2020高考数学复习专题 数列与数学归纳法教案
- 格式:pdf
- 大小:850.19 KB
- 文档页数:47
高三数学教案数列与数学归纳法高三数学教案:数列与数学归纳法数学教案:教学目标:1. 理解数列的概念,能够区分等差数列和等比数列;2. 掌握数列的通项公式及其推导过程;3. 能够运用数学归纳法解决相关问题。
教学内容:1. 数列的概念和分类:等差数列和等比数列;2. 等差数列的求和公式及其推导过程;3. 等比数列的通项公式及其推导过程;4. 数学归纳法的原理和应用。
教学步骤:1. 导入和引入(时间:5分钟)- 教师激发学生学习数列和数学归纳法的兴趣,提出本节课的教学目标。
2. 知识讲解(时间:20分钟)- 介绍数列的概念,阐述等差数列和等比数列的特点;- 引入等差数列的求和公式,并推导公式的过程;- 引入等比数列的通项公式,并推导公式的过程。
3. 例题演练(时间:30分钟)- 给出一些数列的例题,让学生根据所学知识求解;- 给予学生时间思考和解答,然后进行讲解和答疑。
4. 案例分析(时间:15分钟)- 通过实际问题引入数学归纳法的应用;- 给出一个实际问题,让学生运用数学归纳法解答;- 分组讨论,并就答案进行讲解。
5. 拓展延伸(时间:15分钟)- 提供一些拓展问题,让学生运用所学知识解答;- 鼓励学生多思考,多尝试不同方法解题。
6. 归纳总结(时间:10分钟)- 教师引导学生对本节课所学内容进行归纳总结;- 学生提问、发言并与教师一同总结。
7. 作业布置(时间:5分钟)- 教师布置相关的课后作业,巩固所学知识;- 告知学生下堂课的预习内容。
教学辅助工具:- PowerPoint演示文稿;- 教学板书;- 作业纸。
教学评价方式:- 教师通过观察学生的课堂表现,包括回答问题的准确性、参与讨论的积极性等,进行评价;- 课后批改作业。
教学反思:本节课的设计主要围绕数列与数学归纳法展开,通过讲解、例题演练和案例分析来帮助学生理解相关概念和方法。
在教学过程中,教师要注重与学生的互动,鼓励学生思考和探索,以培养学生的独立思考和问题解决能力。
高中数学数列与数学归纳教案范本【教案范本】教学目标:1. 理解数列的概念及其表示方法。
2. 熟练运用等差数列和等比数列的通项公式。
3. 掌握数学归纳法的基本思想和应用方法。
教学准备:1. PowerPoint课件。
2. 黑板、粉笔。
教学过程:第一节:数列的引入1. 引导学生回忆“函数”的概念,并与学生探讨“数列”与“函数”的异同点。
2. 在黑板上写下几个数字,如1, 3, 5, 7,让学生观察并思考这些数字之间是否存在某种规律。
3. 引导学生发现这些数字之间的关系是每个数字都比前一个数字大2,从而引入数列的概念。
第二节:等差数列的讨论1. 定义等差数列,并将等差数列的通项公式注释在黑板上。
2. 制作一个简单的数列图表,让学生进行观察和总结:首项、公差及各项之间的关系。
3. 利用PPT讲解等差数列的求和公式,并进行例题演练。
第三节:等比数列的讨论1. 定义等比数列,并将等比数列的通项公式注释在黑板上。
2. 制作一个简单的数列图表,让学生进行观察和总结:首项、公比及各项之间的关系。
3. 利用PPT讲解等比数列的求和公式,并进行例题演练。
第四节:数学归纳法的引入1. 引导学生思考如何证明对于每一个正整数n,等差数列或等比数列的通项公式都成立。
2. 介绍数学归纳法的基本思想和应用方法。
3. 利用具体例子,向学生展示数学归纳法的使用过程。
第五节:综合练习1. 准备一些综合性的练习题,包括等差数列、等比数列和数学归纳法的运用。
2. 让学生进行个人或小组练习,并及时给予指导和反馈。
3. 对一些典型的难题进行全班讨论,并解答学生的疑惑。
教学总结:本节课我们学习了数列的概念、等差数列和等比数列的通项公式以及数学归纳法的使用方法。
通过课堂教学和练习,学生对高中数学数列与数学归纳有了更深入的理解和掌握。
建议学生在课后加强对数列的练习,并运用数学归纳法解决相关问题,以提高数学思维能力。
拓展延伸:1. 探究斐波那契数列的生成方法和性质。
高三数学复习教案:高考数学数列复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学复习教案:高考数学数列复习教案希望能为您的提供到帮助。
本文题目:高三数学复习教案:高考数学数列复习教案【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系;3. 能通过一些基本的转化解决数列的通项公式和前项和的问题。
【基础练习】1.已知数列满足,则 = 。
分析:由a1=0, 得由此可知: 数列是周期变化的,且三个一循环,所以可得:2.在数列中,若,,则该数列的通项 2n-1 。
3.设数列的前n项和为,,且,则 ____2__.4.已知数列的前项和,则其通项 .【范例导析】例1.设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由得:或所以70是这个数列中的项,是第13项。
高中数学教学设计数列与数学归纳法教学设计高中数学教学设计——数列与数学归纳法教学设计导言:数列与数学归纳法是高中数学中的重要内容之一,它们在培养学生的数学思维能力和逻辑推理能力方面具有重要作用。
本教学设计将围绕数列与数学归纳法展开,通过生动的教学方法和实例让学生深入理解数列的概念和性质,并掌握运用数学归纳法解决问题的能力。
一、教学目标1. 理解数列的概念,能够区分等差数列和等比数列;2. 掌握数列的通项公式的推导过程和应用;3. 掌握使用数学归纳法证明数学命题的基本方法;4. 通过练习和实例,培养学生运用数学归纳法解决问题的能力。
二、教学重点与难点1. 教学重点:数列的概念、性质及应用;数学归纳法的基本思想和运用。
2. 教学难点:数学归纳法的使用和证明过程的设计。
三、教学内容及教学步骤1. 导入通过简单的问题引入数列的概念,例如:小明从1数到100中的所有奇数,问他数了多少个数?学生回答后,引导学生思考何为数列,并引出对数列的定义。
2. 数列的基本概念与性质通过展示一些数列的图形、数表等形式,引导学生对数列的概念进行更深入的理解,包括项、公式、前n项和等差/等比数列的性质。
3. 数列的通项公式的推导(1)引导学生观察等差数列和等比数列的规律,尝试给出公式的表达;(2)通过问题实例的引导,帮助学生推导等差数列和等比数列的通项公式,并进行证明;(3)设计一些巩固练习题,让学生通过运用推导出的公式计算并验证正确性。
4. 数学归纳法的基本概念和思想(1)通过实例和问题引导学生了解数学归纳法的基本概念;(2)讲解数学归纳法的基本思想和证明过程;(3)设计一些简单的数学命题,引导学生使用数学归纳法进行证明。
5. 数学归纳法的综合应用(1)通过一些实际问题的引入,引导学生掌握使用数学归纳法解决问题的方法;(2)设计一些综合性的练习题,让学生独立运用数学归纳法解决问题。
6. 拓展与应用进一步拓宽数列知识的学习,引导学生对数列的应用进行思考,例如金融数学中的利息计算问题等,并进行相关实例分析和讨论。
高三数学教案研究数列与数学归纳法数列是高中数学中的一个基础概念,掌握数列的性质和求解方法对于学生的数学学习至关重要。
在高三数学课程中,数列与数学归纳法是一个重要的知识点,本教案将对数列与数学归纳法进行详细研究与教学设计。
一、教学目标1. 掌握数列的定义和常见性质;2. 理解数列的递推公式与通项公式的概念及其求解方法;3. 熟练运用数学归纳法证明数学命题;4. 提高学生的逻辑思维和分析问题的能力。
二、教学内容1. 数列的定义和表示方法;2. 数列的分类及常见性质;3. 数列的递推公式与通项公式的求解;4. 数学归纳法的基本原理和应用。
三、教学过程1. 数列的定义和表示方法通过实例引入,引导学生理解数列的概念和基本表示方法。
要求学生能够准确地描述一个数列并找出其中的规律。
2. 数列的分类及常见性质结合实例,介绍常见的数列分类,如等差数列、等比数列等,并讲解不同类型数列的性质。
通过练习题和思考题让学生加深理解和应用。
3. 数列的递推公式与通项公式的求解详细讲解数列的递推公式和通项公式的概念,并通过实例演示如何构建数列的递推公式和求解数列的通项公式。
引导学生尝试用递推公式和通项公式解决实际问题。
4. 数学归纳法的基本原理和应用介绍数学归纳法的基本原理,并结合具体的数学命题和示例引导学生掌握数学归纳法的应用技巧。
通过练习题,让学生能熟练应用数学归纳法证明数学命题。
四、教学评估1. 组织学生进行数列的分类和常见性质练习,检查学生对于不同类型数列的理解程度。
2. 设计适当的数列递推公式与通项公式的求解题目,考察学生的应用能力。
3. 出示数学归纳法的证明题目,评估学生的逻辑思维和分析问题的能力。
五、教学反思通过本次教学实践,我发现学生对于数列的概念和性质理解较好,但在数列的求解方面还有一定困难。
下一次教学时,我将注重对于数列的递推公式和通项公式的解题技巧进行讲解和练习,提高学生的应用能力。
另外,数学归纳法在高中阶段为学生提供了一个重要的证明工具,因此我将增加更多的数学归纳法证明题目,让学生在实际操作中掌握数学归纳法的应用技巧。
第5节直接证明与间接证明(供选用)最新考纲 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点;2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.知识梳理1.直接证明内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止实质由因导果执果索因框图表示P⇒Q1→Q1⇒Q2→…→Q n⇒Q Q⇐P1→P1⇐P2→…→得到一个明显成立的条件文字语言因为……所以……或由……得……要证……只需证……即证……2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.[常用结论与微点提醒]分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (2)用反证法证明结论“a >b ”时,应假设“a <b ”.( ) (3)反证法是指将结论和条件同时否定,推出矛盾.( )(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )解析 (1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件. (2)应假设“a ≤b ”. (3)反证法只否定结论.答案 (1)× (2)× (3)× (4)√ 2.要证a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0. 答案 D3.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2C.1a <1bD.b a >a b解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .① 又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2. 答案 B4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根解析 因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,所以要做的假设是“方程x 3+ax +b =0没有实根”. 答案 A5.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________.解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c2-2ac cos B =a 2+c 2-ac ,∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.答案 等边三角形6.(2017·绍兴检测)完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)·(a 2-2)·…·(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=____________=____________=0.但0≠奇数,这一矛盾说明p 为偶数. 解析 ∵a 1-1,a 2-2,…,a 7-7均为奇数,∴(a 1-1)+(a 2-2)+…+(a 7-7)也为奇数,即(a 1+a 2+…+a 7)-(1+2+…+7)为奇数.又∵a 1,a 2,…,a 7是1,2,…,7的一个排列,∴a 1+a 2+…+a 7=1+2+…+7,故上式为0,∴奇数=(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0.答案 (a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+ (7)考点一 综合法的应用【例1】 已知a ,b ,c >0,a +b +c =1.求证: (1)a +b +c ≤3; (2)13a +1+13b +1+13c +1≥32.证明 (1)∵(a +b +c )2=(a +b +c )+2ab +2bc +2ca ≤(a +b +c )+(a +b )+(b +c )+(c +a )=3, ∴a +b +c ≤ 3. (2)∵a >0,∴3a +1>0, ∴43a +1+(3a +1)≥243a +1(3a +1)=4, ∴43a +1≥3-3a ,同理得43b +1≥3-3b ,43c +1≥3-3c , 以上三式相加得 4⎝⎛⎭⎪⎫13a +1+13b +1+13c +1≥9-3(a +b +c )=6,∴13a +1+13b +1+13c +1≥32. 规律方法 用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围: (1)定义明确的问题,如证明函数的单调性、奇偶性、求证无条件的等式或不等式; (2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱. 【训练1】 设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ca .由题设知(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a >0,b >0,c >0,所以a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1. 考点二 分析法的应用 【例2】 已知a >0,证明:a 2+1a 2-2≥a +1a-2.证明 要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2≥⎝ ⎛⎭⎪⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎪⎫a +1a -(2-2)>0,所以只需证⎝⎛⎭⎪⎫a 2+1a 22≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a -(2-2)2,即2(2-2)⎝⎛⎭⎪⎫a +1a ≥8-42,只需证a +1a≥2.因为a >0,a +1a≥2显然成立⎝⎛⎭⎪⎫a =1a=1时等号成立,所以要证的不等式成立.规律方法 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【训练2】 △ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c . 求证:1a +b +1b +c =3a +b +c. 证明 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3也就是c a +b +ab +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac , 故c 2+a 2=ac +b 2成立. 于是原等式成立. 考点三 反证法的应用【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2).(2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴⎝ ⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成为等比数列.规律方法 (1)当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.(2)用反证法证明不等式要把握三点:①必须否定结论;②必须从否定结论进行推理;③推导出的矛盾必须是明显的.【训练3】 (2017·郑州一中月考)已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25.证明 假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25,则a 1+a 2+a 3+a 4≤25+25+25+25=100,这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误. 所以a 1,a 2,a 3,a 4中至少有一个数大于25.基础巩固题组一、选择题1.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设( ) A .三个内角都不大于60° B .三个内角都大于60° C .三个内角至多有一个大于60° D .三个内角至多有两个大于60°答案 B2.若a,b∈R,则下面四个式子中恒成立的是( ) A.lg(1+a2)>0 B.a2+b2≥2(a-b-1)C.a2+3ab>2b2 D.ab<a+1 b+1解析在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.答案 B3.已知m>1,a=m+1-m,b=m-m-1,则以下结论正确的是( )A.a>b B.a<b C.a=b D.a,b大小不定解析∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.答案 B4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是( )A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a2+ac+c2<0⇐2a2-ac-c2>0⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.答案 C5.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下正确的是( )A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D .①的假设错误;②的假设正确解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确. 答案 D6.(2018·杭州一模)记S n 是各项均为正数的等差数列{a n }的前n 项和,若a 1≥1,则( ) A .S 2m S 2n ≥S 2m +n ,ln S 2m ln S 2n ≤ln 2S m +n B .S 2m S 2n ≤S 2m +n ,ln S 2m ln S 2n ≤ln 2S m +n C .S 2m S 2n ≥S 2m +n ,ln S 2m ln S 2n ≥ln 2S m +n D .S 2m S 2n ≤S 2m +n ,ln S 2m ln S 2n ≥ln 2S m +n解析 由S n 是各项均为正数的等差数列{a n }的前n 项和,可采用取特殊数列方法验证排除,如:数列1,2,3,4,5,6,…,取m =1,n =1,则S 2m =S 2=3,S 2n =S 4=10,S m +n =S 3=6,∴S 2m S 2n =S 2S 4=30<36=S 23=S 2m +n ,排除A ,C ;又ln S 2m ln S 2n =ln 3·ln 10<ln 26=ln 2S m +n ,排除D. 答案 B 二、填空题7.6+7与22+5的大小关系为________. 解析 要比较6+7与22+5的大小, 只需比较(6+7)2与(22+5)2的大小, 只需比较6+7+242与8+5+410的大小,只需比较42与210的大小,只需比较42与40的大小, ∵42>40,∴6+7>22+ 5. 答案6+7>22+ 58.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是______________.解析 “至少有一个能”的反面是“都不能”. 答案 a ,b 都不能被5整除9.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________.解析 要使b a +a b ≥2,只需b a >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 答案 ①③④10.给出如下四个命题:①e 2e >2;②ln 2>23;③π2<3π;④ln 22<ln ππ,正确的命题是________(只填序号).解析 要证e 2e >2,只要证2e >ln 2,即2>eln 2,设f (x )=eln x -x ,x >0,∴f ′(x )=e x -1=e -xx,当0<x <e 时,f ′(x )>0,函数单调递增, 当x >e 时,f ′(x )<0,函数单调递减,∴f (x )<f (e)=eln e -e =0,∴f (2)=eln 2-2<0, 即2>eln 2,∴e 2e >2,因此①正确;∵3ln 2=ln 8>ln 2.82>ln e 2=2. ∴l n 2>23,因此②正确;π2<42=16,3π>33=27,因此π2<3π,③正确; ∵2π<π2,∴ln 22<ln ππ,④正确;正确的命题是①②③④. 答案 ①②③④ 三、解答题11.若a ,b ,c 是不全相等的正数,求证: lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞), ∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.又上述三个不等式中等号不能同时成立. ∴a +b 2·b +c 2·c +a2>abc 成立.上式两边同时取常用对数, 得lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg abc , ∴lga +b 2+lgb +c2+lgc +a2>lg a +lg b +lg c .12.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)解 当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.能力提升题组13.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析 ∵a +b2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,∴f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b .答案 A14.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a( )A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2解析 ∵a >0,b >0,c >0,∴⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫b +1c +⎝⎛⎭⎪⎫c +1a =⎝⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.答案 D15.如果a a +b b >a b +b a ,则a ,b 应满足的条件是________. 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b . 答案 a ≥0,b ≥0且a ≠b16.设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y +xy .证明 由于x ≥1,y ≥1,所以要证明x +y +1xy ≤1x +1y +xy ,只需证xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立.17.(2016·浙江卷)设函数f (x )=x 3+11+x ,x ∈[0,1],证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.。
高中数学数列教案:数列与数学归纳法的应用数列是高中数学中的重要内容,也是考试的热点。
在教学过程中,让学生掌握数列与数学归纳法的应用是十分关键的。
本教案将从基本概念开始,逐步引导学生理解和运用数列与数学归纳法。
一、概念介绍1. 数列的定义首先,我们来回顾一下数列的定义。
数列是按照一定规律排列的一系列数字。
通常用{ }表示,其中的每个数字称为这个数列的项。
2. 数列的分类接下来,我们介绍一些常见的数列分类。
(1)等差数列:若一个数列从第二项起,每一项与它前面的那个项之差都相等,则这个数列称为等差数列。
(2)等比数列:若一个数列从第二项起,每一项与它前面的那个项之比都相等,则这个数列称为等比数列。
(3)斐波那契数列:斐波那契数列起初有两个1,后面每一项都是前两项之和。
二、数学归纳法1. 数学归纳法的思想了解了基本概念后,我们进入主题——如何使用数学归纳法解决问题。
数学归纳法是一种用来证明关于正整数的命题的常用方法。
它基于两个关键点:(1)基础情形:先证明当n=1时,命题成立。
(2)归纳步骤:假设当n=k时,命题成立,那么当n=k+1时,命题是否仍然成立。
2. 数学归纳法的应用掌握了数列和数学归纳法的概念后,让我们看几个具体应用例子。
(1)证明等差数列通项公式利用数学归纳法可以帮助我们证明等差数列的通项公式。
首先,在基础情形中验证当n=1时通项公式是否成立,即首项为a,公差为d的等差数列的第一项是a+(1-1)d=a。
接下来假设对于n=k时,通项公式成立,则第k+1项为a+(k+1-1)d=a+kd。
可以发现,第k+2项为a+(k+2-1)d=a+(k+d)=a+(k+kd)=a+(k+1)d。
由此可见,在基础情形和归纳步骤中都得出同样的结论,即等差数列的通项公式成立。
(2)求斐波那契数列的性质斐波那契数列是一个典型的用数学归纳法解决问题的例子。
首先,在基础情形中验证前两项是否符合斐波那契数列的定义,即1、1。
高中数学数列与数学归纳法教学设计数列与数学归纳法是高中数学中的重要内容,对学生的数学思维能力和问题解决能力具有重要影响。
本文将围绕数列与数学归纳法的教学设计展开讨论。
一、教学目标本节课的教学目标主要包括:1. 理解数列的概念,掌握常见数列的表示方法;2. 掌握数列的通项公式的推导方法;3. 熟练运用数学归纳法进行证明和解题。
二、教学内容本节课将重点讲解以下内容:1. 数列的概念及分类:等差数列、等比数列等;2. 数列的表示方法及性质;3. 数列的通项公式的推导方法;4. 数学归纳法的基本思想和应用。
三、教学过程1. 导入(5分钟)通过一个小题让学生回顾数列的概念,培养学生对数列的兴趣,并激发他们的思维。
2. 理论讲解(20分钟)首先介绍数列的基本概念和分类,并通过具体例子解释定义。
然后讲解数列的表示方法和性质,强调对数列的性质进行观察和总结。
3. 实例分析(30分钟)选择一些实际问题,通过数列的方法进行解答,引导学生运用数列的通项公式进行推导,并让学生发现其中的规律。
4. 数学归纳法的引入(10分钟)通过实例引入数学归纳法的概念和基本思想,让学生意识到数学归纳法在数学证明和解题中的重要性。
5. 数学归纳法的应用(30分钟)以实例为基础,引导学生运用数学归纳法进行证明和解题。
在教学过程中,要注意适时给予学生提示和指导,让学生在实际操作中理解数学归纳法的运用。
6. 拓展与巩固(10分钟)通过一些拓展题目巩固学生对数列与数学归纳法的理解和应用,并培养学生独立解题的能力。
四、教学评价与反思在教学过程中,教师需要进行实时评价和反思,及时调整教学策略。
例如,可以通过提问、讨论和练习等方式检验学生的学习情况,并针对学生的理解程度给予适当的指导和讲解。
教学设计的重点是通过一系列的实例演绎,引导学生理解和掌握数列与数学归纳法的基本概念、方法和应用,培养学生的数学思维和问题解决能力。
同时,教师在教学过程中要注重培养学生的观察和总结能力,引导学生发现规律,并激发学生的兴趣,提高学生的学习效果。
第2课时 数列的综合问题题型一 数列与函数例1 数列{a n }的前n 项和为S n ,2S n =a n +1-2n +1+1,n ∈N +,且a 1,a 2+5,19成等差数列.(1)求a 1的值;(2)证明⎩⎨⎧⎭⎬⎫a n 2n +1为等比数列,并求数列{a n }的通项公式; (3)设b n =log 3(a n +2n ),若对任意的n ∈N +,不等式b n (1+n )-λn (b n +2)-6<0恒成立,试求实数λ的取值范围.解 (1)在2S n =a n +1-2n +1+1,n ∈N +中, 令n =1,得2S 1=a 2-22+1,即a 2=2a 1+3,①又2(a 2+5)=a 1+19,②则由①②解得a 1=1.(2)当n ≥2时,由⎩⎪⎨⎪⎧2S n =a n +1-2n +1+1, ③2S n -1=a n -2n +1, ④ ③-④得2a n =a n +1-a n -2n ,则a n +12n +1+1=32⎝⎛⎭⎫a n 2n +1, 又a 2=5,则a 222+1=32⎝⎛⎭⎫a 121+1. ∴数列⎩⎨⎧⎭⎬⎫a n 2n +1是以32为首项,32为公比的等比数列, ∴a n 2n +1=32×⎝⎛⎭⎫32n -1,即a n =3n -2n . (3)由(2)可知,b n =log 3(a n +2n )=n .当b n (1+n )-λn (b n +2)-6<0恒成立时,即(1-λ)n 2+(1-2λ)n -6<0(n ∈N +)恒成立.设f (n )=(1-λ)n 2+(1-2λ)n -6(n ∈N +),当λ=1时,f (n )=-n -6<0恒成立,则λ=1满足条件;当λ<1时,由二次函数性质知不恒成立;当λ>1时,由于对称轴n =-1-2λ2(1-λ)<0, 则f (n )在[1,+∞)上单调递减,f (n )≤f (1)=-3λ-4<0恒成立,则λ>1满足条件,综上所述,实数λ的取值范围是[1,+∞).思维升华 数列与函数的交汇问题(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解题时要注意数列与函数的内在联系,掌握递推数列的常见解法.跟踪训练1 (2018·葫芦岛模拟)已知数列{a n }满足a 1=1,2a n +1=a n ,数列{b n }满足b n =2-log 2a 2n +1.(1)求数列{a n },{b n }的通项公式;(2)设数列{b n }的前n 项和为T n ,求使得2T n ≤4n 2+m 对任意正整数n 都成立的实数m 的取值范围.解 (1)由a 1=1,a n +1a n =12,a n ≠0, ∴{a n }是首项为1,公比为12的等比数列, ∴a n =⎝⎛⎭⎫12n -1.∴b n =2-log 2⎝⎛⎭⎫122n =2n +2.(2)由(1)得,T n =n 2+3n ,∴m ≥-2n 2+6n 对任意正整数n 都成立.设f (n )=-2n 2+6n ,∵f (n )=-2n 2+6n =-2⎝⎛⎭⎫n -322+92, ∴当n =1或2时,f (n )的最大值为4,∴m ≥4.即m 的取值范围是[4,+∞).题型二 数列与不等式例2 已知数列{a n }中,a 1=12,其前n 项的和为S n ,且满足a n =2S 2n 2S n -1(n ≥2). (1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)证明:S 1+12S 2+13S 3+ (1)S n <1. 证明 (1)当n ≥2时,S n -S n -1=2S 2n 2S n -1,整理得S n -1-S n =2S n ·S n -1(n ≥2), ∴1S n -1S n -1=2,从而⎩⎨⎧⎭⎬⎫1S n 构成以2为首项,2为公差的等差数列. (2)由(1)可知,1S n =1S 1+(n -1)×2=2n ,∴S n =12n. ∴当n =1时,1n S n =12<1, 方法一 当n ≥2时,1n S n =12n 2<12·1n (n -1)=12⎝⎛⎭⎫1n -1-1n ,∴S 1+12S 2+13S 3+…+1n S n <12+12⎝⎛⎭⎫1-12+12-13+…+1n -1-1n =1-12n <1. ∴原不等式得证.方法二 当n ≥2时,12n 2<12(n 2-1)=14⎝⎛⎭⎫1n -1-1n +1, ∴S 1+12S 2+13S 3+ (1)S n <12+14⎝⎛1-13+12-14+13-15+…+1n -2-1n + ⎭⎫1n -1-1n +1=12+14⎝⎛⎭⎫1+12-1n -1n +1, <12+14⎝⎛⎭⎫1+12=78<1. ∴原命题得证.思维升华 数列与不等式的交汇问题(1)函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;(2)放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到.跟踪训练2 已知数列{a n }为等比数列,数列{b n }为等差数列,且b 1=a 1=1,b 2=a 1+a 2,a 3=2b 3-6.(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +2,数列{c n }的前n 项和为T n ,证明:15≤T n <13. (1)解 设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意得1+d =1+q ,q 2=2(1+2d )-6,解得d =q =2,所以a n =2n -1,b n =2n -1. (2)证明 因为c n =1b n b n +2=1(2n -1)(2n +3)=14⎝⎛⎭⎫12n -1-12n +3, 所以T n =14⎣⎡⎝⎛⎭⎫1-15+⎝⎛⎭⎫13-17+…+ ⎦⎤⎝⎛⎭⎫12n -3-12n +1+⎝⎛⎭⎫12n -1-12n +3 =14⎝⎛⎭⎫1+13-12n +1-12n +3=13-14⎝⎛⎭⎫12n +1+12n +3, 因为14⎝⎛⎭⎫12n +1+12n +3>0,所以T n <13. 又因为T n 在[1,+∞)上单调递增,所以当n =1时,T n 取最小值T 1=15, 所以15≤T n <13. 题型三 数列与数学文化 例3 我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤.”( )A.6斤B.7斤C.8斤D.9斤答案 D解析 原问题等价于等差数列中,已知a 1=4,a 5=2,求a 2+a 3+a 4的值.由等差数列的性质可知a 2+a 4=a 1+a 5=6,a 3=a 1+a 52=3, 则a 2+a 3+a 4=9,即中间三尺共重9斤.思维升华 我国古代数学涉及等差、等比数列的问题很多,解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等差、等比数列的概念、通项公式和前n 项和公式.跟踪训练3 中国人在很早就开始研究数列,中国古代数学著作《九章算术》、《算法统宗》中都有大量古人研究数列的记载.现有数列题目如下:数列{a n }的前n 项和S n =14n 2,n ∈N +,等比数列{b n }满足b 1=a 1+a 2,b 2=a 3+a 4,则b 3等于( )A.4B.5C.9D.16答案 C解析 由题意可得b 1=a 1+a 2=S 2=14×22=1, b 2=a 3+a 4=S 4-S 2=14×42-14×22=3, 则等比数列{b n }的公比q =b 2b 1=31=3, 故b 3=b 2q =3×3=9.1.(2018·包头模拟)设数列{a n }的前n 项和为S n ,且S n =-a n +1.(1)求数列{a n }的通项公式;(2)若f (x )=12log x ,设b n =f (a 1)+f (a 2)+…+f (a n ),求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .解 (1)由S n =-a n +1得S n +1=-a n +1+1,两式相减得,S n +1-S n =-a n +1+a n ,即 a n +1=-a n +1+a n ,即 a n +1a n =12(n ≥1), 所以数列{a n }是公比为12的等比数列, 又由a 1=-a 1+1得a 1=12, 所以a n =a 1q n -1=⎝⎛⎭⎫12n .(2)因为b n =f (a 1)+f (a 2)+…+f (a n )=1+2+…+n =n (n +1)2, 所以1b n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 所以T n =2⎝⎛⎭⎫11-12+12-13+…+1n -1n +1 =2⎝⎛⎭⎫1-1n +1=2n n +1.2.已知等差数列{a n }的公差d ≠0,a 1=0,其前n 项和为S n ,且a 2+2,S 3,S 4成等比数列.(1)求数列{a n }的通项公式;(2)若b n =(2n +2)22n +S n +1,数列{b n }的前n 项和为T n ,求证:T n -2n <32. (1)解 由a 1=0得a n =(n -1)d ,S n =n (n -1)d 2, 因为a 2+2,S 3,S 4成等比数列,所以S 23=(a 2+2)S 4,即(3d )2=(d +2)·6d ,整理得3d 2-12d =0,即d 2-4d =0,因为d ≠0,所以d =4,所以a n =(n -1)d =4(n -1)=4n -4.(2)证明 由(1)可得S n +1=2n (n +1),所以b n =(2n +2)22n +2n (n +1)=4(n +1)22n (n +2)=2+2n (n +2)=2+⎝⎛⎭⎫1n -1n +2, 所以T n =2n +⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1n +2 =2n +1+12-1n +1-1n +2, 所以T n -2n <32. 3.已知二次函数f (x )=ax 2+bx 的图象过点(-4n ,0),且f ′(0)=2n ,n ∈N +,数列{a n }满足1a n +1=f ′⎝⎛⎭⎫1a n ,且a 1=4.(1)求数列{a n }的通项公式;(2)记b n =a n a n +1,求数列{b n }的前n 项和T n .解 (1)f ′(x )=2ax +b ,由题意知b =2n ,16n 2a -4nb =0,∴a =12,则f (x )=12x 2+2nx ,n ∈N +.数列{a n }满足1a n +1=f ′⎝⎛⎭⎫1a n ,又f ′(x )=x +2n ,∴1a n +1=1a n +2n ,∴1a n +1-1a n=2n ,由累加法可得1a n -14=2+4+6+…+2(n -1)=n 2-n , 化简可得a n =4(2n -1)2(n ≥2),当n =1时,a 1=4也符合,∴a n =4(2n -1)2(n ∈N +).(2)∵b n =a n a n +1=4(2n -1)(2n +1)=2⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =a 1a 2+a 2a 3+…+a n a n +1=2⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=2⎝⎛⎭⎫1-12n +1=4n 2n +1. 4.已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n . 解 (1)设数列{x n }的公比为q .由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2. 所以3q 2-5q -2=0,由已知得q >0,所以q =2,x 1=1.因此数列{x n }的通项公式为x n =2n -1. (2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由(1)得x n +1-x n =2n -2n -1=2n -1, 记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2,① 则2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② 由①-②,得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1 =32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.5.(2019·盘锦模拟)若正项数列{a n }的前n 项和为S n ,首项a 1=1,点P (S n ,S n +1)在曲线y =(x +1)2上.(1)求数列{a n }的通项公式a n ;(2)设b n =1a n ·a n +1,T n 表示数列{b n }的前n 项和,若T n ≥a 恒成立,求T n 及实数a 的取值范围.解 (1)由S n +1=(S n +1)2,得S n +1-S n =1, 所以数列{S n }是以S 1为首项,1为公差的等差数列, 所以S n =S 1+(n -1)×1,即S n =n 2,由公式a n =⎩⎪⎨⎪⎧ S 1,n =1,S n -S n -1,n ≥2, 得a n =⎩⎪⎨⎪⎧1,n =1,2n -1,n ≥2,所以a n =2n -1. (2)因为b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1, 显然T n 是关于n 的增函数,所以T n 有最小值(T n )min =T 1=12×⎝⎛⎭⎫1-13=13. 由于T n ≥a 恒成立,所以a ≤13, 于是a 的取值范围是⎝⎛⎦⎤-∞,13.6.已知各项均不相等的等差数列{a n }的前三项和为9,且a 1,a 3,a 7恰为等比数列{b n }的前三项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)记数列{a n b n }的前n 项和为K n ,设c n =S n T n K n,求证:c n +1>c n (n ∈N +). (1)解 设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧ 3a 1+3d =9,(a 1+2d )2=a 1(a 1+6d ), 解得⎩⎪⎨⎪⎧ a 1=2,d =1或⎩⎪⎨⎪⎧a 1=3,d =0(舍去), 所以a n =n +1,S n =n (n +3)2. 又b 1=a 1=2,b 2=a 3=4,所以b n =2n ,T n =2n +1-2. (2)证明 因为a n ·b n =(n +1)·2n ,所以K n =2·21+3·22+…+(n +1)·2n ,① 所以2K n =2·22+3·23+…+n ·2n +(n +1)·2n +1,② ①-②得-K n =2·21+22+23+…+2n -(n +1)·2n +1, 所以K n =n ·2n +1. 则c n =Sn T n K n =(n +3)(2n -1)2n +1,c n +1-c n =(n +4)(2n +1-1)2n +2-(n +3)(2n -1)2n +1 =2n +1+n +22n +2>0,所以c n +1>c n (n ∈N +).。