常见的软件质量模型教学教材
- 格式:doc
- 大小:847.50 KB
- 文档页数:17
《软件工程》教学教案第一章:软件工程概述1.1 课程介绍解释软件工程的定义和目的强调软件工程的重要性1.2 软件生命周期介绍软件生命周期的各个阶段解释每个阶段的主要活动和任务1.3 软件工程原则介绍软件工程的基本原则解释每个原则的重要性和应用第二章:需求分析2.1 需求分析概述解释需求分析的定义和目的强调需求分析的重要性2.2 需求收集和分析方法介绍需求收集和分析的主要方法解释每个方法的特点和应用2.3 需求规格说明书解释需求规格说明书的定义和作用介绍编写需求规格说明书的方法和技巧第三章:软件设计3.1 软件设计概述解释软件设计的定义和目的强调软件设计的重要性3.2 设计方法和工具介绍常见的设计方法和工具解释每个方法的特点和应用3.3 设计评审解释设计评审的定义和作用介绍设计评审的流程和技巧第四章:编码和实现4.1 编码规范和技巧介绍编码规范的重要性和作用强调编码技巧和最佳实践4.2 编程语言选择解释编程语言选择的重要性介绍常见编程语言的特点和应用场景4.3 代码复查和测试解释代码复查的目的和作用介绍代码测试的方法和技巧第五章:软件维护5.1 软件维护概述解释软件维护的定义和目的强调软件维护的重要性5.2 维护活动和方法介绍软件维护的主要活动和任务解释每个方法的特点和应用5.3 维护策略和计划解释维护策略和计划的重要性介绍制定维护策略和计划的方法和技巧第六章:项目管理6.1 项目管理概述解释项目管理的定义和目的强调项目管理在软件工程中的重要性6.2 项目管理方法和工具介绍常见的项目管理方法和工具解释每个方法的特点和应用6.3 项目计划和监控解释项目计划的重要性介绍项目监控的方法和技巧第七章:软件测试7.1 软件测试概述解释软件测试的定义和目的强调软件测试的重要性7.2 测试方法和策略介绍常见的软件测试方法和策略解释每个方法的特点和应用7.3 自动化测试解释自动化测试的定义和优势介绍自动化测试工具和框架第八章:软件质量保证8.1 软件质量概述解释软件质量的定义和重要性强调软件质量保证的作用8.2 质量标准和模型介绍常见的软件质量标准和模型解释每个标准的特点和应用8.3 质量保证过程和活动解释质量保证的过程和活动介绍实施质量保证的方法和技巧第九章:软件工程伦理和法律9.1 软件工程伦理讨论软件工程师的职业道德和责任强调伦理在软件工程中的重要性9.2 软件法律和知识产权介绍软件法律和知识产权的基本概念解释软件法律保护的重要性9.3 合规性和风险管理解释合规性和风险管理的作用介绍实施合规性和风险管理的方法和技巧第十章:软件工程前沿技术10.1 和机器学习介绍和机器学习在软件工程中的应用强调这些技术对软件工程的影响10.2 云计算和大数据解释云计算和大数据的基本概念介绍这些技术在软件工程中的应用场景10.3 敏捷开发和DevOps解释敏捷开发和DevOps的基本概念强调这些方法对软件工程实践的影响重点和难点解析一、软件工程原则补充说明:软件工程原则是软件工程的基本指导思想,包括模块化、抽象化、逐步求精、局部化、一致性等原则。
常用数学软件教程课程设计一、课程背景随着计算机技术和数学应用的不断发展,人们对于数学软件的需求越来越大。
数学软件具有高效、准确的计算,可以节省大量时间和精力,提高数学建模及计算机仿真设计的效率和质量。
因此,本课程旨在介绍常用的数学软件及其使用方法,从而让学生掌握数学软件的基本操作及应用技巧。
二、教学目标1.学生能够熟练使用常用的数学软件,如MATLAB、Mathematica等。
2.学生能够理解各种数学计算方法在软件中的实现原理。
3.学生能够应用数学软件进行数学建模及计算机仿真设计。
三、教学内容1.MATLAB入门介绍:MATLAB语言基础、变量、运算、向量和矩阵、编程入门等。
2.MATLAB高级应用:数值计算、符号计算、数据处理、图形绘制等。
3.Mathematica入门介绍:Mathematica语言基础、基本运算、函数、表达式等。
4.Mathematica高级应用:数值计算、符号计算、常微分方程、偏微分方程等。
5.数学建模应用:模型的建立、数据预处理、模型求解、结果可视化等。
四、教学方法本课程以理论讲授和实践操作相结合的方式进行。
理论讲授主要通过PPT讲解,实践操作则以指导学生操作为主,让学生动手操作并解决实际问题。
五、教学评价1.期中作业:学生需要独立完成一个关于数学软件的小项目,并撰写一份报告,包括项目的背景、设计思路、程序代码和结果分析。
2.期末考核:学生需要根据老师布置的数学建模任务,运用所学的数学软件进行建模和求解,并按照要求完成一份报告。
六、教学资源1.MATLAB软件及教学材料:商业版MATLAB软件和MATLAB官方教学材料。
2.Mathematica软件及教学材料:商业版Mathematica软件和Mathematica官方教学材料。
3.数学建模案例:从网上获取一些合适的数学建模案例供学生参考。
七、教学时间安排本课程总共需要30学时,具体时间安排与教学内容如下:教学内容教学时间MATLAB入门介绍2学时MATLAB高级应用4学时Mathematica入门介绍2学时Mathematica高级应用4学时数学建模应用6学时期中作业指导4学时期末考核任务布置2学时期末考核报告指导4学时期末考核答辩2学时八、教学团队本课程由数学系的教师担任。
常见的软件质量模型关于软件质量模型,业界已经有很多成熟的模型定义,比较常见的质量模型有McCall 模型、Boehm 模型、FURPS 模型、Dromey 模型和 ISO9126 模型。
•Jim McCall 软件质量模型(1977 年)•Barry W. Boehm 软件质量模型(1978 年)•FURPS/FURPS+ 软件质量模型•R. Geoff Dromey 软件质量模型•ISO/IEC 9126 软件质量模型(1993 年)•ISO/IEC 25010 软件质量模型(2011 年)Jim McCall 软件质量模型(1977 年)Jim McCall 的软件质量模型,也被称为 GE 模型(General Electrics Model)。
其最初起源于美国空军,主要面向的是系统开发人员和系统开发过程。
McCall 试图通过一系列的软件质量属性指标来弥补开发人员与最终用户之间的沟壑。
McCall 质量模型使用 3 中视角来定义和识别软件产品的质量:1.Product revision (ability to change).2.Product transition (adaptability to new environments).3.Product operations (basic operational characteristics).McCall 模型通过层级的要素、标准和指标来详述这 3 个视角定义(产品修改、产品转移、产品运行)。
•11 Factors (To specify):描述软件的外部视角,也就是客户或使用者的视角。
•23 Criterias (To build):描述软件的内部视角,也就是开发人员的视角。
•Metrics (To control):定义衡量指标和方法下图中,左侧为 11 个质量要素,右侧为 23 个质量标准。
Barry W. Boehm 软件质量模型(1978 年)Boehm 软件质量模型试图通过一系列的属性的指标来量化软件质量。
软件工程的开发模型与方法软件工程是一门涉及软件开发、维护和演进的学科。
在软件开发过程中,开发模型和方法是非常重要的。
它们可以帮助开发团队组织工作、优化开发流程、提高软件质量和开发效率。
本文将探讨软件工程中常见的开发模型和方法,以帮助读者更好地理解和应用。
一、瀑布模型瀑布模型是软件工程中最传统、最经典的开发模型之一。
它将软件开发过程分为需求分析、系统设计、编码、测试和维护等阶段,每个阶段有明确的任务和交付物。
这种顺序性的开发模型适用于需求较为明确,并且变动不大的项目。
然而,瀑布模型在应对需求变更和项目风险管理方面存在一定的局限性。
二、迭代模型迭代模型是一种灵活的开发模型,强调通过多次迭代来逐步完善软件系统。
每次迭代包括需求分析、设计、编码、测试和发布等全套开发活动,但每次迭代的任务规模较小。
这种模型适用于需求变化频繁、团队开发习惯灵活的项目。
迭代模型可以快速响应变化,并及时吸收用户的反馈,提高软件的适应性和用户满意度。
三、增量模型增量模型是基于迭代模型的扩展,强调将软件系统划分为多个独立的小模块,并按照优先级逐个完成。
每个模块都经历完整的开发流程,最终组成完整的软件系统。
增量模型适用于需求复杂、规模庞大的项目。
通过模块化的方式,增量模型可以降低风险,并提高团队的开发效率。
四、敏捷方法敏捷方法主要包括Scrum、XP、Kanban等,是一种注重团队合作和快速交付的开发方法。
敏捷方法强调通过小规模团队的协作,通过快速迭代和持续集成来推动软件的交付。
它适用于需求频繁变化、市场竞争激烈的项目。
敏捷方法具有灵活性和适应性强的特点,但需要团队具备高度的沟通和协作能力。
五、结构化方法结构化方法是一种基于多种技术和工具的软件开发方法。
它强调通过模块化、具体化和可重用代码来提高开发效率和软件质量。
结构化方法适用于较大规模的软件项目,可以减少开发中的重复工作,提高代码的可维护性。
结构化方法的核心原则是模块化和信息隐藏,它可以促进软件的复用和可扩展性。
软件测试常用的质量体系模型
ISO 9000系列是国际标准化组织制定的一系列质量管理标准,
它们包括ISO 9000、ISO 9001、ISO 9004等,其中ISO 9001是软
件测试中最常用的标准,它要求建立和实施质量管理体系,以确保
产品和服务能够满足客户的要求。
CMMI(Capability Maturity Model Integration)是一个软件
过程改进的框架,它描述了组织的软件工程和管理实践,并提供了
一个评估组织过程成熟度的模型。
TMM(Test Maturity Model)是一种用于评估和改进测试过程
的模型,它包括五个不同的成熟度级别,从初始级别到优化级别,
帮助组织评估其测试过程的成熟度,并提供改进建议。
ISO/IEC 15504,也称为SPICE(Software Process Improvement and Capability Determination),是一个国际标准,用于评估和改进软件开发过程的能力。
它提供了一个框架,帮助组
织评估其软件开发过程的能力,并制定改进计划。
IEEE 730是IEEE制定的软件测试文档标准,它定义了软件测
试计划的内容和格式,包括测试范围、测试方法、资源需求等。
IEEE 829是IEEE制定的软件测试文档标准,它定义了测试文
档的内容和格式,包括测试设计规范、测试用例规范、测试报告等。
这些质量体系模型可以帮助组织建立和改进其软件测试过程,
提高软件质量,确保软件能够满足用户的需求和期望。
通过遵循这
些模型,组织可以建立可靠的软件测试流程,提高软件开发的效率
和质量。
介绍常见的软件测试模型软件测试是保证软件质量的重要环节之一。
在软件开发过程中,使用测试模型可以帮助测试人员系统地进行测试,以确保软件的正确性、稳定性和安全性。
本文将介绍常见的软件测试模型,包括瀑布模型、V模型、敏捷模型和螺旋模型。
瀑布模型是最早被广泛应用的软件开发模型之一,也被用于软件测试。
它将软件开发过程分为几个阶段,包括需求分析、设计、编码、测试和维护。
在瀑布模型中,测试是在其他阶段完成之后的最后一个阶段进行的,以验证软件是否满足需求和规格。
虽然瀑布模型的缺点是不适应需求变更和反馈,但它仍然被广泛应用于稳定的软件开发项目中。
V模型是另一种常见的软件测试模型,它与瀑布模型非常相似,但强调了测试活动与开发活动之间的对称关系。
在V模型中,测试活动与开发活动在相应的阶段进行,如需求分析后进行需求验证,设计后进行设计验证,编码后进行单元测试等。
这种对称性使得V模型能够更早地发现和纠正问题,提高软件质量。
另一种常见的软件测试模型是敏捷模型。
敏捷开发模型强调快速适应需求变化和频繁交付开发成果,而敏捷测试模型则与之相适应。
在敏捷测试中,测试活动与开发活动并行进行,测试人员成为开发团队的一员。
敏捷测试强调持续集成和自动化测试,以快速反馈问题和确保软件质量。
敏捷模型的灵活性和高效性使其在快速变化的软件开发项目中得到广泛应用。
螺旋模型是一种风险驱动的软件开发和测试模型。
它强调在软件开发过程中不断评估和控制风险。
螺旋模型将软件开发过程分为多个小的迭代循环,每个循环都包括需求分析、设计、编码、测试和评估等活动。
在每个迭代循环的结束,测试人员会评估软件的质量和风险,并决定是继续下一轮循环还是终止开发。
螺旋模型的优势在于及时发现和解决问题,并降低项目失败的风险。
总而言之,不同的软件测试模型适用于不同的开发项目和需求。
瀑布模型适用于稳定的项目,V模型强调测试与开发的对称关系,敏捷模型适应快速变化的需求,螺旋模型注重风险控制。
软件工程中的软件模型与建模工具软件工程作为一门学科,主要研究软件系统的开发和维护过程。
而软件模型与建模工具则是软件工程中至关重要的一部分,用于描述、分析和设计软件系统。
本文将介绍软件工程中常见的软件模型以及相应的建模工具。
一、需求分析模型1.1. 数据流图(Data Flow Diagram, DFD)数据流图是一种表示系统功能和数据流动的图形化工具。
它将系统划分为各个模块,用箭头表示数据流向,用矩形表示处理功能。
数据流图可以清晰地描述系统的功能和数据流动,帮助软件工程师对系统需求进行分析和理解。
1.2. 用例图(Use Case Diagram)用例图是一种表示系统行为和角色之间关系的建模工具。
它描述了系统与用户、外部系统之间的交互情况。
用例图可以帮助软件工程师识别系统的功能需求,捕捉用户的操作场景,从而更好地进行需求分析和系统设计。
二、设计模型2.1. 类图(Class Diagram)类图是一种描述类、对象及其之间关系的建模工具。
它用于展示系统的静态结构,包括类之间的继承、关联、聚合等关系。
类图可以帮助软件工程师对系统的结构进行分析、设计和实现。
2.2. 时序图(Sequence Diagram)时序图是一种描述对象之间交互顺序的建模工具。
它展示了对象之间的消息传递,帮助软件工程师更好地理解系统的动态行为。
时序图可以用于详细描述系统的时序交互过程,指导软件开发过程。
三、实现模型3.1. 组件图(Component Diagram)组件图是一种描述系统内部组件之间关系的建模工具。
它展示了系统的结构和组件之间的依赖关系。
组件图可以帮助软件工程师理清系统的组件划分,指导代码编写和软件集成过程。
3.2. 部署图(Deployment Diagram)部署图是一种描述系统物理部署情况的建模工具。
它展示了系统组件在物理节点上的部署情况,帮助软件工程师进行系统的部署规划和资源配置。
四、建模工具4.1. UML(Unified Modeling Language)UML是一种广泛使用的软件建模语言,包括了多种建模工具,如用例建模、类建模、时序建模等。
常见的软件质量模型常见的软件质量模型关于软件质量模型,业界已经有很多成熟的模型定义,比较常见的质量模型有McCall 模型、Boehm 模型、FURPS 模型、Dromey 模型和 ISO9126 模型。
•Jim McCall 软件质量模型(1977 年)•Barry W. Boehm 软件质量模型(1978 年)•FURPS/FURPS+ 软件质量模型•R. Geoff Dromey 软件质量模型•ISO/IEC 9126 软件质量模型(1993 年)•ISO/IEC 25010 软件质量模型(2011 年)Jim McCall 软件质量模型(1977 年)Jim McCall 的软件质量模型,也被称为 GE 模型(General Electrics Model)。
其最初起源于美国空军,主要面向的是系统开发人员和系统开发过程。
McCall 试图通过一系列的软件质量属性指标来弥补开发人员与最终用户之间的沟壑。
McCall 质量模型使用 3 中视角来定义和识别软件产品的质量:1.Product revision (ability to change).2.Product transition (adaptability to newenvironments).3.Product operations (basic operationalcharacteristics).McCall 模型通过层级的要素、标准和指标来详述这 3 个视角定义(产品修改、产品转移、产品运行)。
•11 Factors (To specify):描述软件的外部视角,也就是客户或使用者的视角。
•23 Criterias (To build):描述软件的内部视角,也就是开发人员的视角。
•Metrics (To control):定义衡量指标和方法下图中,左侧为 11 个质量要素,右侧为 23 个质量标准。
Barry W. Boehm 软件质量模型(1978 年)Boehm 软件质量模型试图通过一系列的属性的指标来量化软件质量。
Boehm 的质量模型包含了 McCall 模型中没有的硬件属性。
Boehm 模型也类似于McCall 的质量模型,采用层级的质量模型结构,包括高层属性、中层属性和原始属性。
高层属性主要关注 3 个问题:•As-is utility•Maintainability•Portability中层属性包含了 7 个质量要素:•Portability (General utility characteristics)•Reliability (As-is utility characteristics)•Efficiency (As-is utility characteristics)•Usability (As-is utility characteristics, Human Engineering)•Testability (Maintainability characteristics)•Understandability (Maintainability characteristics)•Flexibility (Maintainability characteristics,Modifiability)可以看出,Boehm 模型和 McCall 模型有些相似,区别在于McCall 模型主要关注于高层属性("As-is utility")的精确度量上,而Boehm 模型则基于更广泛的属性,并且对可维护性做了更多的关注。
FURPS/FURPS+ 软件质量模型FURPS 模型最初由 Robert Grady 提出,后来由 Rational Software 进行扩展至 FURPS+。
FURPS 模型包括:•Functionality•Usability•Reliability•Performance•SupportabilityFURPS 包括两种不同的类型:功能性和非功能性。
R. Geoff Dromey 软件质量模型Dromey 软件质量模型由 3 个主要元素组成:1.Product properties that influence quality2.High level quality attributes3.Means of linking the product properties with thequality attributes.构建该质量模型包括以下 5 个步骤:1.Chose a set of high-level quality attributesnecessary for the evaluation.2.List components/modules in your system.3.Identify quality-carrying properties for thecomponents/modules (qualities of the component that have themost4.impact on the product properties from the listabove).5.Determine how each property effects the qualityattributes.6.Evaluate the model and identify weaknesses.ISO/IEC 9126 软件质量模型(1993 年)ISO/IEC 9126: Software Product Evaluation: Quality Characteristics and Guidelines for their Use-standardISO/IEC 9126 模型是建立在 McCall 和 Boehm 模型之上的,同时加入了功能性要求,还包括识别软件产品的内部和外部质量属性。
软件的 6 个质量特征:1.功能性(Functionality):当软件在指定条件下使用时,软件产品提供满足明确和隐含需要的功能的能力;2.可靠性(Reliability):在指定条件下使用时,软件产品维持规定的性能级别的能力;3.易用性(Usability):在指定条件下使用时,软件产品被理解、学习、使用和吸引用户的能力;4.效率(Efficiency):在规定条件下,相对于所用资源的数量,软件产品可提供适当性能的能力;5.可维护性(Maintainability):软件产品可被修改的能力。
修改可能包括纠正、改进或软件对环境、需求和功能规约变化的适应程度;6.可移植性(Portability):软件产品从一种环境迁移到另一种环境的能力。
ISO/IEC 9126-1 内部和外部质量特征:ISO/IEC 9126-1 中的非技术因素:下面是 ISO/IEC 9126 模型与McCall 模型和 Boehm 模型的对比:ISO/IEC 25010 软件质量模型(2011 年)ISO/IEC 9126-1:2001 已被 ISO/IEC 25010:2011 代替并废止。
上图阐明了ISO/IEC 25000 SQuaRE系列标准的组织,其组成部分均称为分部。
SQuaRE系列国际标准内的分部有:1.ISO/IEC 2500n 质量管理分部。
构成这个分部的那些标准定义了由SQuaRE系列标准中的所有其他标准引用的全部公共模型、术语和定义。
在针对特定应用情况使用适当标准方面的引用路径和高级的实用建议有助于所有类型的用户。
这一分部还提供了用于负责管理软件产品需求和评价的支持功能的要求和指南。
2.ISO/IEC 2501n 质量模型分部。
构成这个分部的标准给出一个包括软件内部质量、软件外部质量和软件使用质量的特性的详细质量模型。
此外, 内部和外部的软件质量特性被分解细化成一些子特性,并且还提供了使用该质量模型的实用指南。
3.ISO/IEC 2502n 质量测量分部。
构成这个分部的标准包括软件产品质量测量参考模型、质量测量的数学定义及其应用的实用指南。
给出了应用于软件内部质量、软件外部质量和使用质量的测量。
定义并给出了构成后续测量基础的质量测量元素。
4.ISO/IEC 2503n 质量要求分部。
构成这个分部的标准帮助用户规定质量要求。
这些质量要求可用在要开发的软件产品的质量需求抽取过程中或用作评价过程的输入。
需求定义过程可映射到ISO/IEC15288 中定义的技术过程。
5.ISO/IEC 2504n 质量评价分部。
构成这个分部的标准给出了无论由评价方、需方还是由开发方执行的软件产品评价的要求、建议和指南。
还给出了作为评价模块的测量文档编制支持。
6.ISO/IEC 25050到ISO/IEC 25099保留用于SQuaRE扩展的国际标准和/或技术报告。
软件质量模型包含 8 个特征,并且被进一步分解为可以度量的内部和外部多个子特征。
ISO/IEC 25010 中新增了软件使用质量,其包含 5 个特征,并进一步被划分为可以被度量的多个子特征。
•使用质量:在特定的使用周境中,软件产品使得特定用户能达到有效性、生产率、安全性和满意度的特定目标的能力。
质量模型与目标系统的关系:质量的生命周期:。