零序方向电流保护(高等教学)
- 格式:ppt
- 大小:2.47 MB
- 文档页数:57
零序方向保护原理LT零序方向保护原理在系统正常运行时,惟独正序分量,没有零序分量,当系统发生接地短路故障或者不对称断线故障时才产生零序分量,因此零序分量是构成保护的一种很可利用的故障特征量。
要构成方向保护必须能够区分正、反方向故障。
接下来我们分析一下正、反方向短路故障时零序分量的方向性。
规定正方向:电流由母线指向路线为正方向;电压以电压升为正方向1、正方向短路故障:系统接线及零序序网如下图示由图町得;U Q=—X SO*-1■ 7 心7、m SAAAAAZ-通常情况下零序阻抗南按约巧度考虐p 所以正方向短路时攻超前I。
约-1。
5度,『LJo = -10 来滩口电力资料网-您的宏费电力资料库2辰方向短路故障:零序•房网如丕.图小2民方向故障奪序也序网囲通常情况下零序阻抗角按约75度考虑,所以反方向短路时Uo超前Io约75度。
分析序网要切记一点,在计算某点电压时要由高电位点经过无电源端至低电位点构成回路,如果从电源端计算,则等于电源电压加(或者减)两点间压降,而电源电压很可能也是一个未知数。
对于零序网络来说,短路点电压最高,可以看成是零序回路的电源。
由分析可以看出:在特定的正方向下,零序分量具有明确的方向性。
根据上述推导,如果要构成一个零序方向继电器,使它在正方向短路时动作,反方向短路时不动,则该继电器的最大动作灵敏角应为Uo超前Io约-105度。
据此我们可以画出零序方向继电器的动作特性图:电力资料网-您的免费电力资料库由动作特性可得动作方程:165o Warg3U0/3I0W — 15o当我们知道动作特性及动作方程后,就可以构成继电器。
二、负序方向保护原理同样在系统正常运行时,也没有负序分量,当系统发生不对称短路故障或者不对称断线故障时才产生负序分量,因此负序分量也是构成保护的一种很可利用的故障特征量。
接下来我们看一下系统正、反方向短路故障时负序序网图:由图可得:正方向短路U2=—I2XXs2反方向短路U2=I2X (X12+Xr2)通常情况下负序阻抗角按约75度考虑,所以正方向短路时U2超前12约-105度。
1采用零序方向保护的意义我国电力系统中性点接地方式有3种:中性点直接接地、中性点经消弧线圈接地和中性点不接地方式。
110 kV及以上电网的中性点均采用第1种接线方式,在这种系统中发生单相接地故障时接地短路电流很大,故称其为大接地电流系统。
在大接地电流系统中发生单相接地故障的概率很高,可占总短路故障的70%左右,因此要求其接地保护能灵敏、可靠、快速地切除接地短路故障,以免危及电气设备的安全。
大接地电流系统接地短路时,零序电流、零序电压和零序功率的分布与正序分量、负序分量的分布有明显区别:a.当系统任一点单相及两相接地短路时,网络中任何处的三倍零序电流和电压都等于该处三相电流或电压的矢量和,即:? ? 3U0=UA+UB +UC? ? 3I0=IA+I B+ICb.系统零序电流分布只与中性点接地的多少及位置有关,图1为系统接地短路时的零序等效网络。
式中??EΣ——电源的合成电动势;Z0T1、Z0T2——变压器T1、T2的零序阻抗;Z01、Z02——短路点两侧线路的零序阻抗。
当发电厂M侧的变压器中性点接地点增多时,Z0T1将减小,从而使I0和I01增大,I02减小。
反之,I0和I01减小,I02增大。
如果发电厂N侧的中性点不接地,则Z0T2=∞,I01也将增大且等于I0。
两相接地短路时也可得到相应的结论。
c. 故障点的零序电压最高,变压器中性点接地处电压为0,保护安装处的电压U0A=-I0Z0T1,如图2所示。
d. 零序功率S0=I0U0。
由于故障点的电压U0最高,对应故障点的S0也最大。
越靠近变压器中性点接地处S0越小。
在故障线路上,S0是由线路流向母线。
? ? 综上所述,中性点直接接地系统发生接地短路时,将产生很大的零序电流分量,利用零序电流分量构成零序电流保护,可作为一种主要的接地短路保护。
因为它不反映三相和两相短路,在正常运行和系统发生振荡时也没有零序分量产生,所以有较好的灵敏度。
如线路两端的变压器中性点都接地,当线路发生接地短路时,在故障点与各变压器中性点之间都有零序电流流过。