合考虑了辐射、材料热物性参数和边界条件等复杂因素。根据此模型,使用大型非线性有限元软件M A RC对72k W井式渗碳炉进行模拟计算,计算机模拟结果与实测结果吻合较好。由此提供了一种良好的热处理炉虚拟生产手段,可作为智能热处理CAD的核心技术之一。 关键词:热处理炉;计算机模拟;温度场;有限元;智能热处理 中图分类号:T G151;T P273.5 文献标识码:A Three-d i m en siona l Nu m er ica l Si m ula tion of Te m pera ture F ield of Hea t Trea t m en t Furnaces KUAN G Q i,PAN J ian2sheng,YE J ian2song (H igh T emperatu re M aterials and T esting L ab.,Shanghai J iao tong U n iv.,Shanghai200030,Ch ina) Abstract:T h is paper p resen ts a fin ite elem en t model fo r describ ing the temperatu re field of heat treatm en t fu rnaces.In the model,such comp licated non linear facto rs as boundary conditi on s,physical p roperties and radiati on etc.are con sidered. Based on the model,the th ree di m en si onal non linear FE M analysis system M A RC is u sed to si m u late the temperatu re field of 72k W p it2type carbu rizing fu rnace,w here an increm en tal iterati on m ethod is also u sed.T he compu ter si m u lati on resu lts are w ell con sisten t w ith tho se of m easu rem en ts.T he w o rk p rovides an excellen t m ethod fo r the virtual operati o in of heat treatm en t fu rnaces.It m ay becom e one of the co re techno logies of in telligen t heat treatm en ts. Key words:heat treatm en t fu rnace;compu ter si m u lati on;temperatu re field;fin ite elem en t m ethod(FE M);in telligen t heat treatm en t 1 前言 热处理数学模型和计算机模拟技术是开发高度知识密集型热处理智能技术的关键,已日益为各国热处理界所重视。目前,对热处理炉温度场模拟计算往往只限于二维模型,而筑炉材料的热物性参数、边界条件中换热系数及炉内的辐射传热也大都简化处理[1~4],从而导致计算结果与实测数据误差较大。本文针对这一问题,建立了一个描述热处理炉的三维非线性稳态传热数学模型,全面考虑辐射、热物性参数和换热系数非线性变化对温度场的影响,以大型非线性有限元软件M A RC为平台模拟计算72k W 井式渗碳炉的温度场,并进行了实验验证,为热处理 收稿日期:2000210218;修订日期:2000211227 基金项目:国家“95”攻关项目——热处理CAD及其智能技术(962A01202201) 作者简介:匡 琦(19752 ),男,湖南双峰人,硕士研究生,从事计算机在材料科学中的应用研究工作; 潘健生(19352 ),男,教授,博士生导师,国际热处理 与表面工程联合会数学模型与计算机模拟技术委员 会主任,主要从事热处理过程的计算机数值模拟.炉的改造和优化设计提供了新的方法和途径。 2 热处理炉三维传热计算的数学模型 对于三维非线性稳态传热问题,其传热方程和边界条件的基本数学表达式为 5 x(k x 5T x)+ 5 y(k y 5T y)+ 5 z(k z 5T z)+q=0(1)式中:T为温度;t为时间;k x,k y,k z为x,y,z方向的材料导热系数;q为内热源项。 边界条件数学表达式  k x 5T 5x n x+k y 5T 5y n y+k z 5T 5z n z-q+h∑(T-T∞)=0 (2) 式中:h∑为对流和辐射的综合换热系数;q是热流项;n x,n y,n z分别是x,y,z方向的方向余弦。 求解热处理炉温度场分布问题实际就是求解在边界条件(2)下满足稳态热传导方程(1)的场函数T (x,y,z)[5~6] 。 3 非线性问题的处理 热处理炉温度场是一个复杂的非线性问题,其非线性主要来自以下两个方面:(1)筑炉材料的热物

焊接工艺参数选择

焊接工艺参数的选择 手工电弧焊的焊接工艺参数主要条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 1.焊条直径 焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为3.2mm的焊条。 表6-4 焊条直径与焊件厚度的关系mm 焊件厚度 ≤2 3~4 5~12 >12 焊条直径 2 3.2 4~5 ≥15 2.焊接电流 焊接电流的过大或过小都会影响焊接质量,所以其选择应根据焊条的类型、直径、焊件的厚度、接头形式、焊缝空间位置等因素来考虑,其中焊条直径和焊缝空间位置最为关键。在一般钢结构的焊接中,焊接电流大小与焊条直径关系可用以下经验公式进行试选: I=10d2 (6-1) 式中 I ——焊接电流(A); d ——焊条直径(mm)。 另外,立焊时,电流应比平焊时小15%~20%;横焊和仰焊时,电流应比平焊电流小10%~15%。 3.电弧电压 根据电源特性,由焊接电流决定相应的电弧电压。此外,电弧电压还与电弧长有关。电弧长则电弧电压高,电弧短则电弧电压低。一般要求电弧长小于或等于焊条直径,即短弧焊。在使用酸性焊条焊接时,为了预热部位或降低熔池温度,有时也将电弧稍微拉长进行焊接,即所谓的长弧焊。 4.焊接层数 焊接层数应视焊件的厚度而定。除薄板外,一般都采用多层焊。焊接层数过少,每层焊缝的厚度过大,对焊缝金属的塑性有不利的影响。施工中每层焊缝的厚度不应大于4~5mm。

热处理复习笔记(考试重点)

热处理复习重点 第一章金属材料基础知识 1. 材料力学性能 (1)材料在外力作用下抵抗变形和破坏的能力称为强度。强度有多种指标,如屈服强度(σs)、抗拉强度(σb)、抗压强度、抗弯强度、抗剪强度等。 (2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(δ)和断面收缩率(φ),δ和φ越大,材料的塑性越好。 (3)材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应力与应变的比值)。 (4)硬度(材料表面局部区域抵抗更硬物体压入的能力) a. 布氏硬度(测较低硬度材料) 用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值。HBS(钢球,<450)、HBW(硬质合金球,>650)。 b. 洛氏硬度(测较高硬度材料) 利用一定载荷将交角为120°的金刚石圆锥体或直径为1.588mm的淬火钢球压入试样表面,保持一定时间后卸除载荷,根据压痕深度确定的硬度值。HRA(金刚石圆锥,20~80)、HRB (1.588mm钢球,20~100)、HRC(金刚石圆锥,20~70) c. 维氏硬度(适用范围较广) 维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四棱锥体。 (5)冲击韧性 材料抵抗冲击载荷作用而不被破坏的能力。通常用冲击功A k来度量,A k是冲击试样在摆锤冲击试样机上一次冲击试验所消耗的冲击功。 (6)疲劳强度 材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用σ-1表示。 2. 铁碳相图

第二章钢的热处理原理 1. 钢的临界温度 A c1——加热时珠光体向奥氏体转变的开始温度 A c3——加热时先共析铁素体全部溶入奥氏体的终了温度 A ccm——加热时二次渗碳体全部溶入奥氏体的终了温度 A r1——冷却时奥氏体向珠光体转变的开始温度 A r3——冷却时奥氏体开始析出先共析铁素体的温度 A rcm——冷却时奥氏体开始析出二次渗碳体的温度 2. 钢在加热时的转变 (1)共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核(相界面处)、奥氏体晶核长大、剩余渗碳体溶解、奥氏体成分均匀化。 (2)铁素体向奥氏体的转变的速度远比渗碳体溶解速度快的多。所以转变过程中珠光体中总是铁素体首先消失,铁素体全部转化为奥氏体时,可以认为奥氏体长大完成。 (3)影响奥氏体形成速度的因素:加热温度、加热速度、化学成分、原始组织。 (4)加热速度越快,奥氏体形成的开始温度和终了温度越高,而孕育期和转变时间越短,奥氏体形成速度越快。 (5)钢中含碳量越高,奥氏体形成速度越快;碳化物形成元素减小碳在奥氏体中的扩散速度,故减慢奥氏体的形成速度;费碳化物形成元素增大碳在奥氏体中的扩散速度,因而加快了奥氏体中的形成速度。 (6)当钢的化学成分相同时,原始组织越细,相界面面积越大,形核率越高,奥氏体形成速度越快。 (7)奥氏体的晶粒度可以用起始晶粒度、实际晶粒度和本质晶粒度等描述。 (8)起始晶粒度是指把钢加热到临界温度以上,奥氏体转变刚刚完成,其晶粒边界刚刚接触时的奥氏体晶粒大小;实际晶粒度是指钢在某一具体的热处理或热加工条件下实际获得的奥氏体晶粒大小;本质晶粒度表示在规定的加热条件下奥氏体晶粒长大的倾向。1~4级为本质粗晶粒度,5~8级为本质细晶粒度。 (9)影响奥氏体晶粒长大的因素:加热温度和保温时间、加热速度、钢的化学成分、原始组织。 (10)实际生产中采取快速加热和短时保温的方法获得细小晶粒。 (11)当成分一定时,原始组织越细,碳化物弥散度越大,则奥氏体晶粒越细。与粗珠光体相比,细珠光体总是易于获得细小而均匀的奥氏体晶粒。片状珠光体比球状珠光体在加热时奥氏体晶粒易于粗化。 (12)时效强化:合金元素经固溶处理后,获得过饱和固溶体。在随后的室温放臵或低温加热保温时,第二相从过饱和固溶体中析出,引起强度,硬度以及物理和化学性能的显著变化。 3. 钢在冷却时的转变 (1)常用的冷却方式有两种: 等温冷却——将奥氏体状态的钢迅速由高温冷却到临界点以下某一温度等温停留一段时间,使奥氏体在该温度下发生组织转变,然后再冷到室温。过冷奥氏体等温转变曲线(TTT曲线或C曲线) 连续冷却——将奥氏体状态的钢以一定的速度连续从高温冷到室温,使奥氏体在一个温度范围内发生连续转变。过冷奥氏体连续转变曲线(CCT曲线) (2)TTT曲线反映转变开始和转变终了时间,转变产物的类型以及转变量与时间、温度之间的关系。 (3)在A1温度以下某一确定温度,过冷奥氏体转变开始线与纵坐标之间的水平距离为过冷

45钢热处理过程温度场的数值模拟

45钢热处理过程温度场的数值模拟 任务书 1.课题意义及目标 学生应通过本次毕业设计,运用所学过的金属学及热处理等专业知识,了解45钢的概况、钢的热处理原理和热处理工艺;熟悉45钢的热处理工艺方法;熟悉ANSYS 软件;掌握ANSYS软件计算热处理过程温度场的方法,通过毕业设计为优化热处理工艺提高零件质量提供一定的理论依据。 2.主要任务 (1)制定45钢热处理工艺。 (2)模拟计算热处理加热过程某些时刻温度场的分布及某些特定位置温度随时间的变化关系。 (3)模拟计算热处理冷却过程某些时刻温度场的分布及某些特定位置温度随时间的变化关系。 (4)分析热处理过程温度场分布对45钢组织和力学性能的影响。 (5)撰写毕业论文。结构完整,层次分明,语言顺畅;避免错别字和错误标点符号;格式符合太原工业学院学位论文格式的统一要求。 3.主要参考资料 [1] 赖宏,刘天模. 45钢零件淬火过程温度场的ansys模拟[J].重庆大学学 报,2003,26(03):82-84. [2] 朱圆圆,祁文军,易挺,等. 钢件淬火过程温度场的数值模拟[J]. 新技 术新工艺,2008,(11):97-99. [3] 崔忠圻,覃耀春.金属学与热处理[M]. 北京,机械工业出版社,2007: 230-308 4.进度安排

45钢热处理过程温度场的数值模拟 摘要:本论文中45钢的热处理工艺是通过复习《金属学与热处理》一书中钢的热处理原理来制定的,并借助ANSYS有限元软件建立轴对称模型,对其施加温度载荷来模拟计算热处理过程中某些时刻温度场的分布以及某些特定位置温度随时间的变化关系。结果表明:热处理加热过程开始时,圆柱体侧面的升温速度最快,中心处升温速度最慢,其余位置的速度介于二者之间,工件整体升温速度随着时间的增加逐渐下降;热处理冷却过程开始时,圆柱体侧面的降温速度最快,中心处最慢,其余位置的速度介于二者之间,另外,刚开始工件整体降温速度较快,随着时间的增加,工件整体降温速度逐渐下降。整个热处理过程中,工件中心和侧面的温度差随时间的增加而减少。 关键词:有限元法,45钢 ,热处理 ,温度场 The heat treatment of 45 steel's temperature field simulation Abstract:In this essay, 45 steel heat treatment process is through the review,author of sinosteel metallography and heat treatment of heat treatment principle to develop, with ANSYS finite element software axisymmetric model was established, and apply to simulation calculation at some point in the heat-treating process, distribution of the temperature field and certain position of temperature with time relationship. The results show that the heating temperature of the side face is the fastest and the center temperature is the slowest and the other position is between the two, the temperature of the workpiece increases gradually with the increase of time.Heat treatment cooling process, the outer surface of the fastest cooling, the center is the slowest, the rest of the speed between the two,moreover, the overall cooling rate of the workpiece is relatively fast, and the overall cooling rate of the workpiece decreases gradually with the increase of time. Throughout the heat treatment, the temperature difference of the workpiece center and the side face decreases with the increase of time. Keywords: Finite element simulation,45steel,Heat treatment,Temperature field simulation

相关主题
文本预览
相关文档 最新文档