光速测定发展历史资料
- 格式:ppt
- 大小:1.60 MB
- 文档页数:17
光速测量地面测量法直到1849年,法国物理学家斐索(Fizeau,1819-1896)才利用非天文方法在地面上第一次成功地测量了光速,斐索的仪器是非常精巧的。
斐索的方法被称为“旋转齿轮”法,它的核心是一个快速旋转的并可调整转速的齿轮,利用这个齿轮我们可以精确地测量时间。
由于当时电灯尚未发明,斐索使用的光源其实是蜡烛,它发出的光波射到8公里远的镜子上并返回。
假设齿轮不转动,那么蜡烛发出的光将从相邻两个齿之间穿过,然后又回来射到观察者的眼睛里。
斐索的方法被称为“旋转齿轮”法,它的核心是一个快速旋转的并可调整转速的齿轮,利用这个齿轮我们可以精确地测量时间。
由于当时电灯尚未发明,斐索使用的光源其实是蜡烛,它发出的光波射到8公里远的镜子上并返回。
假设齿轮不转动,那么蜡烛发出的光将从相邻两个齿之间穿过,然后又回来射到观察者的眼睛里。
现在假设齿轮开始转动,但转速较慢,当光被镜子反射回来的时候正好被相邻的齿挡住,因此没有光射到观察者的眼睛里。
如果加快齿轮的转速,使光被反射回来的时候恰好转过一个齿轮,那么光又可以射到观察者的眼睛里。
于是斐索知道当齿轮恰好转过一个齿的时间,就对应的是光传播16公里所需要的时间。
斐索得到的光速是313111公里/秒,考虑到他所利用仪器的局限,这个结果已经相当精确了。
1850年法国物理学家傅科(Foucault,1819-1868)利用旋转镜法首次实现了在实验室里对光速的测定。
傅科使用快速旋转的镜片替代了斐索的齿轮,快速旋转的镜片会使出射光线偏转一个角度θ,1862年傅科的测量结果是29.8万公里/秒。
更精确的测量是由美国物理学家迈克尔逊(Michelson,1852-1931)在1926年完成的,他改进了傅科的方法,使用一个多面的旋转镜,将光波分成不连续的光束。
类似于斐索的实验,这些光束将被反射到35公里远的镜子上,然后再被反射回来。
如图,我们使用一个六面镜,该镜由电动机转动,可以任意调节旋转速度。
科学家是如何测量光速的?测量物体的速度,最先浮现在我们脑海中的,就是找出一定时间下的该物体走过的路程,然后相除。
光速,能不能这样测呢?光速测定的历史沿革:1.伽利略的灯笼实验1638年,意大利科学家伽利略开始了他的实验:两个人A和B站在相距约一英里(约1.6公里)的山头上,都手提灯笼。
A提起灯笼就开始计时,B一看到A提灯笼也提起灯笼,A看到B提起灯笼后停止计时。
伽利略得出的结论是,就算光速是有限的,它也肯定快到不可思议的程度。
意大利佛罗伦斯的实验学会于1667年再次进行了伽利略的实验。
在两盏灯相距约一英里的情况下,没有观察到任何的延时。
用今天的已知光速计算,当时的延时只有11微秒。
2.巧用太阳系计算光速1675年,在法国巴黎天文台就职的丹麦天文学家奥勒·罗默,通过观测木星卫星之相互掩食与理论值相比之差,算出光穿过地球所需要的时间。
原理:就像日食或是月食一样,木星和木卫一也会出现“木卫一食“现象。
这是因为木星挡住了太阳的光线。
如下图:(A是太阳,B是木星,DC为被木星遮住阳光之后的阴影区,木卫一在这区域时难以被观测到)奥勒·罗默认为出现“木卫一食“现象的周期是恒定的。
当我们在地球上观测到“木卫一食”现象时,不同的位置(比如地球在G和在F位置时,离木星B距离不同),“木卫一食”现象出现的时间也不同。
所以记录下看到“木卫一食“现象的不同时间,再计算出这些不同时间下地球与木卫一的距离差,就能计算出光速。
但是当时人们连地球离太阳多远都不知道,所以罗默只能出估算光横跨地球的公转轨道直径需要22分钟。
(在当时的条件下,罗默可以说是取得了非凡的结果)后来荷兰物理学家、天文学家和数学家,土卫六的发现者,克里斯蒂安·惠更斯,利用罗默的这一数据,加上对地球轨道直径的估值,计算出光速大约为220,000 km/s,比实际数值低了26%。
3.灯笼实验的延伸伽利略测量光速的思路是正确的,只不过当时条件所限,没法测出。
测量光速:历史与现代方法引言:光速是宇宙中最基本的物理常数之一,它对于物理学和工程学的发展具有重要意义。
在过去的几个世纪里,科学家们一直在努力测量光速,为此提出了多种方法。
本文将探讨测量光速的历史和现代方法,并探讨这项测量对科学研究的意义。
一、历史测量方法:古代的数学家、物理学家、地理学家等人们最早试图测量光速。
公元三世纪的希腊数学家欧几里得做了一些对光传播速度相关的几何学推导,但并未得出准确的结论。
然而,到了17世纪,天文学家欧拉尔·罗默通过观察木卫一的轨迹变化,首次成功地测量到了光的传播速度。
他观测到在地球绕太阳公转时,木卫一出现和消失的周期变化,根据这些观测数据,罗默得出了一个准确的光速值。
二、现代测量方法:随着现代科技的进步,测量光速的方法也得到了发展和改进。
1905年,爱因斯坦发表了狭义相对论,提出了一种基于光速不变的假设,从而赋予了光速测量以新的意义。
爱因斯坦的理论拉开了现代测量光速的开端。
如今,科学家利用现代激光技术和光纤传输等手段,可以更加精确地测量光速。
1. 差迟法:差迟法是一种关于光的干涉现象的测量方法。
它基于两束光在介质中传播时的时间差来测量光的速度。
通过测量干涉光的相位差,科学家们可以得到光的传播速度。
2. 脉冲激光法:脉冲激光法是一种基于光脉冲传输的测量方法。
科学家使用高精度的时钟和激光器生成脉冲激光,并将其发送到一个远离地球的反射器上。
然后,利用接收到的脉冲的时间差来计算光的速度。
3. 光纤干涉法:光纤干涉法是一种使用光纤作为传输介质的测量方法。
科学家们通过将光纤分成两段,其中一段通过退相位器,另一段不经过,然后测量两个光束再次合并时的干涉现象,从而得到光的传播速度。
三、测量光速的科学意义:测量光速对于科学研究和工程应用具有重要意义。
首先,光速的测量可以提供基础物理学的重要参考数据,验证或修正现有的物理理论。
其次,光速是测量宇宙距离和时间的基准,它在宇宙天文学和天体物理学的研究中起着关键作用。
光速测量众所周知,光速C是物理学中5个基本常量之一,对物理学有着极其重要的意义。
在科学史上,两个伟大的物理学家赋予了光速C一特殊的物理意义,一个是麦克斯韦,他在1865年发现电磁波的速度与光速测量值相等,因而断定光是一种电磁波;另一个是爱因斯坦,他在1905年的论文中提出“光速不变性”的公设,又提出不可超越的原理,光速C是信息传递的极限速度,是不可逾越的。
因此,人们对光速的精准测量进行了不懈的努力。
下面是我们对光速测量历史和方法的归类和总结。
一.光速测量历史简介1676年------ 丹麦大文学家罗默(Romer)通过观察木星卫星蚀,第一个测得了光速, C=215000km/s;1728年------ 布拉得雷(Bradley)用观察光行差的方法测得了光速,C=303000km/s;1849年------ 斐索(A.Figeau)刚齿轮法测得光速,C=315300km/s;1862年------ 傅科(J.Foucalt)用旋转镜法测得光速,C=298000±500km/s;1902年------ 迈克尔逊等人改进了旋转镜法,测得光速C=299890±60km/s;1950年------ 埃森(Essen)最先采用测定微波波长和频率的方法来测量光速,得C=299792.5±lkm/s;1958年------ 弗鲁姆(Froome)利用微波干涉法测得光速,C=299792.5±0.1km /s;1973年和1974年------ 美国国家标准局和美国国立物理实验室应用激光测定光速,测得光速分别为C=299792.4574±0.0011km/s和C=299792.4590±0.008km/s 。
二.光速测量方法简介①天文学方法测定光速1)罗默的卫星蚀法罗默使用木星的一颗卫星有规律的轨道运动作为计时器,每次这颗卫星被巨大的行星(木星)所掩食,他便记录下一个“滴答”。
光速测量简史“测量光速”实际上是测量光的群速度(真空中没有⾊散,光波的群速度和相速度相等)。
⼏百年来,⼈们进⾏了各种尝试,以求获得最精确的光速。
第⼀个试图测量光⾊的是伽利略,1667 年,他与助⼿在两座相距 7.5km 的⼭顶上,每⼈携带⼀盏灯,两⼈约定,其中第⼀⼈先打开灯罩,同时开始计时,第⼆⼈看见灯光后,⽴刻打开灯罩,第⼀⼈看见灯光后,再计时。
这样的测量⾃然以失败⽽告终。
1676 年,丹麦天⽂学家奥勒·罗默(Ole R?mer)采⽤天⽂观测的⽅法,通过测量⽊星的⼀颗卫星被⽊星遮挡的时间与轨道的关系测量光速。
他注意到,连续两次卫星蚀相隔的时间存在差异,当地球背离⽊星运动时,要⽐地球迎向⽊星运动时要长⼀些,这⼀现象本⾝就说明光传播速度是有限的。
这个研究对⽊星及其卫星的观察持续了整整⼀年。
罗默通过观察卫星蚀的时间变化和地球轨道直径求出了光速,由于当时只知道地球轨道半径的近似值,故测得光速为215000km/s,尽管与实际光速相差很远,但这是⼈类第⼀次完成的有效光速测量。
后来⼈们⽤照相法升级了罗默测量法,测得光速为(299840±60)km/s。
英国天⽂学家布拉德雷(James Bradley,1693-1762)发现了恒星的“光⾏差”现象。
他注意到,在地球上观察恒星时,恒星的视位置在不断地变化,⼀年内,所有恒星似乎都在天顶上绕着长半轴相等的椭圆运⾏⼀周,布拉德雷认为这种现象的产⽣是由于恒星发出的光传到地球时需要⼀定时间,⽽在此时间内,地球已因公转⽽发⽣了位置变化。
他⽤地球公转的速度与光速的⽐例估算出了太阳光到达地球需要 493s,由此,1726 年,他测得光速为 301000km/s。
这个数据与实际光速⽐较接近。
1834 年,Charles Wheatstone;1838 年,Francis Arago 分别⽤旋转反射镜测得光速为402336km/s。
1849 年,法国物理学家斐佐(Armand Hippolyte Louis Fizeau,1819-1896)⾸次在实验室中实现光速测量。