21高考数学人教A理科一轮复习攻略核心考点·精准研析 29 函数模型及其应用 含解析
- 格式:doc
- 大小:378.51 KB
- 文档页数:14
第九节 函数的模型及其应用1.函数的实际应用了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.2.函数的综合应用了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.知识点一 几种常见函数模型函数模型 函数解析式 正比例函数模型 f (x )=kx (k 为常数,k ≠0) 一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函数模型 f (x )=kx +b (k ,b 为常数且k ≠0)二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax α+b (a ,b 为常数,a ≠0,α≠1)“对号”函数模型 y =x +ax(a >0)易误提醒1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[自测练习]1.(2015·广州模拟)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意.故选D.答案:D2.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取最大利润,该企业一个月应生产该商品数量为( )A .36万件B .18万件C .22万件D .9万件解析:利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值. 答案:B知识点二 三种增长函数的图象与性质在区间(0,+∞)上,尽管函数y =a x (a >1),y =log a x (a >1)和y =x n (n >0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x 的增大,y =a x (a >1)的增长速度越来越快,会超过并远远大于y =x n (n >0)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢.因此,总会存在一个x 0,使得当x >x 0时,有log a x <x n <a x .[自测练习]3.下列函数中随x 的增大而增大速度最快的是( ) A .v =1100·e xB .v =100ln xC .v =x 100D .v =100×2x解析:只有v =1100·e x和v =100×2x 是指数函数,并且e>2,所以v =1100·e x的增大速度最快,故选A.答案:A考点一 一次、二次函数模型|1.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费s (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元D.403元 解析:依题意可设s A (t )=20+kt ,s B (t )=mt , 又s A (100)=s B (100), ∴100k +20=100m , 得k -m =-0.2,于是s A (150)-s B (150)=20+150k -150m =20+150×(-0.2)=-10, 即两种方式电话费相差10元,选A. 答案:A2.经市场调查,某商品在过去100天内的销售量和价格均为时间t (天)的函数,且日销售量近似地满足g (t )=-13 t +1123(1≤t ≤100,t ∈N ).前40天价格为f (t )=14t +22(1≤t ≤40,t ∈N ),后60天价格为f (t )=-12t +52(41≤t ≤100,t ∈N ),试求该商品的日销售额S (t )的最大值和最小值.解:当1≤t ≤40,t ∈N 时, S (t )=g (t )f (t )=⎝⎛⎭⎫-13t +1123⎝⎛⎭⎫14t +22 =-112t 2+2t +112×223=-112(t -12)2+2 5003,所以768=S (40)≤S (t )≤S (12)=2 5003.当41≤t ≤100,t ∈N 时,S (t )=g (t )f (t )=⎝⎛⎭⎫-13t +1123⎝⎛⎭⎫-12t +52=16t 2-36t +112×523=16(t -108)2-83, 所以8=S (100)≤S (t )≤S (41)=1 4912. 所以,S (t )的最大值为2 5003,最小值为8.一次函数与二次函数模型问题求解的三个关注点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错.(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法. (3)解决函数应用问题时,最后要还原到实际问题.考点二 分段函数模型|有一种新型的洗衣液,去污速度特别快.已知每投放k (1≤k ≤4,且k ∈R )个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎨⎧248-x-1,(0≤x ≤4),7-12x , (4<x ≤14).若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k 的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.[解] (1)由题意知k ⎝ ⎛⎭⎪⎫248-2-1=3,∴k =1.(2)因为k =4,所以y =⎩⎨⎧968-x-4,(0≤x ≤4),28-2x , (4<x ≤14).当0≤x ≤4时,由968-x-4≥4,解得-4≤x <8,所以0≤x ≤4.当4<x ≤14时,由28-2x ≥4,解得x ≤12,所以4<x ≤12. 综上可知,当y ≥4时,0≤x ≤12,所以只投放一次4个单位的洗衣液的有效去污时间可达12分钟.(3)在第12分钟时,水中洗衣液的浓度为2×⎝⎛⎭⎫7-12×12+1×⎣⎢⎡⎦⎥⎤248-(12-10)-1=5,又5>4,∴在第12分钟还能起到有效去污的作用.分段函数模型问题求解的三个关注点(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,应构建分段函数模型求解.(2)构造分段函数时,做到分段合理、不重不漏.(3)分段函数的最值是各段的最大(最小)者的最大者(最小者).1.已知A ,B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( )A .x =60tB .x =60t +50tC .x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150-50t (t >3.5)D .x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150(2.5<t ≤3.5),150-50(t -3.5)(3.5<t ≤6.5)解析:当0≤t ≤2.5时,x =60t ;当2.5<t ≤3.5时,x =150;当3.5<t ≤6.5时,x =150-50(t -3.5). 答案:D考点三 指数函数模型|已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律是θ=m ·2t+21-t (t ≥0,并且m >0).(1)如果m =2,求经过多长时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. [解] (1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x (x ≥1),则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 即m ·2t +22t ≥2恒成立,亦即m ≥2⎝⎛⎭⎫12t -122t 恒成立.令12t =y ,则0<y ≤1,∴m ≥2(y -y 2)恒成立, 由于y -y 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞.求解指数函数模型的三个注意点(1)指数函数模型,常与增长率相结合进行考查,主要有人口增长、银行利率、细胞分裂等问题.(2)应用指数函数模型时,注意先设定模型,再求有关数据. (3)y =a (1+x )n 通常利用指数运算与对数函数的性质求解.2.(2015·江苏连云港模拟)把物体放在空气中冷却,如果物体原来的温度是θ1,空气温度是θ0,t 分钟后物体的温度θ可由公式θ=θ0+(θ1-θ0)e -t ln 32求得,现有60 ℃的物体放在15 ℃的空气中冷却,当物体温度为35 ℃时,冷却时间t =________分钟.解析:由已知条件可得35=15+(60-15)·e -t ln 32,解得t =2.答案:22.利用函数模型求解实际问题【典例】 (12分)已知一家公司生产某品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2(0<x ≤10),108x -1 0003x 2(x >10).(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)[思路点拨] (1)由R (x )中分段写出W 与x 的解析式. (2)分两段求利润的最大值,比较后得出结论. [规范解答] (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;(2分)当x >10时,W =xR (x )-(10+2.7x ) =98-1 0003x-2.7x .(4分)∴W =⎩⎨⎧8.1x -x 330-10(0<x ≤10),98-1 0003x-2.7x (x >10).(5分)(2)①当0<x ≤10时,令W ′=8.1-x 210=0,得x =9,可知当x ∈(0,9)时,W ′>0,当x∈(9,10]时,W ′<0,(6分)∴当x =9时,W 取极大值,即最大值, 且W max =8.1×9-130×93-10=38.6.(7分)②当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x≤98-21 0003x·2.7x =38,(8分) 当且仅当1 0003x =2.7x ,即x =1009时,W =38,(9分)故当x =1009时,W 取最大值38(当1 000x 取整数时,W 一定小于38).(10分)综合①②知,当x =9时,W 取最大值,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.(12分)[模板形成]A 组 考点能力演练1.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为( )解析:注意到y 为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.答案:D2.已知某种动物的繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,则到第8年它们将发展到( )A .200只B .300只C .400只D .500只解析:由题意,繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),这种动物第2年有100只,∴100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),∴当x =8时,y =100log 3(8+1)=100×2=200.故选A.答案:A3.某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)( )A .6.9 mB .7.0 mC .7.1 mD .6.8 m解析:建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0),设点A 的坐标为(4,-h ),则C (3,3-h ),将这两点的坐标代入y =ax 2,可得⎩⎪⎨⎪⎧-h =a ·42,3-h =a ·32,解得⎩⎨⎧a =-37,h =487≈6.9,所以厂门的高约为6.9 m. 答案:A4.(2015·青岛模拟)某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数x (正常情况0≤x ≤100,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资y 元.要求绩效工资不低于500元,不设上限且让大部分教职工绩效工资在600元左右,另外绩效工资在平均分数左右变化不大,则下列函数最符合要求的是( )A .y =(x -50)2+500B .y =10x25+500C .y =11 000(x -50)3+625D .y =50[10+lg(2x +1)]解析:由题意知,函数单调递增,且先慢后快,在x =50左右增长近乎为0且函数值在600左右,最小值为500,A 是先减后增,B 由指数函数知是增长越来越快,D 由对数函数增长速度越来越慢,C 是y =x 3的平移和伸缩变换而得,最符合题目要求,故选C.答案:C5.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1、y 2分别是2万元、8万元,那么要使这两项费用之和最小,仓库应建在离车站( )A .5千米处B .4千米处C .3千米处D .2千米处解析:设仓库到车站的距离为x 千米,由题意得y 1=k 1x ,y 2=k 2x ,其中x >0,又当x =10时,y 1=2,y 2=8,故k 1=20,k 2=45.所以y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x=45x ,即x =5时取等号. 答案:A6.(2015·西宁五中片区四校联考)某城市出租车按如下方法收费:起步价6元,可行3 km(含3 km),3 km 后到10 km(含10 km)每走1 km 加价0.5元,10 km 后每走1 km 加价0.8元,某人坐出租车走了12 km ,他应交费________元.解析:本题考查数学知识在实际问题中的应用.某人坐出租车走了12 km ,他应交费6+0.5×7+0.8×2=11.1元.答案:11.17.(2015·北京朝阳统考)某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (万元)与机器运转时间x (x ∈N *)(年)的关系为y =-x 2+18x -25,则每台机器运转________年时,年平均利润最大,最大值是________万元.解析:本题考查应用均值不等式解答实际问题.据已知每台机器的年平均利润关于运转时间x 的函数关系式为g (x )=f (x )x =-x 2+18x -25x=18-⎝⎛⎭⎫x +25x ,据均值不等式可得g (x )=18-⎝⎛⎭⎫x +25x ≤18-2 x ×25x =8,当且仅当x =25x,即x =5时取得等号.答案:5 88.某村计划建造一个室内面积为800 m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.则矩形温室的蔬菜的种植面积最大值是________m 2.解析:设矩形温室的左侧边长为a m ,后侧边长为b m ,则ab =800 m 2.蔬菜的种植面积S =(a -4)·(b -2)=ab -4b -2a +8=808-2(a +2b ).∴S ≤808-42ab =648(m 2).当且仅当a =2b ,即a =40 m ,b =20 m 时,S max =648 m 2.答案:6489.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.(1)分别写出两类产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资的函数分别为f (x )=k 1x ,g (x )=k 2x .由已知得f (1)=18=k 1,g (1)=12=k 2, 所以f (x )=18x (x ≥0),g (x )=12x (x ≥0). (2)设投资债券类产品x 万元,则投资股票类产品(20-x )万元.则收益(单位:万元)为y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20). 设t =20-x (0≤t ≤25),则y =20-t 28+12t =-18(t -2)2+3, 所以当t =2,即x =16时,收益最大,最大收益为3万元.10.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p (以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f (0)=4,f (2)=6,求出所选函数f (x )的解析式(注:函数定义域是[0,5],其中x =0表示8月1日,x =1表示9月1日,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.解:(1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x -q )2+p .(2)对于f (x )=x (x -q )2+p ,由f (0)=4,f (2)=6,可得p =4,(2-q )2=1,又q >1,所以q =3,所以f (x )=x 3-6x 2+9x +4(0≤x ≤5).(3)因为f (x )=x 3-6x 2+9x +4(0≤x ≤5),所以f ′(x )=3x 2-12x +9,令f′(x)<0,得1<x<3.所以函数f(x)在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.B组高考题型专练1.(2015·高考四川卷)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是() A.16小时B.20小时C.24小时D.28小时解析:由已知得192=e b,①48=e22k+b=e22k·e b,②将①代入②得e22k=14,则e11k=12,当x=33时,y=e33k+b=e33k·e b=⎝⎛⎭⎫123×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C.答案:C2.(2013·高考湖北卷)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()解析:小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除 A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.答案:C3.(2015·高考浙江卷)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是()A.ax+by+cz B.az+by+cxC.ay+bz+cx D.ay+bx+cz解析:采用特值法进行求解验证即可,若x=1,y=2,z=3,a=1,b=2,c=3,则ax+by+cz=14,az+by+cx=10,ay+bz+cx=11,ay+bx+cz=13.由此可知最低的总费用是az+by+cx.答案:B4.(2015·高考北京卷)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升解析:因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升,选B.答案:B5.(2014·高考湖北卷)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=76 000vv2+18v+20l.(1)如果不限定车型,l=6.05,则最大车流量为________辆/小时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/小时.解析:(1)当l=6.05,则F=76 000vv2+18v+121=76 000v+18+121v,由基本不等式v+121v≥2121=22,得F≤76 00022+18=1 900(辆/小时),故答案为1 900.(2)l=5,F=76 000vv2+18v+100=76 000v+18+100v,由基本不等式v+100v≥2100=20,得F≤76 00020+18=2 000(辆/小时),增加2 000-1 900=100(辆/小时),故答案为100. 答案:(1)1 900(2)100。
函数模型及其应用【核心素养分析】1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.3.培养学生数学抽象、逻辑推理、直观想象、数学运算的素养。
【重点知识梳理】知识点一指数、对数、幂函数模型性质比较知识点二种常见的函数模型【特别提醒】1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.【典型题分析】高频考点一 利用函数模型解决实际问题例1.【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130;②15【解析】①x =10时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8yy x y x -≥≤, 因为min158y ⎛⎫= ⎪⎝⎭,所以x 的最大值为15.综上,①130;②15. 【方法技巧】(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.【变式探究】(2020·河北衡水中学调研)为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10,k 为常数),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求最小值. 【解析】(1)当x =0时,C =8,∴k =40,∴C (x )=403x +5(0≤x ≤10),∴f (x )=6x +20×403x +5=6x +8003x +5(0≤x ≤10).(2)由(1)得f (x )=2(3x +5)+8003x +5-10.令3x +5=t ,t ∈[5,35], 则y =2t +800t-10≥22t ·800t -10=70(当且仅当2t =800t,即t =20时等号成立),此时x =5,因此f (x )的最小值为70.∴隔热层修建5 cm 厚时,总费用f (x )达到最小,最小值为70万元. 高频考点二 构建二次函数模型解决实际问题例2.(2020·山西康杰中学模拟)某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表(单位:万美元):其中年固定成本与年生产的件数无关,m 为待定常数,其值由生产A 产品的原料价格决定,预计m ∈[6,8],另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税,假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 1,x 2之间的函数关系式,并指明定义域;(2)如何投资才可获得最大年利润?请你做出规划.【解析】(1)由题意得y 1=10x 1-(20+mx 1)=(10-m )x 1-20(0≤x 1≤200且x 1∈N),y 2=18x 2-(40+8x 2)-0.05x 22=-0.05x 22+10x 2-40=-0.05(x 2-100)2+460(0≤x 2≤120且x 2∈N). (2)∵6≤m ≤8,∴10-m >0, ∴y 1=(10-m )x 1-20为增函数. 又0≤x 1≤200,x 1∈N ,∴当x 1=200时,生产A 产品的最大利润为(10-m )×200-20=1 980-200m (万美元). ∵y 2=-0.05(x 2-100)2+460(0≤x 2≤120,且x 2∈N), ∴当x 2=100时,生产B 产品的最大利润为460万美元.(y 1)max -(y 2)max =(1 980-200m )-460=1 520-200m . 易知当6≤m <7.6时,(y 1)max >(y 2)max .即当6≤m <7.6时,投资生产A 产品200件可获得最大年利润;当m =7.6时,投资生产A 产品200件或投资生产B 产品100件,均可获得最大年利润; 当7.6<m ≤8时,投资生产B 产品100件可获得最大年利润. 【方法突破】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.【变式探究】(2020·河北唐山一中模拟)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4<x ≤20时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当0<x ≤20时,求函数v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值. 【解析】(1)由题意得当0<x ≤4时,v =2,当4<x ≤20时,设v =ax +b (a ≠0), 显然v =ax +b 在(4,20]内是减函数, 由已知得⎩⎪⎨⎪⎧20a +b =0,4a +b =2,解得⎩⎪⎨⎪⎧a =-18,b =52, 所以v =-18x +52.故函数v =⎩⎪⎨⎪⎧2,0<x ≤4,-18x +52,4<x ≤20.(2)设年生长量为f (x )千克/立方米,依题意, 由(1)得f (x )=⎩⎪⎨⎪⎧2x ,0<x ≤4,-18x 2+52x ,4<x ≤20.当0<x ≤4时,f (x )为增函数, 故f (x )max =f (4)=4×2=8;当4<x ≤20时,f (x )=-18x 2+52x =-18(x 2-20x )=-18(x -10)2+252,f (x )max =f (10)=12.5.所以当0<x ≤20时,f (x )的最大值为12.5.故当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 高频考点三 构建指数函数、对数函数模型解决实际问题例3.【2020·全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==, 设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天, 则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =, 所以1ln 20.691.80.380.38t =≈≈天. 【方法技巧】(1)要先学会合理选择模型,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.【变式探究】(2020·江苏省丹阳高级中学模拟)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?【解析】(1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝ ⎛⎭⎪⎫12110.故每年砍伐面积的百分比为1-⎝ ⎛⎭⎪⎫12110.(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a ,把x =1-⎝ ⎛⎭⎪⎫12110代入, 即⎝ ⎛⎭⎪⎫12m10=⎝ ⎛⎭⎪⎫1212,即m 10=12,解得m =5. 故到今年为止,该森林已砍伐了5年.高频考点四 构建分段函数模型解决实际问题例4.(2020·陕西西安中学模拟)某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 【解析】(1)当x ≤6时,y =50x -115, 令50x -115>0,解得x >2.3, ∵x 为整数,∴3≤x ≤6,x ∈Z.当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115.令-3x 2+68x -115>0,有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z.∴f (x )=⎩⎪⎨⎪⎧50x -1153≤x ≤6,x ∈Z ,-3x 2+68x -1156<x ≤20,x ∈Z.(2)对于y =50x -115(3≤x ≤6,x ∈Z),显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z),当x =11时,y max =270.∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多. 【方法突破】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解;(2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏; (3)分段函数的最值是各段的最大(最小)值的最大(最小)者.【变式探究】(2020·云南昆明第三中学模拟)某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x 台机器人的总成本p (x )=⎝⎛⎭⎪⎫1600x 2+x +150万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量q (m )=⎩⎪⎨⎪⎧815m (60-m ),1≤m ≤30,480, m >30(单位:件),已知传统人工分拣每人每日的平均分拣量为1 200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?【解析】(1)由总成本p (x )=⎝ ⎛⎭⎪⎫1600x 2+x +150万元,可得每台机器人的平均成本y =p x x =1600x 2+x +150x =1600x +150x+1≥21600x ·150x +1=2.当且仅当1600x =150x,即x =300时,上式等号成立.∴若使每台机器人的平均成本最低,应买300台.(2)引进机器人后,每台机器人的日平均分拣量 q (m )=⎩⎪⎨⎪⎧815m (60-m ),1≤m ≤30,480, m >30当1≤m ≤30时,300台机器人的日平均分拣量为160m (60-m )=-160m 2+9 600m ,∴当m =30时,日平均分拣量有最大值144 000件.当m >30时,日平均分拣量为480×300=144 000(件).∴300台机器人的日平均分拣量的最大值为144 000件.若传统人工分拣144 000件,则需要人数为144 0001 200=120(人).∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少120-30120×100%=75%.。
2021年高考数学理新课标A版一轮总复习开卷速查必修部分12函数模型及其应用1.往外埠投寄平信,每封信不超过20 g,付邮费0.80元,超过20 g而不超过40 g,付邮费1.60元,依此类推,每增加20 g需增加邮费0.80元(信的质量在100 g以内).如果某人所寄一封信的质量为72.5 g,那么他应付邮费( ) A.3.20元B.2.90元C.2.80元 D.2.40元解析:由题意得20×3<72.5<20×4,则应付邮费0.80×4=3.20(元).故选A.答案:A2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:A.y=2x B.y=x2-1C.y=2x-2 D.y=log2x解析:根据x=0.50,y=-0.99,代入计算,可以排除A;根据x =2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.答案:D3.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为()解析:注意到y为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案D.答案:D4.[xx·北京]加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟 B.3.75分钟C.4.00分钟 D.4.25分钟解析:由实验数据和函数模型知,二次函数p=at2+bt+c的图像过点(3,0.7),(4,0.8),(5,0.5),分别代入解析式,得⎩⎪⎨⎪⎧ 0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解得⎩⎪⎨⎪⎧ a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.812 5,所以当t =3.75分钟时,可食用率p 最大.故选B.答案:B5.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt ,假设5分钟后甲桶和乙桶的水量相等,若再过m 分钟后甲桶中的水只有a 8升,则m 的值为( )A .8B.10 C .12D.15 解析:由已知条件可得a e 5n =a 2,e 5n =12.由a e nt =a 8,得e nt =18,所以t =15,m =15-5=10.答案:B6.国家规定个人稿费纳税办法:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿费的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A .2 800元 B.3 000元C .3 800元 D.3 818元解析:设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得y =⎩⎪⎨⎪⎧ 0 (x ≤800),(x -800)×14% (800<x ≤4 000),11%·x (x >4 000).如果稿费为4 000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4 000元之间,∴(x -800)×14%=420.∴x =3 800(元).答案:C7.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =__________,经过5小时,1个病毒能繁殖为__________个.解析:当t =0.5时,y =2,∴2=e 12k ,∴k =2ln2.∴y =e 2t ln2,当t =5时,∴y =e 10ln2=210=1 024.答案:2ln2 1 0248.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了______km.解析:设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧ 9, 0<x ≤3,8+2.15(x -3)+1, 3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8.由y =22.6,解得x =9.答案:99.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为__________.解析:设长为a cm ,宽为b cm ,则ab =600,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S 最大=486.答案:30 cm 、20 cm10.有一种新型的洗衣液,去污速度特别快.已知每投放k (1≤k ≤4,且k ∈R )个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎨⎧248-x -1(0≤x ≤4),7-12x (4<x ≤14).若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k 的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?解析:(1)由题意知k ⎝ ⎛⎭⎪⎪⎫248-2-1=3,得k =1. (2)因为k =4,所以y =⎩⎪⎨⎪⎧ 968-x -4(0≤x ≤4),28-2x (4<x ≤14),则当0≤x ≤4时,由968-x-4≥4,解得8>x ≥-4,所以此时0≤x ≤4. 当4<x ≤14时,由28-2x ≥4,解得x ≤12,所以此时4<x ≤12. 综上可知0≤x ≤12,若只投放一次4个单位的洗衣液,则有效去污时间可达12分钟.B 级 能力提升练11.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每一小时可获得的利润是100⎝⎛⎭⎪⎫5x +1-3x 元. (1)求证:生产a 千克该产品所获得的利润为100a ·⎝ ⎛⎭⎪⎫5+1x -3x 2元; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.解析:(1)证明:生产a 千克该产品所用的时间是a x 小时,∵每一小时可获得的利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元,∴获得的利润为100⎝ ⎛⎭⎪⎫5x +1-3x ×a x 元. 因此生产a 千克该产品所获得的利润为100a ⎝ ⎛⎭⎪⎫5+1x -3x 2元. (2)生产900千克该产品获得的利润为90 000·⎝⎛⎭⎪⎫5+1x -3x 2元,1≤x ≤10.设f (x )=-3x 2+1x +5,1≤x ≤10.则f (x )=-3⎝ ⎛⎭⎪⎫1x -162+112+5,当且仅当x =6取得最大值. 故获得最大利润为90 000×6112=457 500元.因此甲厂应以6千克/小时的速度生产,可获得最大利润457 500元.12.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧ 3x +k x -8+5(0<x <6),14(x ≥6),)已知每日的利润L =S -C ,且当x =2时,L =3.(1)求k 的值; (2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.解析:(1)由题意可得:L =⎩⎪⎨⎪⎧ 2x +k x -8+2,0<x <6,11-x ,x ≥6,因为x =2时,L =3,所以3=2×2+k 2-8+2, 解得k =18. (2)当0<x <6时,L =2x +18x -8+2,所以L =2(x -8)+18x -8+18=-[2(8-x )+188-x ]+18≤-22(8-x )·188-x+18=6. 当且仅当2(8-x )=188-x,即x =5时取得等号. 当x ≥6时,L =11-x ≤5.所以当x =5时,L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元.21225 52E9勩Rq 39809 9B81 鮁39362 99C2 駂9L37492 9274 鉴38107 94DB 铛40702 9EFE 黾F29624 73B8 玸21502 53FE 叾25159 6247 扇。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心考点·精准研析考点一集合的含义及表示1.已知集合A={1,2,4},则集合B={(x,y)|x∈A,y∈A}中元素的个数为( )A.3B.6C.8D.92.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a= ( )A. B. C.0 D.0或3.已知a,b∈R,若={a2,a+b,0},则a2 021+b2 021为( )A.1B.0C.-1D.±14.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A 中元素的个数为 ( )A.9B.8C.5D.4【解析】 1.选 D.集合B中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4), (4,1),(4,2),(4,4),共9个.2.选D.若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.当a=0时,x=,符合题意;当a≠0时,由Δ=(-3)2-8a=0得a=,所以a的取值为0或.3.选C.由已知得a≠0,则=0,所以b=0,于是a2=1,即a=1或a=-1,又根据集合中元素的互异性可知a=1应舍去,因此a=-1,故a2 021+b2 021=(-1)2 021+02 021=-1.4.选A.由x2+y2≤3知,-≤x≤,-≤y≤.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为9.1.集合定义应用要明确构成集合的元素,即弄清该集合是数集、点集,还是其他集合;然后看元素的限制条件是什么,准确把握集合的含义.2.二次项系数讨论若二次函数、一元二次方程、一元二次不等式等的二次项系数含有参数,必须讨论二次项系数为0的情况.【秒杀绝招】1.排除法解T2,a=0时显然方程有一个解,排除A、B,当a≠0时,由Δ=0解得a=,排除C.2.图象法解T4,画出圆x2+y2=3,在圆内找整点.如图所示,在圆内共有9个整点,故选A.考点二集合间的基本关系【典例】1.(2020·邯郸模拟)已知集合A={x|x2-4x<5},B={x|<2},则下列判断正确的是( )A.-1,2∈AB.∉BC.B⊆AD.A∪B={x|-5<x<4}2.(2019·大庆模拟)集合A=,B={y|y=x2+1,x∈A},则集合B的子集个数为 ( )A.5B.8C.3D.23.已知集合A={x|y=},B={x|a≤x≤a+1},若B⊆A,则实数a的取值范围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)【解题导思】序号联想解题1 由集合A,想到一元二次方程的根2 由求集合B子集的个数,想到子集计算公式2n3 由B⊆A,想到列不等式组【解析】1.选C.因为A={x|-1<x<5},B={x|0≤x<4},所以B⊆A.2.选 B.由≤0得-1≤x<3,则A={-1,0,1,2},B={y|y=x2+1,x∈A}={1,2,5},其子集的个数为23=8个.3.选 C.集合A={x|y=}={x|-2≤x≤2},因为B⊆A,所以有所以-2≤a≤1.1.集合间基本关系的两种判定方法(1)化简集合,从表达式中寻找两集合的关系.(2)用列举法、图示法、数轴表示各个集合,从元素或图形中寻找关系.2.求参数的方法将两集合间的关系转化为元素或区间端点间的关系,表示为参数满足的关系.解决这类问题还要合理利用数轴、Venn图化抽象为直观进行求解.1.已知集合M={0,1},则满足条件M∪N=M的集合N的个数为( )A.1B.2C.3D.42.已知集合A={x∈R|x2+x-6=0},B={x∈R|ax-1=0},若B⊆A,则实数a 的取值集合为________.【解析】1.选D.由M∪N=M,得N⊆M.又M中有2个元素,故其子集的个数为22=4,所以集合N的个数为4.2.A={-3,2},若a=0,则B=∅,满足B⊆A;若a≠0,则B=,由B⊆A 知,=-3或=2,故a=-或a=,因此a 的取值集合为.答案:考点三集合的运算命题精解读考什么:(1)集合的交、并、补集运算.(2)考查数学运算、逻辑推理、直观想象等核心素养和数形结合等数学思想.怎么考:与不等式结合,考查集合的基本运算,属基础题类型.新趋势:以集合为载体,考查解不等式、集合的交、并、补等知识以及数形结合等数学思想.学霸好方法1.集合运算方法:若集合可以用列举法表示,则一一列举集合的元素;若与不等式结合,则解不等式后画数轴求解.2.交汇问题:集合的运算与函数、不等式、方程等相结合,考查相关的性质和运算.集合的交集、并集运算【典例】1.(2019·全国卷Ⅰ)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}2.设集合A={x||x|<1},B={x|x(x-3)<0},则A∪B= ( )A.(-1,0)B.(0,1)C.(-1,3)D.(1,3)【解析】 1.选 C.由题意得M={x|-4<x<2},N={x|x2-x-6<0}={x|-2<x<3},则M∩N={x|-2<x<2}.2.选C.A={x|-1<x<1},B={x|0<x<3},所以A∪B={x|-1<x<3}.涉及不等式的集合运算时,借助什么工具解题?提示:当题目中涉及不等式时,常借助数轴解题.集合的补集运算【典例】1.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A= ( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}2.(2019·资阳模拟)设全集U=R,集合A={x|x2-2x-3<0},B={x|x-1≥0},则图中阴影部分所表示的集合为( )A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}【解析】1.选B.方法一:A={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.方法二:因为A={x|x2-x-2>0},所以∁R A={x|x2-x-2≤0}={x|-1≤x≤2}.2.选D.图中阴影部分表示集合为∁U(A∪B),又A={x|-1<x<3},B={x|x≥1},所以A∪B={x|x>-1},所以∁U(A∪B)={x|x≤-1}.怎样求阴影部分所表示的集合?提示:先用集合间的关系和集合的运算表示阴影,再根据集合运算求解.利用集合的运算求参数【典例】1.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )A.0B.1C.2D.42.已知集合A={x|a-1<x<2a+1},B={x|3<x<7},若A∩B=A,则实数a的取值范围为( )A.(-∞,-2)B.(-∞,-2]C.(-2,+∞)D.[-2,+∞)【解析】1.选D.由题意可知{a,a2}={4,16},所以a=4.2.选B.因为A∩B=A,所以A⊆B,当A=∅时,a-1≥2a+1,解得a≤-2;当A≠∅时,有不等式组无解.综上所述,实数a的取值范围是(-∞,-2].当A⊆B,讨论集合A时容易忽视哪种情况?提示:容易忽视A=∅的情况.1.设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A.M∪N=MB.M∪(∁R N)=MC.N∪(∁R M)=RD.M∩N=M【解析】选A.因为M={x|x<4},N={x|0<x<2},所以M∪N={x|x<4}=M,A 正确;M∪∁R N =R≠M,B错误;N∪(∁R M)={x|0<x<2}∪{x|x≥4}≠R,C错误;M∩N={x|0<x<2}=N,D错误.2.(2019·西安模拟)设集合A={x|x2-3x+2≥0},B={x|x≤2,x∈Z},则(∁R A)∩B=( ) A.{1} B.{2} C.{1,2} D.∅【解析】选D.A={x|x≤1或x≥2},则∁R A={x|1<x<2}.又集合B={x|x≤2,x∈Z},所以(∁R A)∩B=∅.3.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A.-1<a≤2B.a>2C.a≥-1D.a>-1【解析】选D.由A∩B≠∅知,集合A,B有公共元素,作出数轴,如图所示:易知a>-1.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y ∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B 中元素的个数为( )A.77B.49C.45D.30【解析】选C.集合A表示如图所示的所有“”,集合B表示如图所示的所有“”+所有“”,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点(-3,-3),(-3,3),(3,-3),(3,3)之外的所有整点(即横坐标与纵坐标都为整数的点),则集合A⊕B表示如图所示的所有“”+所有“”+所有“·”,共45个.故A⊕B中元素的个数为45.关闭Word文档返回原板块。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心考点·精准研析考点一利用图象刻画实际问题1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是 ( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【解析】选A.由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误,故选A.2.如图所示,一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是a(m)(0<a<12)、4 m,不考虑树的粗细,现在用16 m长的篱笆,借助墙角围成一个矩形的花园ABCD.设此矩形花园的面积为S(m2),S的最大值为f(a),若将这棵树围在花园内,则函数u=f(a)的图象大致是 ( )【解析】选C.设BC=x m,则DC=(16-x)m,由得a≤x≤12.矩形面积S=x(16-x)≤=64.当x=8时取等号.当0<a≤8时,u=f(a)=64;当a>8时,由于函数在[a,12]上为减函数,所以当x=a时,矩形面积取最大值S max=f(a)=a(16-a).3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是( )【解析】选A.若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10℃,所以当t=12时,平均气温应该为10℃,故排除B;因为在靠近12月份时其温度小于10℃,因此12月份前的一小段时间内的平均气温应该大于10℃,排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.4.(2020·广州模拟)某罐头加工厂库存芒果m(kg),今年又购进n(kg)新芒果后,欲将芒果总量的三分之一用于加工芒果罐头.被加工为罐头的新芒果最多为f1(kg),最少为f2(kg),则下列选项中最能准确描述f1,f2分别与n的关系的是( )【解析】选A.要使得被加工为罐头的新芒果最少,尽量使用库存芒果,即当≤m,n≤2m时,f2=0,当n>2m时,f2=-m=>0,对照图象舍去C,D;要使得被加工为罐头的新芒果最多,则尽量使用新芒果,即当≤n,n≥时f1=,当>n,n<时f1=n,因为<2m,所以A符合题意.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二已知函数模型求解实际问题【典例】1.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A.100台B.120台C.150台D.180台2.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x)=已知某家庭2016年前三个月的煤气费如表:月份用气量煤气费若四月份该家庭使用了20 m3的煤气,则其煤气费为( )A.11.5元B.11元C.10.5元D.10元3.某农场种植一种农作物,为了解该农作物的产量情况,现将近四年的年产量f(x)(单位:万斤)与年份x(记2015年为第1年)之间的关系统计如下:则f(x)近似符合以下三种函数模型之一:①f(x)=ax+b;②f(x)=2x+a;③f(x)=x2+b.则你认为最适合的函数模型的序号是________.【解题导思】【解析】1.选C.设利润为f(x)万元,则f(x)=25x-(3000+20x-0.1x2)=0.1x2+5x-3 000(0<x<240,x∈N*).令f(x)≥0,得x≥150,所以生产者不亏本时的最低产量是150台.2.选A. 根据题意可知f(4)=C=4,f(25)=C+B(25-A)=14,f(35)=C+B(35-A)=19,解得A=5,B=,C=4,所以f(x)=所以f(20)=4+(20-5)=11.5.3.若模型为②,则f(1)=2+a=4,解得a=2,于是f(x)=2x+2,此时f(2)=6,f(3)=10,f(4)=18,与表格中的数据相差太大,不符合;若模型为③,则f(1)=1+b=4,解得b=3,于是f(x)=x2+3,f(2)=7,f(3)=12,f(4)=19,此时,与表格中的数据相差太大,不符合;若模型为①,则根据表中数据得解得a=,b=,经检验是最适合的函数模型.答案:①求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.1.(2020·中山模拟)据统计,一名工人组装第x件某产品所用的时间(单位:min)为f(x)=(A,c为常数).已知某工人组装第4件产品用时30 min,组装第A件产品用时15 min,那么c和A的值分别是( )A.75,25B.75,16C.60,25D.60,16【解析】选D.由题意可知4<A,则解得2.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A=lg n A来记录A菌个数的资料,其中n A为A菌的个数,现有以下几种说法:①P A≥1;②若今天的P A值比昨天的P A值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时5<P A<5.5(注:lg 2≈0.3).则正确的说法为________.(写出所有正确说法的序号)【解析】当n A=1时,P A=0,故①错误;若P A=1,则n A=10,若P A=2,则n A=100,故②错误;B菌的个数为n B=5×104,所以n A==2×105,所以P A=lg n A=lg 2+5.又因为lg 2≈0.3,所以5<P A<5.5,故③正确.答案:③考点三建立数学模型解决实际问题命题精解读考什么:(1)阅读语言文字的能力,实际问题与数学问题之间的转化能力,常见的初等函数,对勾函数,分段函数的性质等问题.(2)考查数学运算、数学抽象、数学建模等核心素养.怎么考:三种题型都有可能考查,考查学生的数学素养、数学建模思想、转化与化归思想等.新趋势:以现实问题为载体,函数与实际问题、数与形、函数性质与最值交汇考查.学霸好方法形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型,“对勾”函数模型的单调区间及最值如下(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]上单调递减.(2)当x>0时,x=时取最小值2,当x<0时,x=-时取最大值-2.初等函数模型及其应用【典例】(2019·马鞍山模拟)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg1.3≈0.11,lg 2≈0.30) ( )A.2020年B.2021年C.2022年D.2023年【解析】选C.若2019年是第1年,则第n年全年投入的科研经费为1 300×1.12n万元,由1 300×1.12n>2 000,可得lg 1.3+nlg 1.12>lg 2,所以n×0.05>0.19,得n>3.8,即n≥4,所以第4年,即2022年全年投入的科研经费开始超过2 000万元,故选C.每年投入的科研经费比上一年增长12%,说明每年经费是上一年的多少倍?提示:说明每年经费是上一年的1.12倍.对勾函数模型及其应用【典例】为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.【解析】(1)当x=0时,C=8,所以k=40,所以C(x)=(0≤x≤10),所以f(x)=6x+=6x+(0≤x≤10).(2)由(1)得f(x)=2(3x+5)+-10.令3x+5=t,t∈[5,35],则y=2t+-10≥2-10=70(当且仅当2t=,即t=20时等号成立),此时x=5,因此f(x)的最小值为70.所以隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.对勾函数求最值应注意什么?提示:对勾函数求最值一定要注意该函数的单调性,然后再求最值.分段函数模型及其应用【典例】(2020·银川模拟)大气温度y(℃)随着距离地面的高度x(km)的增加而降低,当在高度不低于11 km的高空时气温几乎不变.设地面气温为22℃,大约每上升1 km大气温度降低6℃,则y关于x的函数关系式为________.【解析】由题意知,y是关于x的分段函数,x=11为分界点,易得其解析式为y=答案:y=实际问题中分段函数的适用条件是什么?提示:实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.1.要制作一个容积为16 m3,高为1 m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元.【解析】设长方体容器底面矩形的长、宽分别为x m,y m,则y=, 所以容器的总造价为z=2(x+y)×1×10+20xy=20+20×16, 由基本不等式得,z=20+20×16≥40+320=480,当且仅当x=y=4,即底面是边长为4 m的正方形时,总造价最低.答案:4802.(2019·北京高考)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.【解析】①价格为60+80=140元,达到120元,少付10元,所以需支付130元.②设促销前总价为a元,a≥120,李明得到金额l(x)=(a-x)×80%≥0.7a,0≤x≤120,即x≤恒成立, 又最小值为=15,所以x最大值为15.答案:①130②151.(2019·深圳模拟)某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份 ( )A.甲食堂的营业额较高B.乙食堂的营业额较高C.甲、乙两食堂的营业额相同D.不能确定甲、乙哪个食堂的营业额较高【解析】选A.设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x,由题意可得,m+8a=m×(1+x)8,则5月份甲食堂的营业额y1=m+4a,乙食堂的营业额y2=m×(1+x)4=,因为-=(m+4a)2-m(m+8a)=16a2>0,所以y1>y2,故本年5月份甲食堂的营业额较高.2.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y与x的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).【解析】年销售总收入减去年总投资即可得到年利润,年总投资为(x+100)万元,故函数关系式为y=当0<x≤20时,x=16时函数值最大,且最大值为156;当x>20时,y<140.故年产量为16件时,年利润最大.答案:y=16关闭Word文档返回原板块。